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Restricted-space ab initio models for double ionization by strong laser pulses
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A double-electron-ionization process occurs when an intense laser pulse interacts with atoms or molecules.
Exact ab initio numerical simulation of such a situation is extremely computer resource demanding, thus often one
is forced to apply reduced dimensionality models to get insight into the physics of the process. The performance
of several algorithms for simulating double electron ionization by strong femtosecond laser pulses is studied. The
obtained ionization yields and the momentum distributions of the released electrons are compared and the effects
of the model dimensionality on the ionization dynamics are discussed.
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I. INTRODUCTION

A number of noteworthy phenomena occur during interac-
tions of atoms and molecules with short strong laser pulses, for
example, high-order harmonic generation (HHG) and nonse-
quential double ionization (NSDI). As experiments in strong-
field physics become more refined, there is an increasing
demand for performing ab initio simulations that could provide
insight into observed phenomena. Several methods have been
developed in that respect over the past 20 years. However, quite
surprisingly, it is rather difficult to find a comparison between
various proposed approaches. This is the primary aim of the
present contribution. We will concentrate on ionization of the
He atom as the simplest two-electron system.

Ideally, the experimental data are to be simulated with full-
dimensional theoretical models [1,2]. However, a full-scale
simulation requires huge computational resources. Practically,
for low laser frequencies, it is doable only for systems within
a single-active-electron approximation [3]. Thus, already two-
electron correlation effects are almost beyond the scope of
possibilities of the full-dimensional quantum treatment; the
only calculations performed in such a way in [1,4,5] are very
hard to implement technically. These calculations, treating
double-electron effects, were performed exclusively for laser
pulses with a carrier frequency in the UV spectral range,
while most experiments deal with infrared and midinfrared
ranges, which makes applications of the full grid-based meth-
ods limited. Realistically, one is limited to design and use
unsophisticated models with a reduced number of dimensions.
The hardest part is to judiciously choose a coordinate system
that, on one hand, captures “all the important physics” of the
treated phenomena and, on the other, is reasonably tractable
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with available hardware and software resources. Finally, one
has to admit that these low-dimensional models inevitably lack
the precision and the predictive power of full-scale simulations.

Nevertheless, most of the effects and tendencies observed
in double ionization are surprisingly well described, at least
qualitatively, by models with reduced dimensionality [6]. This
concerns, in particular, NSDI, in which two electrons, after an
initial excitation of one of them, share the excitation energy
and ionize together. Among the most prominent features, the
knee structure in the double-ionization yields, found in numer-
ous experiments [7,8], was successfully simulated within the
quantum-mechanical two-dimensional (2D) models [9–12] as
well as with its classical analogs [13,14]. The fingerlike struc-
ture of released electron momenta, obtained experimentally in
[15–18], was reproduced with quantum [11,19] and classical
[20] simulations. At the same time, other results, such as the
theoretical prediction of the second plateau in high-harmonic-
generation spectra [21], have not been verified experimentally
yet (to our knowledge) mainly because of the presently inac-
cessibly high precision needed for their investigation. All the
reduced dimensionality models employ a linearly polarized
field, as a system affected by an elliptically polarized field
necessarily needs the full dimensionality studies.

The first (and the simplest) restricted dimensionally two-
electron model implemented is the so-called aligned electrons,
or Rochester model [22]. With the nuclear motion not taken
into an account, the 3 + 3 = 6 dimensions of the problem are
reduced to 2, each one corresponding to the z coordinate of an
electron, where z is collinear with the electric-field direction.
This model allowed one to observe the well pronounced
knee structure [9], as well as the momentum distribution
[23]. The most striking disadvantage of the method is due
to the distortions in the double-ionization data: Electrons are
not allowed to escape with similar momenta because of the
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dominant effect of the Coulomb repulsion in the restricted
geometry.

