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Thermalization, condensate growth, and defect formation in an out-of-equilibrium Bose gas
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We experimentally and numerically investigate thermalization processes of a trapped 87Rb Bose gas, initially
prepared in a nonequilibrium state through partial Bragg diffraction of a Bose-Einstein condensate (BEC). The
system evolves in a Gaussian potential, where we observe the destruction of the BEC due to collisions and
subsequent growth of a new condensed fraction in an oscillating reference frame. Furthermore, we occasionally
observe the presence of defects, which we identify as gray solitons. We simulate the evolution of our system using
the truncated Wigner method and compare the outcomes with our experimental results.
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I. INTRODUCTION

Thermalization processes present within weakly interacting
Bose gases play a crucial role in the experimental realization of
a Bose-Einstein condensate (BEC) through forced evaporative
cooling [1]. Detailed modeling of dynamical processes within
these confined Bose gas systems presents a challenging prob-
lem. While the dynamics of a pure BEC at zero temperature
are well represented by a mean-field description [2], the addi-
tion of noncondensed atoms greatly increases the dynamical
complexity of the system, and accurate simulation quickly
becomes intractable [3]. To develop a deep understanding
of the thermalization process, careful consideration of both
theoretical models and experiments are required.

Early thermalization experiments involving ultracold Bose
gases were concerned with the feasibility of evaporatively
cooling to Bose-Einstein condensation. To this end, the elastic
scattering properties and cross-dimensional mixing rates of
atoms within a magnetic trap were investigated [4,5]. With
the experimental realization of a BEC [1], the growth rate
of a condensed fraction from thermal vapor was observed
[6,7] and found to differ from a pure relaxation process. The
quantum mechanical nature of cold-atom scattering has been
revealed through energetic BEC collisions [8–10]. Thermal-
ization processes depend largely on the microscopic prop-
erties of the system involved, such as the s-wave scattering
length. Dimensionality also plays a critical role in defining
these processes, and work has been done to investigate the
properties of ultracold Bose gases in one [11–13], two [14],
and three dimensions [3,15]. Despite this, there is currently no
universally accepted theoretical description detailing the full
growth, relaxation, and thermalization properties of ultracold
atomic gases [3].

In this paper we experimentally and numerically investi-
gate the thermalization processes of an ultracold Bose gas
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initially prepared in a highly nonequilibrium state, formed
by stimulating atoms from a 87Rb Bose-Einstein condensate
into a higher momentum state through Bragg diffraction.
The system is allowed to evolve within a three-dimensional
confining potential, in which collisions occur as the atoms
oscillate within the potential. The BEC is quickly destroyed
and the atoms are scattered into various other modes, from
which we observe the growth and reformation of a new
condensed fraction in an oscillating reference frame. We model
the initial growth of atomic density in this frame accounting
for Bosonic enhancement [6] and compare growth rates for
different harmonic trapping frequencies. We also compare
the time evolution of our system to simulations using the
truncated Wigner method and discuss the use of this method for
modeling the evolution of such systems. Finally, in a fraction
of experiments, we observe the formation of defects within
the condensed fraction that we identify as gray solitons. We
attribute these defects to the inability for phase information to
quickly propagate as separate condensed fractions grow from
different nucleation centers within the system, a process known
as the Kibble-Zurek mechanism [16–18].

II. THE EXPERIMENT

Our experiment involves a BEC of approximately 2 ×
104 87Rb atoms optically pumped into the |F = 1; mF = −1〉
state and held in an optical dipole trap [19]. The dipole trap
is formed at the center of two intersecting, focused CO2

laser beams, with a wavelength of 10.6 μm and each with
a 1/e2 radius of 35 μm. This potential can be considered near
harmonic around the trap center and can be characterized by
a set of frequencies ωj that define the potential in all three
dimensions. We determine these frequencies experimentally
through a parametric heating process [20]. Following the
loading of atoms from a magneto-optical trap into the optical
dipole trap, we perform a 6.5-s evaporative cooling sequence
to produce a BEC.

