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We present a detailed analysis of a robust and fast laser cooling scheme [J. Cerrillo et al., Phys. Rev. Lett.
104, 043003 (2010)] on a three-level system. A special laser configuration, applicable to trapped ions, atoms, or
cantilevers, designs a double-path quantum interference that eliminates the blue sideband in addition to the carrier
transition, thus excluding any heating process involving up to one-phonon interactions. As a consequence, cooling
achieves vanishing phonon occupation up to first order in the Lamb-Dicke parameter expansion. Underlying this
scheme is a combined action of two cooling schemes which makes the proposal very flexible under constraints
of the physical parameters such as laser intensity, detuning, or optical access, making it a viable candidate for
experimental implementation. Furthermore, it is considerably faster than existing ground state cooling schemes.
Its suitability as a cooling scheme for several ions in a trap and three-dimensional cooling is shown.
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I. INTRODUCTION

The use of laser cooling schemes [1–3] for the motional
degrees of freedom of trapped particles has proven effective
and useful in the initialization of experiments within the
quantum regime. Whether the particle is free or bound by an
external potential dictates a fundamental distinction among
different treatments. The idea underlying Doppler cooling [4]
for free particles is related to sideband cooling [5,6] for bound
particles and similarly dark-state cooling for free particles [7]
has its counterpart for trapped ions [8]. At present, sideband
cooling is the method of choice for ground state cooling of
trapped ions. By addressing the red motional sideband of an
electronic transition with laser light detuned by the value of
the trap frequency ν, phonons are scattered away with every
spontaneous emission. This requires a transition linewidth �

that is small enough for the sidebands to be resolved, � � ν.
Off-resonant heating processes (primarily carrier transition
excitation but also blue sideband heating) limit its performance
both in terms of cooling rate and final temperature. Its cooling
rate is determined by � and the coupling strength of the
laser light to the electronic levels, corresponding to the Rabi
frequency � times the Lamb-Dicke parameter η. The minimum
reachable phonon number is limited by ( �

4ν
)
2 + O(η2) in the

case of very weak driving.
The limitations of sideband cooling can be overcome by

involving a third electronic level. On the one hand, this may be
used to adjust the effective linewidth of the transition [9,10].
Alternatively, the destructive interference that generates elec-
tromagnetically induced transparency (EIT) [11] may be used
to design dark-state cooling schemes [12–14] that overcome
the detrimental effect of the heating associated with the carrier
transition. In a three-level lambda system, a Raman coupling
dresses the electronic states giving rise to one dark state and two
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bright states. By adjusting the detuning � and laser intensity
� correctly, an effective coupling of the dark state with the
narrowest bright state can be achieved with a detuning equal
to the trap frequency [12–14]. The use of a dark state ensures
the cancellation of the carrier transition, and the detuning
adjustment enhances the red sideband transition with respect to
blue sideband excitations. All in all, final occupation numbers
proportional to ( �

4�
)
2 + O(η2) can be achieved, while the rate

is upper bounded by η2�2

2�
, thus beating sideband cooling for

large detunings.
The Stark-shift (SSh) cooling method [15] is another

instance of a dark-state cooling scheme for a three-level
lambda system. In this case the focus resides upon the lowest
lying states. A microwave coupling imparts a finite but small
momentum on the transition so that a quantum gate [16] can
be tailored to involve the mechanical and electronic degrees of
freedom. A simple Raman coupling is designed to introduce
broadening in such a way that more energetic mechanical states
are coupled to a dissipative electronic level. If tuned to the value
of the trap frequency, a red sideband coupling is favored and the
carrier transition is canceled. Higher values of laser intensities
can be applied with this proposal, allowing for an effectively
faster operation of the scheme.

The limiting factor on both EIT and SSh coolings is the
heating associated with the off-resonant blue sideband which,
after the carrier transition, is the only heating process left up
to first order phonon processes. For large � or small � it is not
possible to neglect its effect and cooling efficiency diminishes.
With the cancellation of the blue sideband, perfect ground
state cooling up to first order in the Lamb-Dicke parameter
is expected. Furthermore, the EIT cooling rate upper bound
η2�2

2�
may be saturated regardless of the detuning �. The

first laser cooling proposal that cancels both carrier and blue
sideband processes was [17]. In order to achieve this objective,
it introduces a fourth state in a tripod configuration that couples
to the excited state, in such form as to establish a blue detuning
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with respect to the Raman configuration of exactly one trap
frequency. The main effect of this extra coupling on the cooling
spectrum is the appearance of a zero at exactly the location of
the blue sideband process, thus canceling it. This is in addition
to the zero at vanishing frequency already present in single EIT
cooling. Cancellation of the blue sideband can also be achieved
in another manner that does not involve a fourth electronic
level. As first proposed in [18], the judicious combination
of two laser cooling schemes on the same three-level system
shifts the already existing zero of single EIT cooling to the
location of the blue sideband. In order to achieve this shift, it
is necessary that the first order Lamb-Dicke term couples the
dark state to two other states, rather than one. This enables
a double-path quantum interference which characterizes the
scheme and introduces a degree of freedom that is exploited
to cancel the blue sideband, as opposed to the zeroth order
coupling to an additional level of [17]. To the same class of laser
cooling schemes belongs the experimental implementation in
[19], where the double-path interference is used to address the
cooling of several vibrational modes simultaneously. It is also
possible to exploit this aspect in [18].

