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Guiding neutral particles endowed with a magnetic moment by an electromagnetic wave carrying
orbital angular momentum: Quantum mechanics
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The quantum-mechanical states of neutral particles endowed with the magnetic moment (such as neutrons,
light atoms, or even neutrinos, although the effect will be extremely tiny) in the combination of electromagnetic
vortex field together with the constant magnetic field are investigated. It is shown that this system of fields is in
principle capable of capturing the particle in the perpendicular direction and guiding it along the propagating wave.
The quantum evolution is subject to tunneling processes, which can destroy the delicate trapping mechanism.
The calculated probability of such processes shows that basically it should be possible to catch and guide the
particle for the time corresponding to about 105ω−1, where ω is the frequency of the guiding wave. This time
can be lengthened by the appropriate adjustments of the external magnetic field. Due to the very small values
of magnetic moments of available neutral particles and their relatively large masses, this binding mechanism
constitutes presently only a theoretical possibility since it would require extremely strong magnetic fields.
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I. INTRODUCTION

Guiding neutral particles, especially atoms or molecules,
by light beams has attracted much attention for the past
20 years. It refers to both experimental [1–5] and theoretical
investigations [6–13]. A light beam used for transporting
particles may be composed, for instance, of evanescent modes
propagating along a hollow fiber or exist in free space and form
a kind of optical vortex. The mechanism of confining atoms
and molecules, which are neutral objects and do not interact
directly with the electric field of the wave, is based on the Stark
effect. It leads to the emergence of a certain binding potential
in the direction perpendicular to that of the wave propagation
and allows for guiding atoms along the light beam. Another
arrangement exploits the rotating magnetic field for binding
both charged and neutral particles [14–17].

In our previous work [18] we proposed another subtle
mechanism which allows one to guide or even trap neutral
particles due to the interaction of their magnetic moments
with the magnetic field of the vortex. This mechanism does
nor refer to the particle internal structure and therefore can
in principle be applied equally well to composed objects like
atoms (with the restrictions spoken of below) and elementary
ones like neutrons (their quark structure is irrelevant here)
or, although it may seem ridiculous, possibly also neutrinos,
provided they are massive and possess magnetic moments,
which presently remains unclear [19–21]. The potentially wide
future applicability justifies addressing this issue even if the
values of the physical quantities needed to capture the particles
in question remain beyond the reach of current technological
possibilities.

*torado@fuw.edu.pl

The binding effect of the vortex field can be reinforced by
the presence of the external uniform magnetic field pointing
along the wave-propagation direction. The classical equations
of motion of the particle were solved in the quoted work and the
trajectories obtained explicitly showed that this configuration
of fields is capable of trapping or guiding particles. The true
theory governing processes occurring in the microworld has,
however, the quantum nature. Therefore, in the present work
we address this problem within quantum mechanics.

The electromagnetic wave guiding neutral particles, as
proposed in our previous work, can interact with the objects
in question via both electric and magnetic fields. As far as
the neutron (or hypothetically neutrino) is concerned, one
can forget about the former and our proposal leads to the
trapping mechanism due to the rotating magnetic field possibly
further enhanced by a kind of resonance between the Larmor
frequency and that of the vortex wave, as will be explained in
this paper. On the other hand, in the case of composed objects
like atoms, the electric field of the wave should also be looked
at, since this kind of field influences the atomic energy and
consequently is responsible for the trapping mechanism based
on the Stark effect. Admittedly, for the case of the vanishing
atomic polarizability dij for certain frequencies (corresponding
to the so-called tune-out wavelengths), the ac Stark shift
proportional to d2

ij is suppressed by the presence of roots in
dij [22,23], but still the required field is so strong that the atom
can hardly be treated as a bound object. For that reason, at the
present stage, the invoking of light atoms has only a model
meaning.

The Schrödinger-Pauli equation for a neutral particle en-
dowed with magnetic moment μ has the form

ih̄
∂

∂t
�(r, t ) =

(
− h̄2�

2M
− gs· B

)
�(r, t ), (1)
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TOMASZ RADOŻYCKI PHYSICAL REVIEW A 98, 013424 (2018)

0 1 2 3
ξ

2
4
6

V

1 2 3
ξ

3

1

1

3
V

FIG. 1. Behavior of Ṽ±(ξ ) for the same values of parameters as
in Fig. 5 of [18], α = 3, β = 0.8, and γ = 0.01, as well as κz = 0.9
and m = 2.

where g denotes the gyromagnetic ratio (positive or negative,
depending on the orientation of the magnetic moment with
respect to the spin angular momentum). For spin- 1

2 particles,
such as the neutron, the spin vector s is an operator expressed
by Pauli matrices s = h̄/2 σ and the wave function �(r, t ) is
a two-component one. The same refers to a composed system
as the hydrogen atom, for instance (see the Appendix). This
Schrödinger equation can be simplified by the separation of
time and the variables z and ϕ (in cylindrical coordinates)
and this is done in Sec. II. We are then left with two coupled
ordinary differential equations in the radial variable for the
upper and lower components of the spinor function.

In Sec. III further simplification is achieved by exploiting
the diagonal form of the matrix potential. The obtained form
constitutes a convenient starting point for the perturbative
calculation. In Sec. IV these results are used to analyze the
motion of the particle. This analysis indicates the existence
of bound states (in the perpendicular direction). These bound
states can become unstable due to the possible tunneling effects
characteristic for quantum physics. The possible tunneling
channels are considered in Secs. IV C and IV D. Numerical
estimations of the tunneling probabilities show that only the
process consisting in flipping the spin direction can play
an essential role, but the guiding time of order 105ω−1 can
in principle be achieved. This time may be lengthened by
appropriately adjusting the value of the external constant
magnetic field. A similar effect can also be observed for the
classical motion.