Once a BEC has been obtained, we place the system out of
equilibrium as outlined below. Initially, the CO2 laser power is
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adiabatically ramped up over 100 ms, resulting in an increased
trap depth, which prevents atom loss when the sample is heated.
This also allows us to have control over the trap frequencies.
For the experiments presented here, we utilize trap frequencies
in the range ωy/(2π ) = 150–400 Hz, with ωx = 1.2ωy and
ωz = 2ωy , and with the z dimension parallel to gravity. A 60-μs
Bragg diffraction pulse [21] is then applied in the y dimension
to coherently transfer 50% of the BEC into an ensemble having
2h̄k�ŷ momentum, where k� = 2π/λ is the wave number of
the Bragg diffraction laser. This laser has a wavelength of λ =
783 nm, detuned to the red of theD2 resonance by� = 1.6 THz
to prevent heating by spontaneous emission within the atomic
sample.

The dipole trapping potential remains on throughout this
process, and the atoms are allowed to oscillate within the
potential, where they collide and rethermalize. Following a
variable evolution time t of up to 20 ms within the potential,
the atoms are released from the potential, where they expand
freely for 10 ms and are imaged using an absorption technique,
yielding a time-of-flight image of the momentum distribution.
This process is repeated for t increasing in 200-μs steps,
allowing us to construct a sequence of images representing
the evolution of the system as it thermalizes, as shown in
Fig. 1(a). For comparison, we also present a numerical sim-
ulation of the system evolution using the truncated Wigner
method in Fig. 1(b), where the potential is Gaussian with
(ωx,ωy,ωz)/(2π ) = (264,220,440) Hz and a 1/e2 radius of
35 μm. Further details of the simulation are presented in
Sec. V.

Care must be taken when interpreting time-of-flight images
such as those presented in Fig. 1(a), as these images represent
the momentum of the atoms and hence lack information about
the position of the atoms within the potential. As an example,
the left-most image in Fig. 1(a) at t = 0 shows that there
exist two separate momentum ensembles; however, in-trap
both of these components are initially spatially overlapped.
This results in immediate collisions between atoms with 0
and 2h̄k�ŷ momenta, which are then scattered into a range of
momentum states. In Fig. 1(c), we show an average of 100 time-
of-flight images of the system following the Bragg diffraction
process, where we have observed the presence of a low-density
scattering halo [22,23] containing approximately 25% of the
atoms, consistent with an s-wave scattering description of the
collision process. This provides the initial condition for the
subsequent time evolution and rethermalization processes of
the system within the potential.

III. THERMALIZATION

Following Bragg diffraction of the initial BEC, the majority
of the atoms reside in two ensembles centered on two time-
dependent momentum values, which we label as |0h̄k�〉 and
|2h̄k�〉. Here, the momentum label refers to the momentum
amplitude of each ensemble, as the actual momentum oscillates
due to the confining potential. Immediately following the
creation of the two momentum ensembles, they begin to
spatially separate within the potential. After evolving for
t ≈ 1.2 ms, atoms in the |2h̄k�〉 ensemble reach the turning
point of the potential, where they have a momentum close
to 0. Here, the two ensembles have a spatial separation of

FIG. 1. (a) A sequence of concatenated time-of-flight absorption
images showing the momentum evolution of the system in the y

dimension as a function of in-trap hold time t . Each image is an
average of three experimental realizations. (b) A numerical simulation
of the same system evolution using the truncated Wigner method, as
described in Sec. V. (c) The average of 100 experimental time-of-
flight images for t = 0, with an s-wave scattering halo containing
∼25% of the atoms formed. (d) A time-of-flight image following
16-ms of in-potential evolution, where the system has thermalized to
form a new condensed fraction. (e) Integrating along the x dimension
of panel (d) clearly shows the bimodal nature of the system. Here,
we fit a Thomas-Fermi profile to the condensed fraction and a
Bose-enhanced Gaussian to the remaining atoms.

approximately 10 μm, whereas the spatial extent of each
ensemble in the potential is about 1 μm. Atoms in the |2h̄k�〉
ensemble then accelerate towards the center of the potential,
where they collide with atoms in the |0h̄k�〉 ensemble starting
from t ≈ 2.0 ms. As seen in Fig. 1(a), the remaining condensed
fraction within each momentum ensemble is destroyed, and
atoms are scattered into a range of momentum states.

From here, the system quickly coalesces into an ensemble
oscillating at the average momentum of |1h̄k�〉, where we
observe the growth of a new condensed fraction. Convergence
of the system to a momentum amplitude of |1h̄k�〉 is to be
expected, as this corresponds to the center-of-momentum of
the system. However growth of a condensed fraction in this
noninertial reference frame is initially surprising and demon-
strates the ability of the system to develop and maintain phase
coherence as the atoms are accelerated within the potential.