In this paper we set out in detail the mechanism presented
in [18], with particular emphasis on possible experimental
implementations. The paper is organized as follows. In Sec. II
a model of the laser cooling scheme is presented together with
the Lamb-Dicke expansion that is used. In Sec. III the deriva-
tion of rate and final temperature limits within the perturbative
regime is presented, where the coherent superposition of the
effect of both laser schemes becomes apparent. An analysis
of the limitations and corrections to the perturbative results
is found in Sec. IV. In Sec. V two possible experimental
implementations are proposed, and the possibility of cooling
the motion on more than one mode or axis with the same
scheme is presented in Sec. VI. We finalize de discussion with
some concluding remarks.

II. MODEL AND LAMB-DICKE EXPANSION

This proposal is designed for a three-level � system of mass
m which is trapped in a harmonic well of frequency ν. This
is an accurate model for an ion in an electromagnetic trap or
an atom in a deep dipole trap. We consider a metastable state
|↑〉, a ground state |↓〉, and a dissipative excited state |e〉, with
spontaneous decay rate �. The three levels are coupled by
means of an electric dipole interaction with running waves as
shown in Fig. 1 and expressed in the Hamiltonian

H = h̄νb†b + h̄ωe|e〉〈e| + h̄ω↑|↑〉〈↑| + h̄ω↓|↓〉〈↓|
+ h̄�1(|e〉〈↓| + H.c.) cos (ω1t − k1x − φ1)

+ h̄�2(|e〉〈↑| + H.c.) cos (ω2t − k2x − φ2)

+ h̄�3(|↑〉〈↓| + H.c.) cos (ω3t − k3x − φ3), (1)

where �j , ωj , kj , and φj with j ∈ {1, 2, 3} are, respectively,
the Rabi frequencies, the laser frequencies, the wave vector
projections on the cooling axis, and the initial phases of the
respective laser couplings, and h̄ωe,↑,↓ are the energies of the
respective levels. The Raman condition establishes an overall
detuning � = ωe − ω↓ − ω1 = ωe − ω↑ − ω2 and the third
laser beam is in resonance ω↑ − ω↓ = ω3. It is useful to express
each wave vector projection in terms of its corresponding

FIG. 1. We regard a three-level electronic system that consists
of a ground state |↓〉, a metastable state |↑〉, and an excited state
|e〉 which dissipates energy at rate �. The lower levels are coupled
to |e〉 by a pair of Raman beams under a detuning �. The beams
carry a Rabi frequency �1 and �2, respectively, and their wave vector
projections on the cooling axis are k1 and k2. Additionally, |↑〉 and |↓〉
are directly coupled by a beam of Rabi frequency �3 and wave vector
projection k3.

Lamb-Dicke parameter following the definition ηj = kjx0,

where x0 =
√

h̄
2mν

is the zero point motion of the oscillator.
The effect of the spontaneous emission is described using

a master equation of the form

dρ

dt
= −i

h̄
[H, ρ] + Ld (ρ) = L(ρ), (2)

where ρ is the state of the system involving both the internal
and the external degrees of freedom. The superoperator Ld is
a Lindbladian for the two dissipative channels

Ld (ρ) =
∑

i=↓,↑
γi (2|i〉〈e|ρe,i |e〉〈i| − ρ|e〉〈e| − |e〉〈e|ρ), (3)

where the spontaneous decay rates add up to the total rate
γ↓ + γ↑ = � and

ρe,i = 1

2

∫ 1

−1
dsW (s)eike,i xsρe−ike,i xs (4)

accounts for the momentum transfer of h̄ke,i in the event of
a photon emission due to an electronic decay from level |e〉
to level |i〉. W (s) = 3

4 (1 + s2) is the angular distribution for a
spontaneous emission of a dipole transition.