The two sets of parameters defined in the captions of Figs. 1
and 2 are used throughout the paper; they are those for which
the exemplary stable trajectories in the classical motion were
found in [18]. When corresponding to the enormously intense
fields, which is a consequence of the very small values of
magnetic moments for known neutral particles, they should
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FIG. 2. Behavior of Ṽ±(ξ ) for the same values of parameters as
in the last plot of Fig. 8 of [18], α = −2, β = −2, and γ = −0.02,
as well as κz = 0.9 and m = 2.

actually be treated only as some model values, although it is
not excluded that some stability regions can also be found for
more realistic ones.

In particular, the first set of data (the second set leads to
similar values) for the neutron leads to ω ≈ 1.6 × 1019 s−1,
which corresponds to x rays. Consequently, for B⊥ one obtains
1.7 × 109 T and Bz ≈ −3.5 × 1011 T (the minus referring to
its direction) and the resonance is achieved at Bz ≈ −1.7 ×
1011 T. For the data corresponding to the hydrogen atom, which
has a magnetic moment three orders of magnitude larger, the
required values of fields would be proportionally reduced by
10−3.

Strangely enough, for the neutrino (assuming mν ≈
0.05 eV and μν ≈ 10−14μB) the needed values of physical
parameters are not significantly worse. This is owed to its
extremely small rest mass. One gets ω ≈ 8.4 × 108 s−1 (mi-
crowaves), B⊥ ≈ 9.6 × 109 T, Bz ≈ −1.9 × 1011 T, and the
resonant value at about −9.6 × 1011 T. These values can be
still lowered by three orders of magnitude when using the
present experimental bounds of μν < 10−11μB [19–21,24].

II. SEPARATION OF VARIABLES

Consider the Bessel beam as given in [25] endowed with
nonzero orbital angular momentum. It may be labeled with the
value of M − 1 (this M appears only in this place and should
not be confused with the particle mass used throughout the
paper). We are particularly interested in the case M = 2, dealt
with in a series of our previous works [18,25–27], in which
case the field bears a vortex topological number equal to 1.

This wave is accompanied by the external uniform magnetic
field Bz oriented along the z axis, the proper adjustment of
which may help to create a stable trap. The total magnetic field
in cylindrical coordinates (ρ, ϕ, z) is then given by

B(r, t ) =
⎡
⎣−2B⊥[a+ sin(ζz − ϕ)J1(k⊥ρ) + a− sin(ζz − 3ϕ)J3(k⊥ρ)]

2B⊥[a+ cos(ζz − ϕ)J1(k⊥ρ) − a− cos(ζz − 3ϕ)J3(k⊥ρ)]
−4B⊥ cos(ζz − 2ϕ)J2(k⊥ρ) + Bz

⎤
⎦, (2)

where Ji denotes the Bessel functions, k =
√

k2
z + k2

⊥ = ω/c

is the wave number, B⊥ measures the strength of the vortex
wave, a± = (ω/c ± kz)/2k⊥, and ζz = ωt − kzz.

In the paraxial approximation, where k⊥ρ � 1 and
k2
⊥z/kz � 1, we have

kz ≈ k, a+ ≈ 1, a− ≈ 0 (3)

013424-2



GUIDING NEUTRAL PARTICLES ENDOWED WITH A … PHYSICAL REVIEW A 98, 013424 (2018)

and the magnetic field may be written as [25]

B(r, t ) =
⎡
⎣B⊥k(y cos ζ − x sin ζ )

B⊥k(x cos ζ + y sin ζ )
Bz

⎤
⎦, (4)

where ζ = ωt − kz. This last form can be now plugged into
the Schrödinger equation.

In order to prepare the separation of variables and get rid of
the spin rotation we make the substitution exploiting the screw
symmetry

�(r, t ) = e−iζσz/2�̃(r, t ), (5)

which eliminates the dependence of the Hamiltonian simulta-
neously on t and z, namely, we obtain

ih̄
∂

∂t
�̃(r, t ) =

[
− h̄2�⊥

2M
− h̄2(∂z + ikσz/2)2

2M
− h̄ω

2
σz

− gh̄B⊥k

2
(xσy + yσx ) − gh̄Bz

2
σz

]
�̃(r, t ),

(6)

where �⊥ = ∂2
x + ∂2

y . Following [18] and aimed at simplifying
Eq. (6), let us now introduce the dimensionless parameters

α = gB⊥
ω

√
Mc2

h̄ω
, β =

(
1 + gBz

ω

)√
Mc2

h̄ω
, (7a)

γ = gB⊥
ω

, κz = kz

k
, E⊥ = E⊥

h̄ω

√
Mc2

h̄ω
, (7b)

together with dimensionless time, space coordinates, and
momenta

ξ = kr, ξ = kρ, (8a)

τ = ωt

√
h̄ω

Mc2
, η = p√

h̄ωM
, (8b)

where ρ =
√

r2 and ξ =
√

ξ 2 . The role of these parameters
is as follows: α (and also γ at a different scale) is the
relative strength (i.e., energy) of the magnetic coupling and
the energy of light quanta, β can be treated as deviation
from the resonance between the Larmor frequency of the
rotating magnetic moment and that of the vortex magnetic field
(discussed in more detail at the end of Sec. IV D), and E⊥ is the
energy of the perpendicular motion referred to as the photon
energy.