The |1h̄k�〉 state can be traced by considering the center-
of-momentum of the entire system as a function of hold
time. We observe a cosinusoidal oscillation, from which we
are able to extract the y-dimension trapping frequency as
ωy/(2π ) = 220 Hz. Although we expect that in a truly har-
monic potential this center-of-mass oscillation would persist
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indefinitely [24], we observe a weak decay in the amplitude of
the oscillation, with a time constant of 60 ms. We attribute this
to anharmonicities within the trapping potential [25]. Atoms
with higher initial momentum travel further within the potential
and, due to the Gaussian profile of the trap, experience a lower
effective trapping frequency. These atoms therefore have a
longer oscillation period within the trap, and the system will
begin to experience an overall dephasing between different
momentum components. This allows energy initially locked
in the center-of-mass oscillation of the system to become
available for thermalization.

Following approximately 3.5 oscillation periods within the
potential, corresponding to t ≈ 16 ms, we observe that the
system consists of a condensed fraction sitting on top of an
approximately thermal fraction, oscillating with the center-
of-momentum amplitude |1h̄k�〉, as shown in Fig. 1(d). We
also show the integrated atomic density along the x dimension
in Fig. 1(e) to emphasize the bimodal nature of the system
following rethermalization.

IV. EXPERIMENTAL ANALYSIS

To analyze the evolution of the system shown in Fig. 1(a),
we first transform to the |1h̄k�〉 center-of-momentum reference
frame, which oscillates cosinusoidally with the trap frequency
ωy . Growth of the atomic density within this |1h̄k�〉 momen-
tum amplitude arises through scattering of atoms from other
momentum states. Prior to the Bragg diffraction process, the
initial BEC has close to zero energy compared to the energy
scale of our experiment. The total energy of the system, where
half of the atoms are promoted to a momentum of 2h̄k�ŷ,
is Etot = Nh̄2k2

�/m, where N is the total number of atoms
in the system and m is the mass of a single atom. As the
system converges to the |1h̄k�〉 state, some of this energy
becomes locked in a center-of-mass oscillation of the system,
amounting to ECOM = Nh̄2k2

�/(2m), corresponding to half of
the total energy. The remaining energy, Eth = Etot − ECOM,
is available for thermalization processes and contributes to
heating. If Eth is less than the energy required to exceed the
critical temperature for Bose-Einstein condensation Tc, growth
of a condensed fraction oscillating in the center-of-momentum
frame will be observed. While the one-dimensional scattering
of two atoms, one from each of the |0h̄k�〉 and |2h̄k�〉 states
into the |1h̄k�〉 state, conserves momentum, this process is not
directly permitted due to energy conservation laws without
either exciting the atoms to higher thermal states or transferring
energy into other dimensions through cross-thermalization.
Therefore, any condensed fraction that forms in the |1h̄k�〉
reference frame must grow from an ensemble of previously
scattered atoms.

By integrating the atomic density within a 0.45h̄k� region
around the center-of-momentum, we are able to observe the
rate of growth of this atom number as a function of in-trap
evolution time t , as shown in Fig. 2(a). We observe that atomic
density within this region grows as atoms are scattered into
the |1h̄k�〉 ensemble. The temporal density peaks correspond
to atoms in both the |0h̄k�〉 and |2h̄k�〉 momentum ensembles
overlapping with the |1h̄k�〉 ensemble in momentum space.
Although the presence of these peaks partially obscures the
growth of atomic density in the |1h̄k�〉 ensemble, their decay

FIG. 2. (a) Atomic density integrated within a 0.45h̄k� region
about the |1h̄k�〉 center-of-momentum state as a function of in-
potential evolution time t for the experimental images shown in
Fig. 1(a) (blue circles). We model this growth accounting for Bose
enhancement (red dashed line), from which we are able to extract
a characteristic growth rate of γ /(2π ) = 160 ± 15 Hz. A similar
integration is performed for the numerical simulation previously
shown in Fig. 1(b) (black line). (b) Growth of the momentum variance
in the x dimension indicating the presence of cross-dimensional
thermalization, fit with a growth curve from which we find that
γx/(2π ) = 115 ± 20 Hz. (c) Growth rates of the |1h̄k�〉 state extracted
for various systems which thermalize above the critical temperature
Tc (blue dots). The growth rates for systems that thermalize below Tc

are shown in red, with the data from panel (a) shown as a cross.

provides information about the depletion of atoms from both
the |0h̄k�〉 and |2h̄k�〉 ensembles, which we expect is directly
related to the growth rate of the |1h̄k�〉 ensemble. Additionally,
these momentum-space peaks occur when atoms in the |0h̄k�〉
and |2h̄k�〉 ensembles have their maximal spatial separation
and are therefore not expected to impact the growth of the
|1h̄k�〉 ensemble at this time. We therefore include these
density peaks in our model of the growth rate of the |1h̄k�〉
ensemble.