In this section we consider a perturbative expansion in
the Lamb-Dicke parameters, which requires the condition
ηj

√
2〈n〉 + 1 � 1, with j ∈ {1, 2, 3} and 〈n〉 the average

occupation number of the vibrational mode of the particle.
In physical terms, this implies that the recoil energy gained
in each photon emission is much smaller than the energy
necessary to excite a motional quantum, therefore processes
involving phonon creation or annihilation are realized with
small probability. An expansion of the Hamiltonian up to
second order phonon processes is hence justified. Additionally,
the laser frequencies involved are large compared to all other
timescales of the system, which justifies the use of a rotating
wave approximation. In the interaction picture with respect to

013423-2



DOUBLE-PATH DARK-STATE LASER COOLING IN A … PHYSICAL REVIEW A 98, 013423 (2018)

the laser frequencies, the rotating Hamiltonian H ′ can be split
into the following three terms:

H ′ = Hm + He + V, (5)

with the Hamiltonian for the motional degrees of freedom

Hm = h̄νb†b, (6)

the Hamiltonian involving only the electronic degrees of
freedom

He = h̄�|e〉〈e| + h̄

2
(�1e

iφ1 |e〉〈↓|

+ �2e
iφ2 |e〉〈↑| + �3e

iφ3 |↑〉〈↓| + H.c.), (7)

and the linear coupling between the motional and electronic
degrees of freedom

V = h̄

2
(b† + b)(iη1�1e

iφ1 |e〉〈↓| + iη2�2e
iφ2 |e〉〈↑|

+ iη3�3e
iφ3 |↑〉〈↓| + H.c.). (8)

This Hamiltonian can be regarded as an interpolation be-
tween two cooling schemes. For �3 = 0, the EIT-cooling
Hamiltonian [12] is recovered, whereas the limit η1 = η2 = 0
corresponds to the Stark-shift cooling [15].

In the limit ηj = 0, the electron will not scatter any light
as long as it is trapped in an eigenstate of He that contains no
overlap with the excited state. Such a dark state exists always
in the EIT limit �3 = 0, whereas for �3 
= 0 this occurs under
the conditions

φ3 = φ1 − φ2 + kπ, k ∈ Z;

�1 = �2; (9)

i.e., under coinciding Rabi frequencies of the Raman pair and
locking of their beating phase to the phase of the third beam or
its counterphase. These conditions are commonly accessible in
experimental realizations and result in the formation of the dark
state |−〉 = 1√

2
(|↓〉 − eiφ3 |↑〉). Together with the bright state

|+〉 = e−iφ1√
2

(|↓〉 + eiφ3 |↑〉), orthogonal to |−〉, the Hamiltonian
He takes the simplified form

He = h̄�|e〉〈e| + h̄�3

2
(|+〉〈+| − |−〉〈−|)

+ h̄�

2
(|e〉〈+| + H.c.), (10)

where � ≡ √
2�1. It becomes apparent that, just as in EIT

cooling, the dark state is decoupled from the laser. Neverthe-
less, it experiences an additional Stark shift that is not present
in EIT cooling and that energetically separates it from the
bright state |+〉. As will become apparent below, this Stark
shift is central for the creation of a second dark-state effect
in the system. As for the coupling to the motional degrees of
freedom, the Hamiltonian V becomes

V = h̄ση(b† + b) = h̄

2
(b† + b)(iη̄�|e〉〈+|

+ iη�eiφ1 |e〉〈−| + iη3�3e
iφ1 |+〉〈−| + H.c.), (11)

with η̄ = η1+η2

2 and η = η1−η2

2 . The operator ση couples the
dark state both to the excited and the bright states, which

constitutes a further control mechanism over the second dark-
state effect.

Regarding spontaneous emission, the leading order of L(ρ)
becomes

L0(ρ) = −i[Hm + He, ρ] +
∑

i=↓,↑
γi (2|i〉〈e|ρ|e〉〈i|

− ρ|e〉〈e| − |e〉〈e|ρ), (12)

and it establishes the dark state |−〉 as the steady state for the
electronic degrees of freedom.

III. COOLING RATE AND FINAL TEMPERATURE

Within the limit where the electronic dynamics is much
faster than the motional degrees of freedom and they are both
weakly coupled to each other, adiabatic elimination of the
electronic degrees of freedom to second perturbative order is
justified [9]. In this regime, the dynamics of the expected value
〈n〉(t ) of the number operator of the vibrational mode follows
the equation

d

dt
〈n〉(t ) = −(A− − A+)〈n〉(t ) + A+, (13)

where A+ and A− are the heating and cooling rates respec-
tively, defined as

A± = 2Re[S(∓ν)] (14)

in terms of the Fourier transform of the stationary correlation
function of ση,

S(ω) =
∫ ∞

0
dτeiωτ 〈ση(τ )ση〉, (15)

where the average is over the electronic steady state |−〉 and
ση is the electronic operator of the first order Hamiltonian

ση = 1
2 (iη̄�|e〉〈+| + iη�eiφ1 |e〉〈−|
+ iη3�3e

iφ1 |+〉〈−| + H.c.). (16)

Therefore, the motional degrees of freedom cool at the rate

R = A− − A+, (17)

to a final occupation

〈n〉f = A+
A− − A+

. (18)

In view of Eq. (14), A− can be interpreted as the ability of
the three-level system to absorb red ν-detuned light while
absorbing a phonon from its motional degrees of freedom. The
rate A+ corresponds to the phonon emission rate due to the
blue ν-detuned light.

