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Electro-optical effects in dense and cold atomic gases
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On the basis of the general theoretical approach developed previously by Fofanov et al. [Ya. A. Fofanov
et al., Phys. Rev. A 84, 053811 (2011)], we analyze the atomic polarization created by weak monochromatic
light in an optically thick, dense, and cold atomic ensemble placed in an electrostatic field. On this basis, we
determine complex refractive indexes and the permittivity tensor of the medium. We analyze the dispersion of
the permittivity and its dependence on the strength of the field and on the density of the medium. We show that
electro-optic effects in dilute and cold gases differ essentially from those in dense ones. In the latter case, electric
field modifies the shape, amplitude, and typical linewidth of the atomic resonance. The electric field also modifies
the collective Lamb shift. Observed peculiarities are explained as a result of the indirect influence of the field
on optical properties of dense gases through modification of polyatomic collective effects caused by interatomic
dipole-dipole interactions.
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I. INTRODUCTION

Improvements in techniques for cooling atomic gases in
atomic traps make their utilization very promising for applica-
tions in various areas of fundamental science and technology
such as metrology, the development of frequency standards,
and quantum information problems [1–7].

Very recently, special attention has been focused on dense
ensembles, in which the mean free path of resonant photons is
comparable with their wavelength. This attention is partially
due to the possibility to create atomic clouds with a very large
optical thickness, which is important for almost all of the
above-mentioned applications. Besides that, such ensembles
exhibit a number of unique physical properties, such as
subradiance, a collective Lamb shift, cold-atom-based random
lasing, and possible strong localization of light, which are
either fundamentally impossible or suppressed in low-density
media (see [8–18] and references therein).

The efficiency of cold atom applications and possibilities to
observe one or another physical phenomenon are determined
to a great extent by the possibilities to prepare an exploitable
ensemble with appropriate properties. Often the control over
these properties in real time is required. One of the most simple
and effective methods of modification of physical, particularly
optical, properties of cold atomic samples is based on the
application of an external magnetostatic or electrostatic field.

Magneto-optical and electro-optical effects have been
known for a long time and, by now, have been studied in
detail for various materials. In particular, some aspects of the
influence of a magnetic field on optical properties of cold
atomic ensembles have been analyzed both experimentally
and theoretically. Experiment [19] revealed a very large Verdet
constant for dilute atomic clouds. In these works [20–22], an
unusual influence of a magnetic field on coherent backscatter-
ing was discovered. It was shown that contrary to expectation, a
magnetic field can increase the enhancement of backscattering
in some cases. The effects of this field on the resonant

dipole-dipole interatomic interaction and multiple recurrent
scattering in dense and cold atomic ensembles were
investigated in detail in [14,23,24]. The role of the electrostatic
field in the case of cold atomic clouds has been studied in
much less detail.

The principal goal of the present paper is to analyze the-
oretically the influence of electric fields on optical properties
of nondegenerate cold atomic ensembles. We will focus our
attention on the case of dense gases. There is a good reason
to believe (see [25]) that electro-optical effects in such gases
differ essentially from those in dilute ones. We will study how
the dielectric susceptibility tensor of the system changes with
the density of atoms and with the strength of electric field.

Our analysis is based on the quantum microscopic approach
suggested in [26,27] for examination of coherent and inco-
herent light transport in the case of dense gases when the
Lorentz-Lorenz local field theory [28] cannot be applied. This
approach assumes the study of the spatial distribution of atomic
excitation and atomic polarization created in the gases by weak
monochromatic light. On this ground, we calculate a numeri-
cally complex index of refraction and dielectric constant of the
medium for different frequencies of the incident light.

We will show that the electrostatic field strongly influences
the nature and manifestation of electro-optical effects in dense
gases. Particularly in contrast with the case of dilute gases,
for dense ones the electric field modifies all characteristics
of the atomic susceptibility. It changes the shape, amplitude,
and typical linewidth of the atomic resonance. The electric
field also modifies the collective Lamb shift observed in dense
atomic ensembles.