This problem of the aligned-electron model has been elim-
inated in the Eckhardt-Sacha model by spatially separating
the two axes [24]. Their direction is determined by the lines
drawn by saddles of the field when its amplitude is varied.
Those lines are at the angle of ±π/6 with respect to the z

axis. While necessarily the reduced dimensionality has obvious
drawbacks (e.g., considering the motion along the saddle lines
only neglecting possible optimal paths across the saddles in
full space), this model overcomes the obvious drawbacks of the
aligned electrons model. As a result, more reliable data for both
ionization yield and momentum distribution were obtained for
the Eckhardt-Sacha (ES) model by Prauzner-Bechcicki and
co-workers (the ES approach) [11,12,25].

Another approach was proposed by Ruiz et al. [26], by mak-
ing reasonable assumptions about the motion of electrons in the
laser field. In the center-of-mass (c.m.) representation and with
linear polarization for the laser light one may assume that the
c.m. moves along the polarization axis. The resulting model
yielded a striking success in reproducing the experimentally
obtained parallel momentum distribution (momenta parallel to
the z axis) [19].

All these geometries, the aligned-electron, the ES, the c.m.,
or even the full dimensionality models, can be implemented in
classical simulations. The key idea is to mimic the evolution
of electronic systems in terms of classical trajectories that are
sampled from an initial phase-space distribution and are gov-
erned by classical Hamiltonian dynamics [27]. Two groups of
methods can be be distinguished: one with initial distributions
calculated classically [27–32] and one accounting for below-
barrier tunneling for initial distribution calculation [33]. The
first group is the most instructive one for a comparison of the
data with corresponding quantum-mechanical computations.
Considerable progress was made with these models in the study
of ionization yields [34,35] and momentum distributions [13].
On the other hand, getting HHG spectra with classical means
only seems impossible (see, however, [36]). In particular, the
extent of the plateau depends on the quantum ionization energy.

Generally, one can take some trusted analytical expressions
as a reference. An important milestone in theoretical studies of
atomic ionization was the creation of the Ammosov-Delone-
Krainov (ADK) formula [37] that provides an extremely simple
expression for the single-tunneling-ionization probability. It
proved its reliability in comparison with numerous experimen-
tal data [7,8,38,39]. So far, it can be used for comparison of
the single-ionization yield in different models. It is important
to note, however, that the ADK rates are usually multiplied
by an artificial constant factor to fit measured curves, thus one
should be careful when treating absolute magnitudes.

Here we aim to compare the performance of the dif-
ferent computational models in determining the following
experimental observables: yield of single ionization and of
double ionization and momentum distribution of the released
electrons. We will focus our attention on the ES and c.m.
models, as they seem to be the most advanced. The aim is to see
how well they are able to reproduce the experimental features
qualitatively: We cannot expect that reduced-dimensionality
models of this or any other type can be in quantitative agree-
ment with experiments or truly three-dimensional simulations

because of the vastly different phase-space volumes and ratios.
Nevertheless, as we will have to rely on low-dimensional
models for some time to come, it will be interesting to see
how they compare.

In Sec. II we describe the algorithms used. In Sec. III we
present a comparison of ionization yields and explain the
observed differences. Section IV deals with a comparison
of electronic momenta. A summary and conclusions are
given in Sec.V. We stress that our aim is not to find the
model yielding the “most accurate,” i.e., in closest agreement
with the experiment, prediction. This is not possible for
reduced-dimensionality models. The models may serve to
qualitatively describe experimental observations only. Still,
it is interesting to compare even the qualitative predictions
different models yield. We are not aware of any such an earlier
comparison. Throughout the text we use atomic units, unless
stated otherwise.