The real part of the spectrum Eq. (15) becomes within the
quantum regression theorem (see Appendix A)

Re[S(ω)] = �|〈η|M (ω)−1|e|2
1 + �2|〈e|M (ω)−1|e〉|2 , (19)

with |η〉 = 1
2 (η�|e〉 + η3�3|+〉) and

M (ω) =
(

ω − � − �3
2 −�

2−�
2 ω − �3

)
, (20)
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FIG. 2. Representation of the absorption spectrum (c) of Eq. (19)
as a superposition of two components associated respectively with
(a) the excited state |e〉 and (b) the bright state |+〉. Spectrum (a) is
characteristic of the EIT scheme and is the result of setting η3 = 0 in
Eq. (19). It contains two maxima, located at the eigenfrequencies
δ1 and δ2 of the Stark-shifted states |D1〉 and |D2〉, respectively.
Additionally, it vanishes at the eigenfrequency of the bright state
|+〉. Spectrum (b) arises in the context of SSh cooling and results
from Eq. (19) for η = 0. Its maxima do not coincide with the
Stark-shifted states. Spectrum (c) contains both contributions under
condition Eq. (25). Its evaluation at the motional frequency provides
half of the cooling rate A−. The heating rate A+ vanishes under
the opposing contributions of (a) and (b). Parameters: � = 0.5ν,
� = −0.55ν, � = 2.05ν, �3 = 0.3ν. In (a) and (c), η = 0.45, in
(b) η3 = 4 (Lamb-Dicke parameters have been exaggerated for
graphic clarity).

for 〈e| = (1, 0) and 〈+| = (0, 1). The cooling effect of the
scheme is therefore the result of the coherent superposition
of two spectra as determined by |η〉. As shown in Fig. 2, on
the one hand, the coupling to the excited state introduces the
characteristic EIT cooling spectrum [Fig. 2(a)]; on the other
hand, the coupling to the bright state introduces the Stark-
shift one [Fig. 2(b)] and the superposition of both produces
the absorption spectrum for the present scheme [Fig. 2(c)]. An
explicit calculation of this superposition yields

Re[S(ω)] = 1

16

��2[2η(ω − �3) + η3�3]2

(ω − δ1)2(ω − δ2)2 + �2(ω − �3)2
, (21)

where we use the eigenfrequencies (shifted by −�3
2 ) δ1 and δ2

of the zeroth order electronic Hamiltonian He of Eq. (10),

δ1,2 =
� + 3

2�3 ∓
√(

� − �3
2

)2 + �2

2
. (22)

corresponding to eigenstates |D1〉 and |D2〉, defined by

|+〉 = cos φ|D1〉 + sin φ|D2〉,
|e〉 = sin φ|D1〉 − cos φ|D2〉, (23)

where

tan φ = −� − �3
2

�
+

√√√√(
� − �3

2

�

)2

+ 1, (24)

which defines the mixing angle between the excited and the
bright states.

The spectrum Eq. (21) contains several features that fa-
cilitate the design of an efficient cooling scheme. The most
relevant one is a frequency ω0 of vanishing absorption deter-
mined by 2η(ω0 − �3) = −η3�3. As explained in [18], it can
be adjusted in terms of the value of the Lamb-Dicke parameters
η, η3 and the Rabi frequency �3 such that the blue sideband
absorption is suppressed by setting ω0 = −ν. This establishes
the condition

η3

2η
= ν

�3
+ 1, (25)

where Eq. (21) takes the simple form

Re[S(ω)] = �2η2

4

�(ω + ν)2

(ω − δ1)2(ω − δ2)2 + �2(ω − �3)2
,

(26)

from where A+ = 0 follows. The elimination of the blue
sideband contribution implies that, within second order pertur-
bative theory, all heating mechanisms vanish and the ground
state is reached identically, so that

〈n〉f = 0. (27)

Additionally, the cooling rate is now simply given by R = A−.
Several strategies may be followed for its optimization, and we
provide a number of them:

(1) The Stark-shift condition

�3 = ν, (28)

discussed in [15], such that a cooling rate of the form

Rmax = �
η2

3�3

�2
(29)

may be achieved. It is proportional to the trap frequency, with
a constant provided by the ratio between the rate of operation
of the Stark-shift gate [16] and the effective decay rate of
the bright state �2

�
. A decrease of this effective decay rate is

associated with an increase of the cooling rate, although this
prediction breaks down in the limit of vanishing �, which is
beyond the region of validity of the adiabatic elimination.

(2) The EIT condition. Alternatively, one may consider

�3 = −ν (30)

that corresponds to η3 = 0 following Eq. (25). In this case, the
spectral maxima coincide with the eigenfrequencies δ1,2. The
condition for maximum rate is then achieved by either δ1,2 = ν

and it corresponds to a rate

Rmax = η2�2

2�
, (31)
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which saturates the upper bound associated with EIT cooling
in the limit of large blue detuning.