II. BASIC ASSUMPTIONS AND APPROACH

In the present work, we analyze the steady state of an
atomic ensemble consisting of N atoms interacting with
a quasiresonant monochromatic electromagnetic field and
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vacuum modes. These atoms are identical and have ground
stateJ = 0 separated by the frequencyωa from the excitedJ =
1 state. The natural linewidth of the three Zeeman sublevels
of this state (m = −1,0,1) are γ . Atoms are assumed to be
motionless. We consider a statistical ensemble of clouds with
the random distribution of atoms. The main results presented
below are obtained by averaging over this ensemble by the
Monte Carlo method. The external quasiresonant light is a
plane monochromatic wave with frequency ωs ,

El = eE0 exp(−iωst + ikr). (1)

Here, e and E0 are the polarization vector and amplitude of the
field. The intensity of the radiation is assumed to be sufficiently
small that all nonlinear effects are considered negligible.

At present, there are several similar approaches to the
description of weak light interaction with dense and cold
atomic clouds [29–39]. Our theoretical analysis in this work
is based on the consistent quantum-posed theoretical approach
developed previously in [26,36]. According to [26,36], under
the considered conditions, the nature of atomic excitation is
determined by the amplitudes of collective atomic states with
one excited atom be while the other atoms are in the ground
state. Here the index e contains information about both the
number of the excited atom and specific Zeeman sublevel that
is populated.

Considering weak coherent light as a superposition of a
vacuum state and a small admixture of a one-photon Fock
state, for the Fourier components be(ω) of these amplitudes
we obtain the following set of coupled-dipole equations (for
greater length, see [36]):∑

e′
[(ω − ωa)δee′ − �ee′ (ω)]be′(ω) = Ve(ω). (2)

Here, matrix �ee′ (ω) describes the excitation exchange be-
tween different atoms and spontaneous decay of each atom.
In the case when the atoms are placed in an external electric
field, it also takes into account the Stark frequency shift caused
by this field. In this case, in the reference frame with the
quantization axis directed along the electric field, the matrix
�ee′(ω) has the form

�ee′ (ω) = −γ /2(i − �)δee′ + (1 − δee′ )

×
∑
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Here, � = 2�ωS
eg/γ is the Stark shift of the atomic transition

e ↔ g measured in units of the natural half width of the line
(note that in the considered case of two-level atoms, the electric
field shifts the level in such a way that the frequency of the
transition J = 0,m = 0 ↔ J = 1,m = 0 is always more than
for J = 0,m = 0 ↔ J = 1,m = ±1 and the corresponding
normalized shift � is positive); rμ is the projection of the vector
r on the axis of the chosen coordinate system and r = |r| is
the separation between the atoms excited to the states e and e′.

Vector Ve(ω) on the right-hand side of Eq. (2) describes
the excitation of cloud atoms by the external radiation. It is
determined by the initial excitation through the nonmodified
external field

Ve(ω) = 2πδ(ω − ωs)Ve0; (4)

Ve0 = −degeE0 exp(ikre)

h̄
, (5)

where deg is the dipole matrix element for transitions from the
ground g to the excited e state of the atom and re is the radius
vector of the atom excited in the state e.

Introducing an inverse matrix for the system (2),

Ree′ (ω) = [(ω − ωa)δee′ − �ee′(ω)]−1, (6)

we can write its formal solution as follows:

be(ω) =
∑
e′

Ree′ (ω)Ve′ (ω). (7)

In the present work, we determine the matrix Ree′ (ω) and be(ω)
numerically.

For time-dependent amplitude be(t), we get

be(t) = exp(−iωst)
∑
e′

Ree′ (ωs)Ve′0. (8)

Knowing the amplitudes be(t) allows us to calculate the
atomic polarization as the total dipole moment per unit volume
of the cloud. In analyzing this polarization, it is convenient to
select positive- and negative-frequency parts and use a basis of
circular polarization (μ = 0, ± 1),

Pμ(r,t) = P (−)
μ (r,t) + P (+)

μ (r,t). (9)

In the steady-state condition, the time dependence of the
complex atomic polarization is given by the simple exponential
function

P (+)
μ (r,t) = P (+)

μ (r) exp(−iωst). (10)

For the spatial distribution of the amplitude P (+)
μ (r) from

(8), we find

P (+)
μ (r) = 1

�V

∑
a∈�V

∑
e′

Rem
a e′ (ωs)Ve′0. (11)

Here we added additional indexes m and a at e to explicitly
show that under summation, we have to include only atoms
a located in a mesoscopic volume �V and only those states
em
a of these atoms which give a contribution to the corre-

sponding projection of the polarization vector. In the basis
of circular polarization, such a contribution comes only from
one Zeeman sublevel with m = μ. Note, however, that due
to optical anisotropy of the atomic ensemble caused by the
electrostatic field E, orientation of the atomic polarization
vector in the general case does not coincide with orientation
of the polarization of light exciting the atoms.