The factor
√

Mc2/h̄ω appearing in (7) and (8) guarantees
the appropriate scale of these parameters. In the problem
two main energy scales occur, differing by many orders of
magnitude (about six to ten): the particle rest energy and
the photon energy. Due to the introduced factor, we avoid
the situation where some of the parameters appearing below
are extremely tiny or extremely large. With these substitutions
we obtain, in place of (6),

i
∂

∂τ
�̃(ξ , τ ) = H�̃(ξ , τ ), (9)

where the transformed Hamiltonian is given by

H = − γ

2α
�ξ⊥ − γ

2α

(
∂ξz

+ i

2
σz

)2

− β

2
σz

−α

2
(ξxσy + ξyσx ). (10)

Apart from (10) there exist two other constants of motion

H1 = σ 2, (11a)

H2 = i(ξy∂ξx
− ξx∂ξy

) − 1
2σz, (11b)

corresponding to the classical ones found in [18]. The former
is simply the spin squared and the latter in polar coordinates
reads H2 = −i∂ϕ − σz/2, which is the z component of the full
angular momentum. The fourth constant known from classical
motion has already been exploited in (5) while passing from
� to �̃.

One should note that the classical change of variables
(x, p) �→ (ξ , η) is not canonical and therefore the quantum-
mechanical commutator equals

[ξm, ηn] = i
γ

α
δmn (12)

and not simply iδmn. It can be verified by a direct computation
that one actually has

[Hi,H] = 0 for i = 1, 2. (13)

Exploiting (11b), we can substitute �̃ in the form

�̃(ξ , τ ) = e−iE⊥τ e−iγ κ2
z τ/2αeiκzξz

[
ei(m+1)ϕf+(ξ )
ieimϕf−(ξ )

]
, (14)

m being an integer, and separate the remaining polar variables.
This leads to two coupled ordinary differential equations

− γ

2α

[
f ′′

+ + 1

ξ
f ′

+ −
(

(m + 1)2

ξ 2
+ κz + 1

4

)
f+

]

−
(
E⊥ + β

2

)
f+ = α

2
ξf−, (15a)

− γ

2α

[
f ′′

− + 1

ξ
f ′

− −
(

m2

ξ 2
− κz + 1

4

)
f−

]

−
(
E⊥ − β

2

)
f− = α

2
ξf+, (15b)

where a prime denotes the derivative over ξ .

III. PROPERTIES OF THE MATRIX POTENTIAL

The first derivatives can be eliminated by plugging into (15)
the functions f±(ξ ) in the form

f±(ξ ) = F±(ξ )√
ξ

(16)

and we obtain the equations for F±(ξ ),

− γ

2α
F ′′

+ + γ

2α

[
(m + 3/2)(m + 1/2)

ξ 2
− δ+

]
F+ = α

2
ξF−,

(17a)

− γ

2α
F ′′

− + γ

2α

[
(m + 1/2)(m − 1/2)

ξ 2
− δ−

]
F− = α

2
ξF+,

(17b)

where

δ± = α

γ
(2E⊥ ± β ) − 1

4
∓ κz. (18)
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It may be easily verified that for the values of parameters
considered in Sec. IV we have δ± > 0.

For the two-component function F = [F+, F−] the set of
equations (17) may be given the form of a matrical stationary

Schrödinger equation

− γ

2α
∂2
ξ F (ξ ) + V (ξ )F (ξ ) = E⊥F (ξ ), (19)

with the potential

V (ξ ) =
⎡
⎣ γ (κz+1/4)

2α
− β

2 + γ

2α

(m + 3/2)(m + 1/2)

ξ 2
−αξ

2

−αξ

2
γ (−κz+1/4)

2α
+ β

2 + γ

2α

(m+1/2)(m−1/2)
ξ 2

⎤
⎦ (20)

and eigenenergy E⊥ to be determined. Due to the transforma-

tion (16), the radial character of the variable ξ is lost and the
problem has become purely one dimensional. We will show
below that this equation exhibits bound states, at least within
perturbation theory.

The matrix V is real, symmetric, and has the eigenvalues

V±(ξ ) = γ

2α

(
(m + 1/2)2

ξ 2
+ 1

4

)
± �(ξ ), (21)

where

�(ξ ) =
[
�(ξ )2 + α2ξ 2

4

]1/2

(22)

and

�(ξ ) = γ

2α

(
m + 1/2

ξ 2
− αβ

γ
+ κz

)
. (23)

The corresponding eigenvectors are

χ±(ξ ) =
[
�(ξ ) ± �(ξ )

−αξ

2

]
σ±(ξ ), (24)

where σ±(ξ ) are certain scalar functions defined below. These
eigenvectors χ±(ξ ) satisfy the conditions

χ+(ξ )T χ+(ξ ) = χ−(ξ )T χ−(ξ ) = 1, (25a)

χ+(ξ )T χ−(ξ ) = χ−(ξ )T χ+(ξ ) = 0 (25b)

provided we choose

σ±(ξ ) = [2�(ξ )(�(ξ ) ± �(ξ ))]−1/2. (26)

Let us now substitute into (19) the wave function in the
form of F (ξ ) = U (ξ )�(ξ ), where U is the ξ -dependent
transformation matrix for the potential V ,

U−1V U = VD =
[
V+ 0
0 V−

]
, (27)

and D stands for diagonal. The matrix U is orthogonal and its
columns constitute the eigenvectors χ±:

U = [χ+, χ−], U−1 = UT =
[
χT

+
χT

−

]
. (28)

The equation for the function � can be obtained in a straight-
forward way,

− γ

2α
U−1∂2

ξ U� + VD� = E⊥�, (29)

and is equivalent to

− γ

2α
∂2
ξ � + (VD + W )�(ξ ) = E⊥�(ξ ), (30)

where the quantity

W = γ

2α

(
∂2
ξ − U−1∂2

ξ U
)

(31)

may be treated as a perturbation for the diagonal potential VD .
It should be pointed out that the derivative in the expression
U−1∂2

ξ U acts on both the U matrix and the wave function
in (30). If expressed through the eigenvectors (24), it has the
formal form

W = γ

2α

(
∂2
ξ −

[
χT

+
χT

−

]
∂2
ξ [χ+, χ−]

)

= − γ

2α

([
χT

+χ ′′
+ χT

+χ ′′
−

χT
−χ ′′

+ χT
−χ ′′

−

]
+ 2

[
χT

+χ ′
+ χT

+χ ′
−

χT
−χ ′

+ χT
+χ ′

+

]
∂ξ

)
.