(3) The robust or multimode condition consists in adjusting
the values of the parameters �, �3, and � such that the
eigenfrequencies of both dressed states |D1,2〉 Eq. (23) are
larger than that of |−〉. This diminishes the negative frequency
part of the absorption spectrum while enhancing the positive
frequency part. This alternative protects the cooling scheme
against intensity or frequency fluctuations and makes it espe-
cially suitable for multimode cooling.

In conclusion, there are a number of aspects that make this
proposal superior to EIT or SSh cooling schemes and compara-
ble to double EIT proposals, even though just three electronic
levels are involved in the design. To begin with, vanishing
population is predicted within the Lamb-Dicke regime. This
also implies that larger cooling rates may be reached due to the
suppression of the heating term. Additionally, the rates may be
optimized with independence of the value of the detuning �.
This is an important aspect that is not available in EIT or SSh
cooling where, by construction, one of the dressed states lies
on the positive frequency spectrum, while the other one is on
the negative frequency part. This inherent limitation imposes
the necessity to use a large blue detuning so as to avoid the
presence of a resonance in the vicinity of the blue sideband.
If the dark state is missed due to experimental imperfections,
the cooling scheme becomes a blue detuned Doppler setting,
which actually heats the system. Conversely, red detunings can
be used in the present proposal for a double dark-state scheme,
so that failure to match the dark state yields a Doppler cooling
scheme with correctly red detuned light, which protects the
cooling effect albeit at a lower efficiency rate.

IV. CORRECTIONS TO THE LAMB-DICKE
APPROXIMATION

The predictions of vanishing phonon number Eq. (27) and
unlimited rates Eqs. (29) and (31) are only valid in the regime
of small Lamb-Dicke parameter and fast electronic dynamics.
Beyond these regimes, the perturbative expansion and the
adiabatic elimination procedures fail. First order corrections
to these predictions are put forward in this section.

A. First order correction to the steady state

The resulting vanishing population at long times Eq. (27)
implies a pure steady state of the form

|�〉f = |−〉|0〉. (32)

Beyond this result, a first correction may be derived in terms
of a perturbative approach involving the full master equation
Eq. (2). Given the form of the dissipator term Eq. (3), a
state with no overlap with the excited state |e〉 that commutes
with the full Hamiltonian Eq. (5) fulfills the conditions of
stationarity. To zeroth order, a state fulfilling those conditions is
the tensor product of the dark state and an arbitrary vibrational
Fock state

|�〉(0)
f = |−〉 ⊗ |n〉, (33)

with eigenvalue λ = h̄νn − h̄�3
2 . The same conditions to first

order have the form

(Hm + He )|�〉(1)
f + V |�〉(0)

f = λ|�〉(1)
f ,

〈e|�〉(1)
f = 0. (34)

Projection of the first equation with 〈e|, 〈+|, and 〈−| provides

〈+|�〉(1)
f = − iηeiφ1〈−|b† + b|�〉(0)

f ,

〈+|Hm + h̄�3

2
− λ|�〉(1)

f = − i
h̄η3�3

2
eiφ1〈−|b† + b|�〉(0)

f ,

〈−|Hm − h̄�3

2
− λ|�〉(1)

f = 0, (35)

which establishes n = 0 in Eq. (33) and additionally

|�〉(1)
f = −iη|+〉 ⊗ |1〉, (36)

under the condition Eq. (25).
Therefore, a better approximation for the final occupation

number 〈n〉f is rather η2. Nevertheless, the steady state remains
pure for the first two orders in the perturbative expansion and
does not contribute to the final temperature.

B. Breakdown of cooling rate predictions

As mentioned above, the maximum reachable cooling rates
Eqs. (29) and (31) as predicted within the perturbative approach
are limited in practice. The range of validity of the adiabatic
treatment used here is constrained to regimes where the cou-
pling between the motional and electronic degrees of freedom
is weaker than the effective dissipation rate of the bright states
|+〉 and |e〉. Otherwise, mechanical and electrical degrees
of freedom couple coherently and the electronic dynamics
cannot be averaged out and disentangled from the vibrational
dynamics. This is shown in Fig. 3 for a particular set of
parameters, where the analytical result Eq. (26) predicts the
numerical cooling rate correctly only for small values of �.
The failure of the perturbative prediction can be associated with
the appearance of coherence between the motional and elec-
tronic degrees of freedom. In particular, for a motional state ini-
tially on the first Fock level, coherent oscillations in the cooling
process are observed as � is increased. These oscillations are
damped at a slower rate than the perturbative approach predict,
and they mark the inflection point of the numerical simulation,
from where an increase of � corresponds to an actual decrease
of overall cooling rate. Numerical investigation of our cooling
scheme indicates that the inflection point in the rate generally
occurs at larger rates as compared to EIT or Stark-shift cooling,
as shown in Fig. 3. This may be due to the cancellation to first
order of the blue sideband absorption and further investigation
is required for the analysis of this behavior.