In the next section, we will use relation (11) to calculate the
spatial distribution of atomic polarization and to analyze on
this background the influence of an external electrostatic field
on coherent light transport in ensembles of different densities.
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III. RESULTS AND DISCUSSION

For the purpose of this work, we consider cylinder-shaped
atomic ensembles with a radius R and length L. The random
distribution of atoms is assumed to be uniform, on average. We
will also assume that this ensemble is irradiated from one end
by a monochromatic plane wave with the wave vector directed
along the axis of the cylinder.

To find two principal values of the permittivity tensor, we
analyze two polarization schemes, in which the direction of the
induced atomic polarization coincides with the polarization of
the exciting radiation. In the first case, external quasiresonant
light is circularly polarized and the electrostatic field is directed
along the axis of the cylinder E‖k. The second case corre-
sponds to radiation linearly polarized along the electrostatic
field, which is perpendicular to the axis of the considered
cylindrical volume E⊥k. In both cases, the polarization of the
external radiation does not change under its propagation in the
atomic ensemble.

In Fig. 1, we show the spatial dependence of the absolute
value [Fig. 1(a)] and phase [Fig. 1(b)] of P (+)(r) for different
polarization schemes and different detuning δ of exciting
radiation from the resonance frequency of the corresponding
atomic transition. The calculations were made for a cloud with
length L = 10 and radius R = 20 (hereafter, in this paper, we
use the inverse wave number of the probe radiation in vacuum,
k−1

0 = λ/2π , as the unit of length). The average density of
atoms is n = 0.15.

To avoid the influence of boundary effects at the lateral
surface of the cylinder, we calculate the atomic polarization for
a zone near the axis of the cylinder where the dependence of
the polarization on r is negligible. In this area, the polarization
depends only on z. Our analysis shows that for the considered
parameters, this takes place for the inner part of the cylinder
with r � 12. The results shown in Fig. 1 are obtained by
averaging of the atomic polarization over a region with radius
r = 8.

Figure 1 shows that outside the boundary region near z =
0, the phase of the complex polarization begins to increase
linearly and the amplitude of the polarization decreases ex-
ponentially with z. As the depth z increases, we see some
deviations from such behavior. For detuning δ = 0, these
deviations take place practically only in the boundary area
near the far end of the cylinder (z = 10). For δ = 0.3γ , the
nonlinear behavior of curves in Fig. 1 can already be seen at
z � 5.

Our calculation shows that the size of the region where
the curves in Fig. 1 are linear increases monotonically as
we increase the number of statistical tests. The size also
decreases as the frequency ωs approaches the resonance
frequency of the considered dense media. It gives us a good
reason to believe that deviation from linearity is the result of
statistical errors caused by the fact that far from z = 0, the
averaged polarization is extremely small in comparison with
the polarization corresponding to any random specific spatial
configuration of the ensemble. So here we have to calculate
the numerically small difference of big numbers. The curves
in Fig. 1 were obtained by averaging over more than 5 × 105

different random spatial configurations of the atomic ensemble.
They were not additionally smoothed. In spite of such a huge

FIG. 1. Spatial distribution of atomic polarization for two prin-
cipal polarization schemes. (a) Natural logarithm of amplitude of
polarization, ln{abs[P (+)(z)]}; (b) phase of polarization, arg[P (+)(z)].
Calculations were made for a cylindrical cloud with length L = 10
and radius R = 20; atomic density is n = 0.15; k0 = ωs/c is the wave
number of the source radiation in vacuum. The detuning δ is calculated
from the resonance frequency of the corresponding transition.

number of statistical tests, the curves contain the noticeable
traces of fluctuations for big z.