(32)

As can be seen, this quantity contains both diagonal and
off-diagonal elements and therefore it is more convenient to
absorb all the diagonal terms (denoted below by WD) into the
unperturbed potential VD , defining

Ṽ±(ξ ) = V±(ξ ) − γ

2α
χT

± (ξ )χ ′′
±(ξ ). (33)

The behavior of Ṽ±(ξ ) for various values of parameters is
shown in Figs. 1 and 2.

The apparently diagonal elements remaining in the second
matrix of (32), i.e., the quantities containing χT

+χ ′
+ and χT

−χ ′
−,

identically vanish as a consequence of normalization (25a).
The inclusion of WD into ṼD does not change the general form
of V±, since the additional terms disappear quickly as ξ → ∞
and tend to constants for ξ → 0.

Now the perturbation responsible for the interaction be-
tween the two channels has become a purely off-diagonal
matrix W̃ of the form

W̃ = − γ

2α

([
0 χT

+χ ′′
−

χT
−χ ′′

+ 0

]
+ 2

[
0 χT

+χ ′
−

χT
−χ ′

+ 0

]
∂ξ

)
.

(34)

Upon omission of W̃ in the Schrödinger equation

− γ

2α
∂2
ξ � + (ṼD + W̃ )�(ξ ) = E⊥�(ξ ), (35)

the two channels described by the lower and upper components
of the wave function � decouple from each other, leading to the
sector of well-localized bound states existing in the potential
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Ṽ+ and the sector of scattering states governed by Ṽ−. However,
in the practical situation of the vortex field, which is certainly
limited in the direction perpendicular to the wave propagation,
it would be unphysical to expect these potentials to extend to
infinity in the unmodified form. We will return to this point in
the following section.

IV. ANALYSIS OF THE MOTION

The Schrödinger equation (15), (19), or (35) in its full
complexity cannot be solved in an analytic way. Therefore,
we consider the behavior of solutions separately for small and
large radial distances and apply appropriate approximations.

A. Small distances

Consider now the distances close to the vortex core. By close
we mean ξ � 1, which roughly corresponds to ρ � λ (where λ

is the wavelength). In this region Eqs. (15) can be used directly.
The term in square brackets in (15a) and analogously (15b)
dominates over αξ on the right-hand sides. We are then allowed
to consider the simplified equations

f ′′
+ + 1

ξ
f ′

+ +
[
δ+ − (m + 1)2

ξ 2

]
f+ = 0, (36a)

f ′′
− + 1

ξ
f ′

− +
[
δ− − m2

ξ 2

]
f− = 0. (36b)

After the appropriate rescaling of the variable ξ , one can
recognize in the above the ordinary and modified Bessel
equations correspondingly. Therefore, their solutions can be
immediately written out:

f+(ξ ) = C1Jm+1(
√

δ+ ξ ) + C2Ym+1(
√

δ+ ξ ), (37a)

f−(ξ ) = D1Jm(
√

δ− ξ ) + D2Ym(
√

δ− ξ ). (37b)

To guarantee the correct behavior of the wave function �

at the origin, we must reject the term containing the Neumann
function Ym+1 in f+ and Ym in f−, by setting C2 = D2 = 0. It is
then possible to choose the solution of (6), which is deprived of
any ambiguities at the origin and is perfectly square integrable
as ξ → 0. However, the small-ξ behavior does not rule on the
trapping efficiency.

B. Perturbative equations

For larger perpendicular directions the perturbative analysis
based on Eq. (35) is necessary. If W̃ = 0 there are two unper-
turbed one-dimensional Schrödinger equations constituting the
starting point for the calculation, corresponding to the choice
of either �0 = [u, 0] or �0 = [0, v] and the potential Ṽ+ or
Ṽ−, respectively:

− γ

2α
∂2
ξ u(ξ ) + Ṽ+(ξ )u(ξ ) = E⊥0u(ξ ), (38a)

− γ

2α
∂2
ξ v(ξ ) + Ṽ−(ξ )v(ξ ) = E⊥0v(ξ ). (38b)

Later the solutions of these equations will also be labeled
with the value of energy E⊥0, i.e., they will be denoted by uE⊥0

and vE⊥0 . The first potential possesses a bound state for sure at
least in the interesting range of parameters for which Figs. 1

and 2 are sketched. In contrast, if one takes Ṽ− instead of Ṽ+, no
bound states exist. This can be easily seen by inspecting (33),
from which one can infer that V+(ξ ) (V−(ξ )) grows (declines)
linearly as ξ → ∞, as well as by looking at Figs. 1 and 2.

However, bound states are not stationary states of the full
Hamiltonian. There are two sources of possible tunneling,
which are considered below. One results from the spatial size
of the vortex (in the perpendicular direction), which creates an
opportunity for tunneling through the barrier. If the extension
of the light beam is limited in the radial direction, Ṽ+(ξ )
vanishes beyond a certain value ξw (where ξw = kρw, the latter
roughly corresponding to the waist of the beam), creating
an ordinary potential barrier through which the tunneling is
possible even in the zeroth order of the perturbation calculation
(i.e., for W̃ = 0). The probability of this process is negligible
in comparison with the other as estimated in Sec. IV C.

The second possibility is connected to the fact that the theory
possesses two channels and there is no binding in the second
channel at all. Thus, another way of tunneling emerges, that
into the second channel. This phenomenon should be much
more important. For such a process to occur it is necessary to
turn on the off-diagonal terms of the Hamiltonian represented
by W̃ . This case is dealt with in Sec. IV D in a perturbative
manner.