V. EXPERIMENTAL IMPLEMENTATION

The experimental implementation of the present scheme
is possible with state of the art optical systems. Under the as-
sumption that the transition between the ground and metastable
levels is in the microwave range and the ground to excited state
corresponds to an optical transition, direct implementation
will produce very disparate Lamb-Dicke parameters η and η3.
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FIG. 3. Comparison of the cooling rate R obtained by means
of numerical (solid blue line, dot-dashed green line) or analytical
(dashed red line) calculations as a function of the Rabi frequency �

(� = 10ν, �3 = −ν, η = 0.01). For large values of � the analytical
result fails to predict the numerical values. Inset: Evolution of the
average population 〈n〉 as a function of time for three different values
of � starting at a pure motional state at n = 1.

This is irrelevant for the case associated with Eq. (30), since
that implies η3 = 0. Nevertheless, for the case Eq. (28) the
condition for the cancellation of the blue sideband Eq. (25) im-
poses η3 = 4η. This demands a strategy to enhance the Lamb-
Dicke parameter associated with the microwave coupling. This
is possible from an effective picture and two examples are
presented in this section. The first one involves the use of
two laser beams in a highly detuned Raman configuration.
The second one is performed with microwave driving and
Lamb-Dicke enhancement by means of magnetic gradients.

A. Highly detuned Raman beams

The direct driving of a microwave transition has an asso-
ciated Lamb-Dicke parameter which is orders of magnitude
smaller than that of an optical frequency. In order to increase
its value, we propose to derive coupling 3 from the effect of
an additional optical coupling, thus directly ensuring a Lamb-
Dicke parameter of similar order to that of couplings 1 and 2. As
is shown in Fig. 4 the implementation consists on an additional
Raman pair with Rabi frequency �p and opposing wave vector
projections kp. Its detuning �′ is chosen to be so large that it
effectively decouples from the excited state for all practical
purposes. Hence, adiabatic elimination of the upper level is
possible, which yields the effective single coupling between
|↑〉 and |↓〉. The relationships between our effective parameters
�3 and η3 and the physical values �p and ηp = kpx0 are
derived in Appendix B, and it is found that, for sufficiently
large detunings (�′ � ν) and in the Lamb-Dicke regime,

�3 = �2
p

2�′ ,

η3 = 2ηp, (37)

FIG. 4. Realization of the direct coupling between |↓〉 and |↑〉
by means of an additional Raman coupling of two beams with Rabi
frequency �p and opposed projections of their wave vectors kp . The
detuning of both couplings with respect to |e〉 is �′.

so that Lamb-Dicke parameters in the optical range may be
achieved.

Condition Eq. (25) may then be fulfilled by taking into
account some geometric considerations. By tilting the beams
for couplings 1 and 2 an angle θ with respect to the trap
and cooling axis as shown in Fig. 5(a), η1,2 = ±η′

1,2 cos θ ,
where η′

1,2 are the Lamb-Dicke parameters associated with
the axis of propagation of the beams. This provides us with a
simple geometrical degree of freedom for the adjustment of the
ratio η3 to η. Even though � 
= �′, we use the approximation
η′

1 � η′
2 � ηp for the sake of simplicity, which is justified in the

optical regime. Under this assumption 2η

η3
= cos θ . By relating

this to the resonance Rabi frequency of Eq. (25), cos θ = �3
ν+�3

.
Furthermore, under condition Eq. (28), this implies θ � 60◦.

FIG. 5. (a) Physical realization of �1, �2, and �3 couplings, for
cooling in the trap axis, as two Raman pair of beams characterized by
their respective Rabi frequencies �1,2 and �p and their Lamb-Dicke
parameters η′

1,2 and ηp . (b) Geometrical definition of angle θ ′ for an
alternative implementation in a trap with reduced optical access.
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For the case of ion traps with constrained optical access,
other configurations may be considered. For instance, the
p Raman pair may be additionally tilted an angle θ ′ with
respect to the cooling axis, as shown in Fig. 5(b). The ratio
of Lamb-Dicke parameters on this axis is η3

2η
= cos θ ′

cos(θ+θ ′ ) . The
optimal cooling condition Eq. (25) is fulfilled for the following
angle:

θ ′ = arctan
(�3 + ν) cos θ − �3

(�3 + ν) sin θ
, (38)

which is always well defined for any given �3 and π
2 >

θ > 0.

B. Magnetic gradients

Alternatively, a magnetic gradient can be applied, as is
proposed and implemented in a number of recent works in
the context of quantum gate implementation [20–24] and laser
cooling [25]. In this system the magnetic gradients create a
position dependent Zeeman shift that can be expressed as

h̄ζ (|↑〉〈↑| − |↓〉〈↓|)(b + b†), (39)

where ζ is proportional to the difference in the energy gradient
of each level, i.e., ζ = x0|∂xω↑ − ∂xω↓|, with x the direction of
the trap axis. Additionally, the two-level system is driven using
a microwave of the form �3(|↓〉〈↑| + H.c.) cos (ω3t − φ3),
which introduces a crucial degree of control with respect
to [25]. After the relevant interaction picture transformation
and rotating wave approximation, a rotation to the {|+〉, |−〉}
basis yields a very similar Hamiltonian as Eq. (5), with a
modification only of the electronic operator of the first order
Hamiltonian, which becomes

ση = 1
2 (iη̄�|e〉〈+| + iη�eiφ1 |e〉〈−|
+ 2ζeiφ1 |+〉〈−| + H.c.). (40)

This allows us to recover most of the above results with the
substitution η3 = 2ζ

�3
.