For the data presented in Fig. 2(a), the energy available for
thermalization, Eth, is not sufficient to exceed Tc, and hence
we observe the formation of a condensed fraction of atoms in
the |1h̄k�〉 center-of-momentum reference frame, along with
the growth of a thermal state. We model this growth using a
curve accounting for Bose enhancement within the system,

N (t) = Nie
γ t

[
1 +

(
Ni

Neq

)δ

(eδγ t − 1)

]−1/δ

, (1)

where N is the population of the |1h̄k〉 ensemble at a time t , Ni

is the initial population of the ensemble, Neq is the equilibrium
population, γ is the initial growth rate, and the exponent δ is
fixed to 2/5 consistent with microscopic theory [6], allowing
us to extract a characteristic growth rate γ for the system.
As the temporal peaks representing atoms in the |0h̄k�〉 and
|2h̄k�〉 states passing through the integration region decay as
the system evolves, we set this rate of decay to be equal to
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the growth rate of the atomic density in the |1h̄k�〉 state. This
analytical fit to the data is shown in Fig. 2(a) as the dashed
red curve, from which we extract a growth rate of γ /(2π ) =
160 ± 15 Hz. The black curve in Fig. 2(a) is from an integration
about the center-of-momentum reference frame for 50 runs of
a truncated Wigner simulation, as discussed in Sec. V.

Due to the three-dimensional nature of our trapping poten-
tial, energy from the Bragg diffraction process initially applied
in the y dimension is distributed between all three dimensions
as the system equilibrates. Figure 2(b) shows the increase
of momentum variance in the x dimension as a function of
t , giving insight into the cross-dimensional thermalization
rate. We fit a growth curve to the system and find that the
growth of the variance is γx/(2π ) = 115 ± 20 Hz. Although
the numerical values of γ and γx are similar, they relate to
different quantities, i.e., the number of atoms in the |1h̄k〉
ensemble and the width in the (orthogonal) x dimension,
respectively, and are hence not expected to be identical.

Following approximately 16 ms of in-trap evolution, growth
in the center-of-momentum reference frame has ceased in the
y dimension, and the system has approximately thermalized.
Although the system will continue to evolve within the po-
tential we are able to extract an instantaneous temperature
of the ensemble, giving insight into how the system has
thermalized. To achieve this we perform a bimodal fit of
a Thomas-Fermi profile for the condensed fraction and a
Bose-enhanced Gaussian for the remaining atoms, as shown
in Fig. 1(e), obtaining the atom number in each. Considering
the condensed fraction of atoms we obtain T = 295 ± 8 nK,
below the critical temperature Tc = 360 ± 5 nK for our system.

After 16 ms of in-trap evolution, we find that the momen-
tum amplitude of the |1h̄k�〉 center-of-momentum state has
decayed to 0.75h̄k�, and hence 40% of the initial ECOM further
contributes towards the thermalization energy Eth at this time.
By considering all contributions to Eth at t = 16 ms, including
the initial BEC interaction energy, the energy added due to the
Bragg diffraction process, an estimated initial temperature of
0.3Tc, and energy due to the decay of center-of-momentum
oscillations, we expect the system to rethermalize at a temper-
ature of T = 255 ± 6 nK. Further contributions to the heating
of the system could be a result of nonadiabaticity in the initial
ramping of the potential or collisions with background gases.

We find that the growth rate of systems in which a condensed
fraction is formed depends strongly on the exact conditions
of the system, in particular, the number of atoms within the
system as well as the final temperature at which the system
rethermalizes. In order to study the rethermalization rate as
a function of trap frequency, we therefore consider systems
that rethermalize above the critical temperature Tc, such that
there is no formation of a condensed fraction. To achieve
this, we initially heat the BEC by truncating the evaporation
early, such that the Bragg diffraction process provides enough
energy to exceed Tc upon rethermalization. We perform this
experiment for a range of ωy and extract growth rates in the
same way as for Fig. 2(a). The results are shown in Fig. 2(c) as
blue circles, with the growth rate from Fig. 2(a) also shown
as a red cross for reference. We find that the growth rate
increases with increasing trapping frequency, to be expected
as the shorter oscillation period within the potential results in
a greater collision rate between atoms in the |0h̄k�〉 and |2h̄k�〉

momentum ensembles. The higher growth rate of the systems
that thermalize below Tc compared to systems that thermalize
above Tc is attributed to the Bose-enhancement that is apparent
with the growth of a condensed fraction.