Further, all conclusions about atomic susceptibility will be
made on the basis of analysis of linear sections of curves
ln{abs[P (+)(z)]} and arg[P (+)(z)], i.e., for those spatial inter-
vals where atomic polarization can be presented as a simple
exponential function, P (+)(z) = P0 exp[i(k′ + ik′′)z].

For regions away from the boundaries, we deal with a
quasiuniform medium. In such a case, the coordinate depen-
dence of the electric field inside the medium E (+)(z) is the
same as of P (+)(z), with the same coefficients k′ and k′′, i.e.,
E (+)(z) = E0 exp[i(k′ + ik′′)z]. So knowing the polarization of
the atomic ensemble allows one to make some conclusions
about light propagation in it, particularly about the imaginary
k′′ and real k′ parts of the complex wave number of the plane
electromagnetic wave in the atomic ensemble. The quantities
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FIG. 2. Spectrum of (a) imaginary and (b) real parts of the
complex wave number of the electromagnetic wave. Atomic density
is n = 0.2. The detuning δ is calculated from the resonance frequency
of the corresponding transition.

k′′ and k′ in turn give information about the refractive index
and absorption coefficient of the media under consideration.

We performed the calculations of the spatial distribution of
atomic polarization for a wide range of conditions, particularly
for different frequencies of exciting radiation and for different
densities of the atomic ensemble. It gives us an opportunity to
analyze the coherent light propagation in various conditions.

Figure 2 illustrates the influence of a strong electrostatic
field on the spectral dependence of refraction and absorption
of probe radiation in dense and cold atomic gases. The results
for the two main polarization schemes are compared here
with the case when the electric field is absent (� = 0). The
calculation is made for n = 0.2. To have the possibility to
compare the shape of the spectral dependencies, we measure
detuning δ from the resonance frequency of the correspond-
ing transition. For the case E⊥k, it is the J = 0,m = 0 ↔
J = 1,m = 0 transition. In the case of circularly polarized
exciting radiation propagated along electrostatic field E‖k,
the detuning is counted off J = 0,m = 0 ↔ J = 1,m = ±1
atomic frequency.

Figure 2 demonstrates the fundamental differences of
electro-optical effects in dense gases as compared with dilute
ones.

The properties of dilute atomic ensembles can be described
on the basis of a one-body density matrix. The main compo-
nents of the one-atom polarizability tensor are modified by an
external electrostatic field, but its influence is restricted by the
Stark shift of the resonant frequencies. The amplitudes, widths,
and shape of the resonances themselves remain unchanged.
As we can see from Fig. 2, for dense cold gases it is not the
case. The electrostatic field changes all the characteristics of
the atomic resonance. Comparison of the dash-dotted curve
with the others shows that the shape, amplitude, and typical
linewidth of the atomic resonance change in the electric field.
Moreover, we see that the electric field modifies the collective
Lamb shift. It becomes noticeably less.

The influence of the field manifests itself differently for
the two main polarization channels. This influence is more
pronounced at the transition J = 0,m = 0 ↔ J = 1,m = 0
(see solid line in Fig. 2). For the considered parameters, the
absorbance at this transition increases by more than 85%. For
the circularly polarized light propagating along the electro-
static field E‖k, the electro-optical effects are a bit less distinct
(dashed lines in Fig. 2), but they are not small in this case either.

The discovered peculiarities of the electro-optical effects in
dense gases can be accounted for by a specific mechanism of
the influence of the electrostatic field. The Stark shift in dense
ensembles affects not only the susceptibility of individual
atoms but also additionally modifies the resonant dipole-dipole
interatomic interaction. As is known, this interaction can be
explained by the exchange of virtual photons between the
atoms and the shifts of atomic levels caused by the electrostatic
field modifying this exchange. Thus, this field affects the nature
of the collective polyatomic effects. Such an indirect influence
on optical properties through modification of near-field effects
and interatomic correlations can be much more effective than
the direct influence observable in single-atom effects.

Such character of electro-optical effects in a dense atomic
ensemble means that the influence of an electrostatic field will
change with the density. In Fig. 3, we illustrate how the optical
properties of an atomic ensemble placed in an electric field
depend on its density n. We consider this dependence by the
example of one of the main components of the permittivity
tensor. This main component corresponds to linearly polarized
light propagating perpendicularly to a constant field E⊥k. The
calculation is performed for strong electric field � = 100.