Let us turn below to the operator W̃ and verify whether
this kind of calculation will be justified. The quantity γ /α =√

h̄ω/Mc2 is very small (see also Figs. 1 and 2). Below we
estimate W̃ by taking the above into account. From (22)–(24)
and (26) for γ /α � 1 we find

� = −β

2
+ O

(
γ

α

)
, (39a)

� = 1

2

√
β2 + α2ξ 2 + O

(
γ

α

)
, (39b)

σ± =
√

2[
√

β2 + α2ξ 2(
√

β2 + α2ξ 2 ∓ β )]−1/2 + O

(
γ

α

)
,

(39c)

χ± = ±[2
√

β2 + α2ξ 2(
√

β2 + α2ξ 2 ∓ β )]−1/2

×
[√

β2 + α2ξ 2 ∓ β

∓αξ

]
+ O

(
γ

α

)
. (39d)

Collecting all terms of the above approximations, after some
laborious calculations omitted here, we get, up to (γ /α)2,

W̃ = |γ |β
2(β2 + α2ξ 2)

(
α2ξ

β2 + α2ξ 2
− ∂ξ

)[
0 1

−1 0

]

= W̃0(ξ )

[
0 1

−1 0

]
, (40)

which can also be written in the explicitly Hermitian form

W̃ = −|γ |β
2

1√
β2 + α2ξ 2

∂ξ

1√
β2 + α2ξ 2

[
0 1

−1 0

]
. (41)

Due to the coefficient γ , this quantity is small and may be
treated as a perturbation. Since W̃ is purely off-diagonal, it
does not contribute to the first-order perturbative correction to
the bound-state energyE⊥0. HenceE⊥ − E⊥0 = O(γ 2) and this
correction may be neglected within our present approach. The

013424-5
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existence of bound states of Eq. (19) at least in the perturbative
sense will then be indubitable if the rate of eventual tunneling
is sufficiently small.

C. Tunneling through the barrier

While considering the tunneling through the barrier, we
cannot limit ourselves to the paraxial approximation where the
magnetic field given by the formula (4). Both the height and the
thickness of the barrier are important and we are condemned
to use the full form of the magnetic field (2). The correction
W̃ does not play any role here since it is off-diagonal, so the
tunneling probability can be estimated from Eq. (38a).

For small values of k⊥ (but still admitting k⊥ρ � 1), we can
neglect terms containing the coefficient a−. Moreover, it should

be noted that since |J2(x)| < 0.5 [28], then for the values of
parameters considered in this work the estimation∣∣∣∣4B⊥ cos(ζz − 2ϕ)J2(k⊥ρ)

Bz

∣∣∣∣ < 2

∣∣∣∣B⊥
Bz

∣∣∣∣ =
∣∣∣∣ 2α

β − α/γ

∣∣∣∣
≈ 2|γ | � 1 (42)

holds, which means that the z component of the magnetic field
of the wave may be neglected as compared to the external field
(which is strong), and we get

B(r, t ) =
⎡
⎣−2B⊥ sin(ζz − ϕ)J1(k⊥ρ)

2B⊥ cos(ζz − ϕ)J1(k⊥ρ)
Bz

⎤
⎦. (43)

This form of magnetic field leads to an equation identical
to (19) but with the modified matrix potential

V (ξ ) =

⎡
⎢⎣

γ (κz + 1/4)

2α
− β

2
+ γ

2α

(m + 3/2)(m + 1/2)

ξ 2
−αJ1(κzξ )

−αJ1(κzξ )
γ (−κz + 1/4)

2α
+ β

2
+ γ

2α

(m + 1/2)(m − 1/2)

ξ 2

⎤
⎥⎦. (44)

Now all formulas of Sec. III remain true if we redefine

�(ξ ) = [�(ξ )2 + α2J1(κzξ )]1/2, (45)

together with

χ±(ξ ) =
[
�(ξ ) ± �(ξ )
−αJ1(κzξ )

]
σ±(ξ ). (46)

The behavior of the modified potential Ṽ+ for both sets of
data (those of Figs. 1 and 2) are drawn in Fig. 3. As it is well
known from both the WKB method [29] and Miller and Good’s
method [30], the value of the tunneling probability is dictated
by the typical exponential factor

θ = exp

(
− 2

∫ x0+d

x0

√
2M

h̄2 [V (x) − E]dx

)
, (47)

where d denotes the barrier thickness for a given energy. Since
both the square root and V (x) are concave functions in this
region (see Fig. 3), it is obvious that

θ < exp

(
−2

∫ x1+d

x1

1

2

√
2M

h̄2 (Vmax − E)dx

)

= exp

(
−d

√
2M

h̄2 (Vmax − E)

)
, (48)

1 2 3 4
ξ0

1

2

3
V

1 2 3 4
ξ0

1

2

3
V

FIG. 3. Behavior of Ṽ+(ξ ) derived from (44) for the same values
of parameters as in Figs. 1 and 2.

where max refers to the top of the barrier and x1 denotes the
right turning point for the classical motion. It can be rewritten
as

θ < exp

(
−

√
2ξd

√
α

γ
(Ṽ+max − E⊥0)

)
, (49)

with ξd corresponding to d in our dimensionless variables. The
numerical prefactors of θ are marginal for the overall value of
probability [31].

For the first set of data the ground-state energy can be
estimated with the use of the uncertainty principle to be E⊥0 ≈
0.67. The maximal value of the potential is Ṽ+max ≈ 1.79 and
the barrier thickness ξd ≈ 3.12. The barrier is then relatively
high and thick, which results in the extremely small value of
the factor

θ < 6.7 × 10−36.