The range of practically achievable values of the effective
Lamb-Dicke parameter is comparable to that of optical transi-
tions [20] and is mainly limited by the intensity of the magnetic
field gradient |∇B|. For small fields and electronic levels of
small magnetic moment, the assumption is in order that ζ is
directly proportional to the Bohr magneton μB and the field
gradient

ζ � x0
μB |∇B|

h̄
. (41)

For the operative conditions expressed by the combination of
Eqs. (25) and (28), ζ = 2νη. This provides an approximation to
the necessary magnetic gradients |∇B| � 4h̄νk1

μB
. For an optical

transition of about 500 nm and a trap of a few MHz, an estimate
gradient of about 5 T/cm is obtained. Although challenging,
this is possible as has been demonstrated in [26].

VI. MULTIMODE COOLING

So far, one-dimensional cooling has been discussed. Nev-
ertheless, the flexibility of the experimental implementations
discussed above facilitates simultaneous cooling of several
modes. The robustness of the scheme makes it possible to
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FIG. 6. Occupation number of the three longitudinal normal
modes of a chain of three identical ions under double dark-state
cooling. The laser parameters are set to address the second mode of
frequency ν2. While the cooling is fast and reaches a low temperature
in all modes, neighboring modes 1 and 3 experience a slight decrease
in cooling efficiency (�3 = ν2, � = 3ν2, � = �3/2, � = 10ν2,
η = 0.01, with ν2 the eigenfrequency of the second mode and trap
strength chosen such that ν1 = ν).

cool even if the parameters do not fully satisfy the optimal
conditions. This can be utilized both in the context of three-
dimensional (3D) cooling of a single ion and in the cooling of
an ion chain.

A. Cooling of ion chains

The motion of a one-dimensional chain of N ions can
be described by N normal modes, each characterized by an
eigenfrequency νi . Cooling for all modes may be achieved
by adjusting the parameters such that both peaks of the
absorption spectrum are located on the region spanned by the N

eigenfrequencies, for instance by the choice � = �3, �3 = ν0,
and� < �, whereν0 is the most central of the eigenfrequencies
νi of the chain. Similarly, condition Eq. (25) is adjusted with
reference to the same ν0. This is the case presented by the
simulation results shown in Fig. 6, where the parameters are set
to address mode 2. All modes show roughly the same cooling
rate and final temperature, although mode 2 achieves the best
performance due to the total cancellation of the blue sideband.
A Monte Carlo wave-function simulation method [27,28] has
been used.

When the addressed frequency does not coincide with
the central mode, the rate and the final occupation numbers
are affected. With the intention to assess this effect, several
additional simulations have been run with parameters adjusted
to different values of the frequency ν0. In Figs. 7 and 8
the final occupation number and the cooling rate results of
independent simulations are displayed as a function of the
addressed frequency ν0 of each simulation. It shows that
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FIG. 7. Final occupation number of the three longitudinal normal
modes as a function of the addressed frequency ν0. Optimal values for
each mode are obtained when the addressed frequency coincides with
the eigenfrequency of the corresponding mode. (�3 = ν0, � = 3ν0,
� = �3/2, � = 10ν2, η = 0.01 and trap strength chosen such that
ν1 = ν).
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FIG. 8. Cooling rate of the three longitudinal normal modes as
a function of the addressed frequency ν0. Optimal values for each
mode are obtained when the addressed frequency coincides with the
eigenfrequency of the corresponding mode. (�3 = ν0, � = 3ν0, � =
�3/2, � = 10ν2, η = 0.01 and trap strength chosen such that ν1 = ν).

optimal values for a particular mode i are mostly obtained
when the addressed frequency ν0 coincides with its frequency
νi . Nevertheless, the robustness of the scheme guarantees good
performance even for distant modes.

As discussed above, with EIT cooling it is not possible to
place both peaks of the absorption spectrum on frequencies
larger than that of the dark state. Therefore, the neighboring
modes would experience a less efficient cooling with respect
to the addressed mode than it is possible with the current
proposal.

B. 3D cooling

Finally, it is possible to address the transversal modes in
addition to the longitudinal ones. In particular, 3D cooling
can be achieved by rearranging the beams for couplings 1
and 2 such that they project onto the additional axes. In such
situation, double EIT cooling can only be achieved in one axis,
but efficient cooling can be achieved for the other two following
the strategy presented above for ion chains.