Figure 3 demonstrates the expected qualitative behavior
of the dielectric constant. The amplitude of the resonance
[Fig. 3(b)] increases with density as well as its shift and
width. In increasing of the amplitude, there is a tendency
towards saturation. Similar density dependence is observed
in the case of zero field (see [26,40]); however, there are
essential quantitative differences. The electric field noticeably
suppresses the saturation effect.

To keep the picture clear, we do not show curves for the zero
electric field in Fig. 3. But we can illustrate this suppression by
some numerical examples. Density increasing from n = 0.1
to n = 0.4 leads in the considered case to increasing of the
imaginary part of ε by the factor close to 3, while in the
case of zero field, the corresponding increase is only 75%.
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FIG. 3. Spectrum of (a) real and (b) imaginary parts of one of the
main components of the permittivity tensor for different densities n.
Polarization scheme is E⊥k, � = 100.

The saturation plays a negative role because it does not
allow one to obtain atomic ensembles with very big optical
depth just by increasing the density. As we mentioned above,
the possibilities to prepare atomic samples with big optical
thickness are important for various practical applications of
cold gases and an electric field can partially help to solve this
problem.

The suppression of saturation effects in an electric field is
accompanied by the narrowing of resonance curves compared
with the case of zero field. It can be seen from Fig. 2, but
for bigger densities narrowing becomes more pronounced.
Thus our calculations show that for n = 0.3, a strong electric
field decreases the full width at half maximum more than
three times. It means that as the atomic density increases, the
modification of the optical parameters of the atomic ensemble
in the given electric field becomes more considerable. It can
also be seen from Fig. 3(b) that the real part of ε already
becomes negative for n = 0.1, whereas for zero electric field
it take place only for n ∼ 0.5.

FIG. 4. Spectrum of the imaginary part of one of the main
components of the wave number for different electrostatic field
strength and for two main polarization schemes (a) E‖k and (b) E⊥k.
The detuning δ is calculated from the resonance frequency of the
corresponding transition. Atomic density is n = 0.15.

All previous results were obtained for the strong electric
field, when Stark shifts essentially exceed not only the natural
width γ of excited states of the free atom, but also the typical
level shifts caused by dipole-dipole interatomic interaction.
Figure 4 demonstrates that noticeable effects of this field are
important even for a Stark shift comparable with γ , i.e., for
� ∼ 1. The curves in Fig. 4 were calculated for an atomic
ensemble with n = 0.15.

Figure 4 shows the qualitative difference in the influence of a
relatively small electric field on the spectrum of the absorbtion
line for two principal polarizations. For circularly polarized
coherent light [Fig. 4(a)], this field causes a noticeable shift
but small modification of the maximum of absorption. For the
linear polarization [Fig. 4(b)], on the contrary, the shift is small
and the amplitude is essentially increased. As the strength of
the static field increases, the absolute value of k′′ as well as the
shift of the spectral line increases for both cases. For � > 10,
the dependence of k′′ on � practically disappears. For such a
field, the Stark shifts essentially exceed the level shifts caused
by interatomic interaction.
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IV. CONCLUSION

In the present work, we study the influence of an elec-
trostatic field on the optical properties of dense and cold
atomic gases prepared in a special atomic trap. We calculate
the dispersion of the permittivity tensor for different field
strengths and for different atomic densities. We show that
the manifestation and the mechanism of electro-optical effects
in this case differs essentially from the case of dilute atomic
ensembles.

For dense gases, the influence of an electrostatic field does
not restrict itself to a Stark shift of optical resonances. We
observe here the alteration in the width, amplitude, and shape of
atomic transitions. The electric field suppresses the saturation
effect which takes place for dense gases [26,40]. In an electric
field, the resonances become narrower and their amplitude

increases. The electric field also decreases the collective Lamb
shift. It opens additional possibilities to control over the optical
properties of dense and cold atomic ensembles.

Our analysis reveals that the main reason for the modi-
fication of optical properties of the dense gases in an elec-
tric field is the modification of polyatomic collective effects
caused by interatomic dipole-dipole resonant interaction. In
the considered case, such an indirect influence is much more
effective than direct transformation of optical properties caused
by single-atom effects in an electrostatic field.
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