V. SIMULATIONS

To numerically demonstrate the thermalization of the av-
erage momentum mode after the Bragg pulse, we use the
truncated Wigner method which evolves according to the
time-dependent Gross-Pitaevskii equation

ih̄
∂ψ(r,t)

∂t
= [Hsp + g|ψ(r,t)|2]ψ(r,t), (2)

where

Hsp = − h̄2∇2

2m
+ m

2

[
ω2

xx
2 + ω2

y

w2

2
(1 − e−2y2/w2

) + ω2
zz

2

]
(3)

is the single-particle Hamiltonian, g = 4πh̄2as/m is the s-
wave coupling constant, with as = 109a0 being the s-wave
scattering length, and w is the 1/e2 radius of the dipole trap-
ping lasers. For |y| � w, Hsp ≈ H 0

sp = − h̄2∇2

2m
+ m

2 (ω2
xx

2 +
ω2

yy
2 + ω2

zz
2). We start by finding the ground state ψ0(r)

of [H 0
sp + g|ψ0|2]ψ0(r) = μψ0(r), with μ being the chemical

potential, and calculate the initial state using

ψ(r,0) = 1√
2

(1 + e2ik�y)ψ0(r) + eik�y
∑

n

′
αnφn(r), (4)

where the term 1 + e2ik�y creates an equal superposition of
wave packets in momentum 0 and 2h̄k�ŷ states. The αn

are complex Gaussian random variables with 〈|αn|〉2 = 1
2 to

account for quantum fluctuations in the truncated Wigner
prescription. We add noise in the single-particle basis; i.e.,
φn are the eigenstates of the single-particle Hamiltonian,
H 0

spφn = εnφn. The prime in Eq. (4) limits the sum to εn <

3h̄2k2
�/2m. We include the factor eik�y to center the noise

about ky = k� to ensure there is noise covering all modes
from below ky = 0 to above ky = 2k� without adding excessive
noise, which would decrease the time over which the truncated
Wigner approximation remains valid. The presented results
average over 50 shots and show the symmetrically ordered
expectations.

The truncated Wigner simulation is expected to reproduce
the quantum evolution of the system over short timescales [26].
Because of the large energy added by the Bragg pulse, the
system is highly excited. A large number of spatial modes
play a role (the added noise amounts an addition of ∼4600
particles, i.e., an extra 23% of N = 2 × 104 particles). Due
to the quantum degeneracy, the continued center-of-mass
motion, the importance of modes with initially low occupation,
and the highly nonequilibrium evolution, few methods other
than truncated Wigner are available to model the rethermal-
ization. However, eventually the added noise added itself
thermalizes, after which the numerical results no longer cor-
rectly reflect the quantum evolution of the system. Similar
calculations were performed for 16% of a trap period with
plane-wave noise in Ref. [27] and for 5% of a trap period using
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FIG. 3. Snapshots of the system evolution following the Bragg
pulse using Eq. (2) in (a) real space, integrating over z with horizontal
axis x, and (b) momentum space, integrating over kz with horizontal
axis kx , with N = 2 × 104, (ωx,ωy,ωz)/(2π ) = (264,220,440) Hz,
and w = 35 μm. The white circle shown in the first image of panel
(b) indicates the region where noise is added to the truncated Wigner
simulation. (c) Experimental time-of-flight images corresponding to
the theoretical images. The images selected do not exactly correspond
to multiples of ωy/4 due to the 200-μs time steps of the experiment.
The experiment also involves a 10-ms free expansion during which
the system will continue to evolve, hence care must be taken when
making comparisons with the momentum images of panel (b).

positive P in Ref. [28], in both cases with the trap removed
immediately after the Bragg pulse.