The value of θ determines the transmission probability for each
individual hitting the potential wall by the particle. To find
the probability per unit time it should be multiplied by the
number n of hits per unit time. This can be estimated from the
bound-state energy as

n � pmax

M|x0 − x1| �
√

2M (E − Vmin)

M|x0 − x1| , (50)

where x0 is the left turning point. For the dimensionless
variables used throughout the work this reads

n �
√

2(γ /α)3(E⊥0 − Ṽ+min)

|ξ0 − ξ1| ω ≈ 3.6 × 10−4ω, (51)

leading to the negligible value

�

ω
� 2.4 × 10−39. (52)

In the second case the potential cavity is shallower and the
barrier thinner in a visible way. This is also reflected by the
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results of our previous work on classical motion [18], where
the comparison of Figs. 5 and 8 reveals a much larger size of the
trap in the latter case. For these data the trap is less efficient. In
quantum theory this should entail a significant increase of the
factor θ . We find E⊥0 ≈ 1.28 and Ṽ+max ≈ 1.55. The barrier
thickness gets reduced to ξd ≈ 2.21. Consequently, we can
estimate (49) to be about

θ < 8.4 × 10−8,

which is much larger but still very small. For n we obtain

n � 7.9 × 10−4ω, (53)

which gives
�

ω
� 6.6 × 10−11. (54)

As we will see in the following section, the direct tunneling
through the barrier (i.e., within the first channel) may be
practically neglected. A heavy particle with very short Comp-
ton wavelength cannot penetrate a barrier too deep without
strongly violating the energy conservation. A much more
essential effect is connected with the tunneling into the second
channel at which the particle is kicked out of the vortex field.

D. Tunneling to the other channel

In order to consider the tunneling into the second channel we
assume that beyond ξ = ξw one has Ṽ−(ξ ) = 0. Otherwise the
potential of the scattering sector would be unphysical, leading
to the Hamiltonian unbounded below. This aspect was inessen-
tial for the evolution of solutions restricted to the first channel
but must be taken into account in the case of interchannel
transitions. Consistently we modify the formula (21) for Ṽ− by
including the factor �(ξw − ξ ) and henceforth this is the new
meaning of that symbol. As regards Ṽ+, it is left unmodified
as a consequence of the results of the preceding section, which
clearly indicate that direct tunneling through the field barrier is
improbable and from that point of view the binding potential
may be treated as extending to infinity with no essential change
of conclusions.

The only realistic tunneling process consists, therefore, in
flipping the magnetic moment [keeping the constant of motion
H2 given by (11b) fixed], after which the particle gets ejected
from the vortex field instead of being tunneled through the
potential hump. Below we try to estimate the probability per
unit time for this kind of a process. Aimed at simplifying
the equation, the independent variable ξ (and similarly the
parameter ξw) will now be rescaled as follows:

z =
∣∣∣∣α2

γ

∣∣∣∣
1/3

ξ. (55)

If this transformation is applied to Eq. (38), it can be observed
that the approximation of large z is the same as that for γ /α �
1. Therefore, its asymptotic form may be treated as applicable
in the whole domain (possibly except a narrow, and inessential,
interval close to the origin)

−∂2
zu(z) + zu(z) = 2E⊥0

|γα|1/3
u(z), (56a)

−∂2
z v(z) − z�(zw − z)v(z) = 2E⊥0

|γα|1/3
v(z). (56b)

First let us deal with Eq. (56a). Upon shifting the indepen-
dent variable in order to cancel the right-hand side and defining

z0 = −2E⊥0/(γα)1/3, (57)

it becomes the ordinary Airy equation with solutions [28]

u(z) = C1Ai(z + z0) + C2Bi(z + z0). (58)

For the bound-state wave function uz0
(z) we require a suf-

ficiently quick decline at infinity. Therefore, C2 = 0 and C1

may be denoted simply by C. On the other hand, we must
have uz0

(0) = 0, which means that z0 is the first zero (as far
as the ground state is considered) of the Airy function Ai (i.e.,
z0 ≈ −2.338). Using the integral [32]∫ ∞

0
Ai2(z + z0)dz

=
∫ ∞

0
∂z(z + z0)Ai2(z + z0)dz

= −z0Ai2(z0) − 2
∫ ∞

0
(z + z0)Ai(z + z0)Ai ′(z + z0)dz

= −z0Ai2(z0) − 2
∫ ∞

0
Ai ′′(z + z0)Ai ′(z + z0)dz

= −z0Ai2(z0) −
∫ ∞

0
∂zAi ′2(z + z0)dz

= −z0Ai2(z0) + Ai ′2(z0), (59)

the normalization constant C can be found to be

C = [−z0Ai2(z0) + Ai′2(z0)]−1/2 = 1

Ai′(z0)
, (60)

where the absolute value has been omitted as the derivative of
the Airy function at z = z0 is positive.

Now consider the function v satisfying (56b). One can
distinguish two characteristic regions: 0 < z < zw and z >

zw. The well-behaving and continuously differentiable wave
function v(z) corresponding to the quantum number z0 can be
written as

vz0
(z) =

⎧⎪⎨
⎪⎩

Gz0
(z) for 0 < z < zw

1
qz0

G′
z0

(zw ) sin qz0
(z − zw )

+Gz0
(zw ) cos qz0

(z − zw ) for z > zw,

(61)

where qz0
= √−z0 and

Ga (z) = D1Ai(−z + a) + D2Bi(−z + a). (62)

To ensure the nonsingular behavior of vz0
(z) at z = 0 one has to

set D1 = D Bi(a) and D2 = −D Ai(a). Above zw, where the
potential vanishes, we have ordinary trigonometric solutions.