VII. CONCLUSIONS

A detailed study of an efficient and fast laser cooling
scheme for trapped three-level systems has been presented.
It has been shown that a particular setting of the Lamb-Dicke
parameters ratio combines two underlying cooling schemes so
that the blue sideband can be effectively canceled. Thus, total
occupation of the ground state is reached up to second order
in the Lamb-Dicke expansion. Being both a fast and a robust
cooling scheme, two different experimental implementations
have been proposed that equivalently perform the scheme.
Specific geometric configurations of laser beams would be able
to also cool the two remaining axes, thus converting it into a
3D cooling scheme. Its suitability for cooling several ions in a
trap has been explored.
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APPENDIX A: REAL PART OF
THE COOLING SPECTRUM

The spectrum Eq. (15) becomes within the quantum regres-
sion theorem

S(ω) = Tr

{
ση

1

iω + L0
ση|−〉〈−|

}
, (A1)

and, due to the property

L0

( |e〉〈−|
|+〉〈−|

)
= L0

( |e〉〈−|
|+〉〈−|

)
, (A2)

with

L0 = −i

(
� + �3

2 − i� �
2

�
2 �3

)
, (A3)
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can be expressed as the inner product

S(ω) = 〈η|(iω + L0)−1|η〉, (A4)

with |η〉 = 1
2 (η�|e〉 + η3�3|+〉), and for 〈e| = (1, 0) and

〈+| = (0, 1). The real part thereof, relevant for the rates A±
Eq. (14), may be derived from

2Re[S(ω)] = 〈η|
[

1

iM (ω) − �|e〉〈e|

+ 1

−iM (ω) − �|e〉〈e|
]
|η〉, (A5)

with

M (ω) =
(

ω − � − �3
2 −�

2−�
2 ω − �3

)
, (A6)

again following the vectorization 〈e| = (1, 0) and 〈+| = (0, 1)
as in Eq. (20).

Using the identity

(A + B )−1 = A−1 + 1

1 − Tr{A−1B}A
−1BA−1, (A7)

for an invertible matrix A and a matrix B of rank 1, we
obtain

Re[S(ω)] = �|〈η|M (ω)−1|e〉|2
1 + �2|〈e|M (ω)−1|e〉|2 . (A8)

which is the form of Eq. (19).

APPENDIX B: EFFECTIVE COUPLING
OF THE GROUND STATES

In this Appendix the relationships between the physical
Lamb-Dicke parameter ηp and the effective η3 and between
the physical Rabi frequency �p and the effective �3 are
derived. The method in [29] is followed, where the highly
detuned excited level is adiabatically eliminated. Our target
Hamiltonian describing the coupling of both ground levels is
the following:

Hgoal = h̄�3

2
{[1 + iη3(b + b†)]|↓〉〈↑| + H.c.}. (B1)

The experimental implementation involving a highly de-
tuned Raman coupling is described by the following interaction

picture Hamiltonian:

HI = �p

2
{|e〉〈↑|ei�t [1 + iηp(b†e−iνt + beiνt )]

+ |e〉〈↓|ei�t [1 − iηp(b†e−iνt + beiνt )] + H.c.}. (B2)

This Hamiltonian consists of the following harmonic terms:

h1 = i�pηp

2
(|e〉〈↑| − |e〉〈↓|)b†,

h2 = �p

2
(|e〉〈↑| + |e〉〈↓|), (B3)

h3 = i�pηp

2
(|e〉〈↑| − |e〉〈↓|)b,

with frequency values ω1 = � − ν, ω2 = �, and ω3 = � + ν.
The derivation of the effective Hamiltonian follows from the
formula

Heff(t ) =
3∑

m,n=1

ωmn
−1[h†

m, hn] exp[i(ωm − ωn)t], (B4)

where ωmn is the harmonic average ωmn
−1 = 1/2(ω−1

m + ω−1
n ).

Out of the nine terms originating from this expression, four are
of second order in the Lamb-Dicke parameter. The remaining
six can be expressed as

Heff = νa†a + �2
p

4

1

�

(
σ (↑,e)

z + σ (↓,e)
z + σ (↑,↓)

x

)

+ �2
pηp

4

2�2 − ν2

�(�2 − ν2)
q̂σ (↑,↓)

y

+ �2
pηp

4

ν

�2 − ν2
p̂σ (↑,↓)

z , (B5)

where p̂ = i(b − b†). This Hamiltonian is equivalent to (B1)
but for the atomic Stark shifts and the last term, which is
proportional to 1/�2.

As long as � � ν, Heff contains the target interaction Hgoal

with the parametric conditions:

�3

2
= �2

p

4�
,

�3η3

2
= �2

p

4�
ηp

2�2 − ν2

�2 − ν2
. (B6)

Solving for the Lamb-Dicke parameter:

η3 = ηp

2�2 − ν2

�2 − ν2
, (B7)

which yields η3 = 2ηp for the assumed limit � � ν.
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