We integrate over kz to show the ky momentum density (ver-
tical) and the kx momentum density (horizontal) in Fig. 1(b).
Initially there are equal components of the momentum density
at ky = 0 and ky = 2k� and the development of the ky = k�

mode is seen.
In Fig. 2(a) we obtain the black curve by integrating the

momentum density over kx , kz, and a ky window of size 0.45h̄k�

about the center of momentum.
We show the evolution of the system in real space in

Fig. 3(a) and in momentum space in Fig. 3(b), along with the
corresponding experimental images in Fig. 3(c). Initially the
condensate is prepared into a superposition of wave packets
with momentum 0 and 2h̄k�ŷ. The excited wave packet under-
goes oscillatory motion due to the confinement provided by
the potential. After half of a trap period, the two wave packets
recollide in position space and a scattering halo is seen to form
in momentum space. As this evolution continues, the system
is seen to evolve towards a single peak with a thermal-like
distribution. This peak continues to oscillate in the trap.

VI. SPONTANEOUS DEFECT FORMATION

Following the combination of atoms into the |1h̄k�〉 en-
semble and the subsequent growth of a condensed fraction,
the system oscillates within the potential as a mixture of
both condensed and noncondensed atoms. In a fraction of our
experiments, we observe the presence of defects within the
condensed fraction, which we identify as gray solitons [29], as
shown in Fig. 4(a).

FIG. 4. (a) Experimental time-of-flight absorption image featur-
ing a gray soliton of near to 100% contrast. The image is taken
after t = 15 ms of in-potential evolution with a trap frequency of
ωy/(2π ) = 280 Hz. (b) Integrating a strip of the atomic density reveals
the nature of the soliton. We perform a fit to the density profile
consisting of a Thomas-Fermi profile for the condensed atoms, a
Bose-enhanced Gaussian for the noncondensed atoms [30,31], and
a characteristic gray soliton profile.

As Bose-Einstein condensation takes place, the rate at
which information regarding the overall phase of the wave
function travels is limited by the speed of sound in the
condensate. When the front of the condensate transition
propagates faster than the speed of sound, phase coherence
is not established between multiple regions of condensation,
resulting in phase domains differing by |�φ| � π . When these
condensates approach each other, their boundary forms an
unstable gray soliton, a process known as the Kibble-Zurek
mechanism [16–18].

Figure 4(a) shows a time-of-flight image containing a
soliton within the condensed fraction of the atoms, taken after
t = 15 ms of evolution within the potential, for a harmonic
trapping frequency of ωy/(2π ) = 280 Hz. By integrating a
slice of the absorption image in Fig. 4(a), we can gain insight
into the density profile, as shown in Fig. 4(b). Here we have
applied a fit of a Thomas-Fermi profile for the condensed
atoms, a Bose-enhanced Gaussian for the noncondensed atoms
[30,31], and a characteristic tanh2 [(y − y0)/σs] profile for the
gray soliton, where y0 is the soliton offset and σs is related
to the soliton width. We perform multiple experiments having
t = 15 ms of evolution, from which we find 20% of images
containing features that we are able to readily identify as
solitons.

The soliton contrast in a BEC system is proportional to 1 −
vs/cs [32], with vs being the soliton velocity and cs the speed of
sound within the condensed fraction. At nonzero temperature,
the soliton interacts with the noncondensed atoms, accelerating
and dissipating energy in the form of vortices [33], leading to
a reduction in contrast until the soliton vanishes. Although we
expect vortices to appear as the solitons decay, we are unable
to identify their presence in our time-of-flight images.

VII. SUMMARY

We have experimentally and numerically investigated ther-
malization processes of a Bose gas within a three-dimensional,
Gaussian potential. Initially prepared in a highly nonequi-
librium state, the system evolves towards equilibrium within
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the potential, where we observe the initial destruction of the
remaining BEC, before the subsequent growth of a new con-
densate fraction in an oscillating reference frame. The growth
rate of atomic density in this reference frame is characterized,
and we find that it is enhanced compared to experiments where
a condensed fraction is not formed. We perform numerical
simulations of the system evolution using the truncated Wigner
method and find good agreement with our experimental results
for short timescales. Following the growth of a condensed
fraction in the oscillating frame, in 20% of images we observe
the presence of solitons within the condensate, which we
attribute to the Kibble-Zurek mechanism. Finally, we observe
that anharmonicities felt by the atoms as they oscillate away
from the trap minima over the timescale of the experiment
contribute as much as 20% of the initially added energy, which

would otherwise be locked in the center-of-mass oscillation, to
the energy available for thermalization. These anharmonicities
could possibly be harnessed for designing time-dependent
potentials capable of enhancing thermalization rates, allowing
for faster and more efficient production of Bose-Einstein
condensates.
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