The integral∫ ∞

0
va (z)vb(z)dz = π

√−a

(
Ga (zw )2 + G′

a (zw )2

q2
a

)
δ(a − b)

(63)

can be used to fix D. The δ function on the right-hand side
comes from the integration between zw and infinity, where
v(z) is given by the trigonometric functions. The off-diagonal
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TOMASZ RADOŻYCKI PHYSICAL REVIEW A 98, 013424 (2018)

(i.e., for a �= b) integral can be shown to vanish if we use the
trick [32]∫ zw

0
Ga (z)Gb(z)dz

=
∫ zw

0

G′′
a (z)

a − z

G′′
b (z)

b − z
dz

= 1

b − a

∫ zw

0

(
G′′

a (z)

a − z
G′′

b (z) − G′′
a (z)

G′′
b (z)

b − z

)
dz

= 1

b − a

∫ zw

0
[Ga (z)G′′

b (z) − G′′
a (z)Gb(z)]dz

= 1

b − a

∫ zw

0
∂z[Ga (z)G′

b(z) − G′
a (z)Gb(z)]dz

= 1

b − a
[Ga (zw )G′

b(zw ) − G′
a (zw )Gb(zw )] (64)

and observe that this expression exactly cancels the terms
coming from the integration of trigonometric functions in (61)
in the interval (zw,∞). One can show that the choice

D =
√

2

π

(
α

γ

)1/4

× |Bi(z0)|−1√
Ai(z0 − zw )2 + (αγ )1/3/2E⊥0 Ai′(z0 − zw )2

(65)

leads to the required normalization of the function v(ξ ),∫ ∞

0
vE ′

⊥0
(ξ )vE⊥0 (ξ )dξ = δ(E ′

⊥0 − E⊥0). (66)

Complex conjugations are omitted here and below since we
are dealing with real functions only.

The probability of tunneling per unit time is given by

� = dP

dt
= 2πω

γ

α

∑∫
i

δ(E⊥i − E⊥0)|Ii0|2, (67)

where i labels the continuum-spectrum states and Ii0 is the
matrix element of the perturbation potential [the off-diagonal
element of (41)]. According to what was said above, for
the calculation of Ii0 within the present approximation the
quantities uz0

and vz0
can be used as unperturbed wave

functions. Exploiting the δ function in (67), we arrive at

� = ω
π

2

γ

α

(
γ

β

)2∣∣∣∣
∫ ∞

0
∂z

(
uz0

(z)√
1 + |γα|2/3/β2 z2

)

× vz0
(z)√

1 + |γα|2/3/β2z2
dz

∣∣∣∣
2

. (68)

The coefficient π
2

γ

α
( γ

β
)2 is about 10−6 for either set of data. It

should be noted that the strength of the interchannel potential
W̃ , together the value of �, can be further reduced by the choice
of β to be very small. This point will be referred to at the end
of this section.

The estimation of the integral can be done numerically
assuming, for instance, the value of ζw ≈ 4π |α2/γ |1/3, which
roughly corresponds to two wavelengths. For the bound-state
energy E⊥0 the value estimated in Sec. IV C can be used and if
instead the potential of Eq. (56a) is taken for this assessment

the obtained values turn out to be practically identical. It would
be less accurate to use E⊥0 directly from Eq. (57) since it
would be underestimated due to the incorrect behavior of
the approximated potential in the vicinity of ζ = 0 (the true
potential does not vanish and has a positive minimum, which
shifts the energy up). As it was mentioned, Eqs. (38) do not
yield the correct form of the wave functions close to the origin.
We finally find

�

ω
≈ 5.1 × 10−7 (69)

for the data of Fig. 1 and
�

ω
≈ 7.2 × 10−6 (70)

for those of Fig. 2. These values seem to be relatively large.
Nevertheless, they prove that with quantum effects involved
it is in principle possible to trap neutral particles through a
very delicate mechanism relying on their magnetic moment
interacting with the magnetic field of the vortex for a short
time (for instance, 105 of wave periods 2π/ω).

The trapping time can be significantly prolonged if the
external magnetic field is well tuned so as to make the value ofβ
very small. For instance, with the identical values of parameters
as those of Fig. 1, except for β, chosen now to be equal to 0.01,
one gets

�

ω
≈ 1.5 × 10−9. (71)

This effect can be explained in classical terms as follows. The
small value of the parameter β corresponds to the tuning of
Bz, so the frequency of the Larmor precession of the magnetic
moment around that field becomes close to the wave frequency.
One could say that the external magnetic field keeps the
magnetic moment synchronized in its rotation with the rotating
vortex field. In these conditions the flipping of μ necessary for
the tunneling into the second channel becomes less probable.

This conclusion is supported by the observation referring to
the classical motion of a particle for decreasing values of the
parameter β. Upon precise tuning of the initial particle state,
there exist trajectories that become less and less chaotic as
β → 0 and turn into circles. As seen in Fig. 4 for a value of the
Larmor frequency that is extremely well adjusted to that of the
vortex field or vice versa, one can obtain a very stable (almost
circular) trajectory, which suggests relatively strong binding
of the particle by the vortex field.

However, the region of this resonance is presently unreach-
able. The low value of β would require that the energy of
the interaction of the magnetic moment with the constant
magnetic field be comparable to the photon energy. As already
stated in the Introduction, the required value of Bz for the
neutron would be about −1.7 × 1011 T for the parameters
of Fig. 1 and −1.6 × 1012 T for those of Fig. 2. In the case
of hydrogen, which has approximately the same mass but
a magnetic moment three orders of magnitude larger, the
required fields should be proportionally weaker. The possible
way out of this would be to reduce the wave frequency by
several orders of magnitude for the main problem is that
the relatively heavy particle endowed with a small magnetic
moment precess very slowly and the resonant value of ω must
respect it. By increasing Bz one forces it to rotate more quickly
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FIG. 4. Exemplary classical trajectory of a particle in a running wave considered in [18] for subsequent decreasing values of the parameter
β: β = −0.03, −0.01, −0.005, −0.001, and −0.0001.

and vice versa. It should be mentioned that the resonance is
not required for the trap to operate, but it greatly prolongs the
trapping time.

V. SUMMARY

The present work has been concerned with the motion of a
neutral quantum particle endowed with a magnetic moment
interacting with a certain special configuration of electro-
magnetic fields: a wave bearing orbital angular momentum
(a vortex field) and a constant magnetic field aligned along
the direction of propagation of the former (i.e., z axis). It has
been shown, by solving the appropriate Schrödinger equation,
that this setup leads to the guidance of the particle along the
vortex core and trapping it in the perpendicular direction. Due
to the relatively weak strength of the interaction between the
magnetic moment and the wave magnetic field, the mechanism
of capturing is delicate and requires extremely strong fields,
which are presently unavailable.

The quantum theory confirms then the results obtained for
the same values of parameters within classical mechanics.
However, there additionally appears a purely quantum effect
of tunneling which can play an important role in the particle
being captured.

Two possible sources of tunneling were identified. The first
one is connected with the fact that the perpendicular size of the
light beam is limited, thus creating a kind of potential hump
binding the particle. On the exterior of it the potential vanishes
and a free motion is possible. The tunneling probability through
this barrier was estimated to be extremely small and practically
negligible in comparison with the second possibility. The latter
is connected with the spontaneous process of flipping the
direction of the magnetic moment to the opposite one. In these
conditions the vortex field no longer keeps the particle bound
but ejects the particle out of the field. This kind of tunneling
narrows the trapping time to 105ω−1. However, this short time
can be prolonged if one accurately tunes the external magnetic
field. The idea is to make the Larmor frequency of precession
of the magnetic moment around the z axis close to that of
the rotating magnetic field of the vortex. These circumstances
make the flipping of spin much less probable since it is well
synchronized with the rotating field. In consequence, the trap-
ping time can be lengthened by a couple of orders of magnitude.

The same effect may be identified in classical mechanics.
Naturally, there is no tunneling there, but what is visible is
the stabilization of the particle orbit while approaching the
resonance. The trajectory becomes much less chaotic and
more circular, which corresponds to reducing the tunneling
probability in the quantum case.
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APPENDIX: SCHRÖDINGER-PAULI EQUATION FOR THE
CENTER-OF-MASS MOTION OF THE HYDROGEN ATOM

Let us start with the classical Hamiltonian of the electron-
proton system in the external electromagnetic field

H = 1

2me

[ pe − eA(re, t )]2 + 1

2mp

[ pp − eA(rp, t )]2

− e2

4πε0|re − rp| − μe B, (A1)

where indices e and p refer to the electron and proton,
respectively. The magnetic moment of the proton has been
neglected due to the very small ratio me/mp.

We now follow the procedure elaborated in [33]. Introduc-
ing relative and center-of-mass coordinates

r = re − rp, (A2a)

R = mere + mprp

me + mp

(A2b)

and momenta

p = mp pe − me pp

me + mp

, (A3a)

R = pe + pp, (A3b)

one can rewrite the Hamiltonian in the form

H = 1

2M
[P − e(r∇R )A(R, t )]2 + 1

2Mr

[ p − eA(R, t )]2

− e
�M

M
(r∇R )A(R, t )]2 − e2

4πε0r
− μe B, (A4)

where M = me + mp is the total mass of the system, Mr =
memp/(me + mp ) is the reduced mass, and �M = mp − me.

While passing from (A1) to (A4) we assumed that the
external field varies slowly on the scale imposed by the size
of the hydrogen atom. In the present work we deal with
wavelengths which are three or four orders of magnitude larger
than this size, so the above approximation is well justified.
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Therefore, one can write

A(re, t ) = A
(

R + mp

me + mp

r, t
)

� A(R, t ) + mp

me + mp

(r∇R )A(R, t ), (A5a)

A(rp, t ) = A
(

R − me

me + mp

r, t
)

� A(R, t ) − me

me + mp

(r∇R )A(R, t ). (A5b)

In order to express the Hamiltonian in terms of physical
fields E and B only, we first perform the Legendre transfor-
mation on (A4) and find the appropriate Lagrangian:

L = 1

2
M Ṙ

2 + 1

2
Mr ṙ2 + e ṙ A + e2

4πε0r
+ μe B

+ e Ṙ(r∇R )A + e
�M

M
ṙ (r∇R )A. (A6)

This Lagrangian may be modified by subtracting from it a total
derivative over time:

L̃ = L − d

dt

[
er A + e

2

�M

M
ṙ (r∇R )A

]
. (A7)

In the radiation gauge, where A0 = 0 and ∇ A = 0, we have
E = − Ȧ, and (A7) may be given the form

L̃ = 1

2
M Ṙ

2 + 1

2
Mr ṙ2 + e2

4πε0r
+ μe B+er E−e Ṙ(r × B)

− e

2

�M

M
ṙ (r × B) + e

2

�M

M
(r∇R )(r E), (A8)

where we made use of the identity

∇R(r A) − (r∇R )A = r × B. (A9)

Now performing the inverse Legendre transformation, we
obtain the modified Hamiltonian (from now on we omit the
tilde)

H = 1

2M
( P + er × B)2 + 1

2Mr

(
p + e

2

�M

M
r × B

)2

− e2

4πε0r
− μe B − er E − e

2

�M

M
(r∇R )(r E). (A10)

We are not interested in the internal atomic structure but
in the motion of a neutral particle, for instance, a hydrogen
atom, as a whole. We therefore separate the center-of-mass
motion from the internal one. All terms that do not depend
on R are then irrelevant. Furthermore, since r ∼ a0, where
a0 is the Bohr radius, we can neglect terms which are of
order r2. The same refers to those that are linear in r but are
accompanied by the magnetic field B. The term er E is of
order ε0a

3
0E

2 and may be omitted too. One should also recall
that the external electromagnetic fields E and B, due to the
approximations (A5), depend only on R. We are then left with
a rather obvious form

Hc.m. = P2

2M
− μe B, (A11)

which will constitute the starting point for considering the
Schrödinger-Pauli equation for the hydrogen atom, as well as
for any neutral particle endowed with the magnetic moment,
such as a neutron.
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