II. DESCRIPTION OF THE ALGORITHM

A. General remarks

The quantum algorithms for both models are based on the
operator splitting method. In short, once one has a Hamiltonian
for the problem under consideration in the form of H =
H1 + H2, the solution of the corresponding time-dependent
Schrödinger equation (TDSE) for a wave function �(t) for
a small time interval �t can be expressed according to the
Suzuki-Trotter decomposition as

�(t0 + �t) ∼ exp

(
−iH1

�t

2

)
exp(−iH2�t)

× exp

(
−iH1

�t

2

)
�(t0). (1)

The wave function �(t0 + �t) is obtained by sequentially
propagating the initial wave function �(t0) (from right to
left) with the Hamiltonian H1 for a time �t/2, then with
H2 for a time �t , and then again with H1 for a time �t/2.
For a larger number of terms in the Hamiltonian, one can
expand the formula in a straightforward manner. For instance,
if H2 = H3 + H4 then one can write

exp(−iH2�t) ∼ exp

(
−iH3

�t

2

)

× exp(−iH4�t) exp

(
−iH3

�t

2

)
(2)

and propagate sequentially as in the previous case.
Eigenstates of the system of interest are obtained by

imaginary-time propagation of a proper Hamiltonian with
a Gaussian wave packet as an initial state. Singularities
in Coulomb-type potential terms are removed by replacing
1/x → 1/

√
x2 + ε2 (softening of the potential is applied in

both real- and imaginary-time evolution). A soft-core param-
eter ε2 is chosen to align the ground-state energy with the
value of the full quantum problem at hand, in our case the
ground state of He. That ensures the ionization potential of
the different models compared to be similar. Small changes of
ε2 in quantum calculations only qualitatively affect the results
obtained. In classical simulations the soft-core parameter plays
the same role as in quantum simulations, but in this case, in
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order to “stabilize” the atom and prevent the autoionization
process from taking place, it must belong to a certain range of
values that are usually higher than for the quantum models.

In the following we consider a linearly polarized laser pulse,
described by an electric-field component of the form

F (t) = F0f (t) sin(ωt + φ), (3)

where F0, f (t), ω, and φ are the field amplitude, the time-
dependent envelope, the frequency, and the carrier-envelope
phase of the pulse, respectively. For comparison of different
models we take a laser pulse with the frequency ω = 0.06
(corresponding roughly to the wavelength of 800 nm), the
phase φ = 0, and the sine-squared envelope

f (t) = sin2

(
πt

T

)
, (4)

where T = 2πn/ω is the duration of an n-cycle pulse. Here
we take n = 4 as a typical value. To prevent a nonphysical re-
flection of the wave function from boundaries of the numerical
grid, absorbing boundary conditions are applied, i.e., starting
from a fixed distance from the edge of integration region,
the wave function is multiplied by a function that smoothly
decreases in the direction of boundaries.

B. Algorithm for the Eckhardt-Sacha model

The Eckhardt-Sacha model [24] assumes that the ionization
of atoms occurs mainly along two directions r1 and r2, forming
an angle π/6 with the z axis, due to the location of saddle
points of the energy surface. The resulting 2D Hamiltonian, in
the length gauge, may be written as

H =
2∑

i=1

⎛
⎝p2

i

2
− 2√

r2
i + ε2

+ F (t)
√

3

2
ri

⎞
⎠

+ 1√
(r1 − r2)2 + r1r2 + ε2

, (5)

where F (t) is the electric field value, ri and pi are the position
and momentum operators for both electrons, and ε2 is the
parameter introduced to soften the Coulomb singularity in the
reduced-dimensionality model.

In order to obtain the wave-function evolution in time one
splits the Hamiltonian into kinetic and potential parts and uses
Eq. (1). It is worth noting that the evolution of the kinetic
part is efficiently done in momentum space, as it reduces to a
simple multiplication, whereas the evolution of the potential
part is best computed in a coordinate representation [11]. This
strategy allows one to eliminate the numerical differentiation
and thus to increase the precision of calculations. The trans-
formation between these representations is realized via fast
Fourier transform routines.

Ionization yields are calculated by integrating probability
fluxes through borders between different spatial areas corre-
sponding to a stable atom (A) or a single- (Si) and a double-
(Di) ionization event, as depicted in Fig. 1. The method,
originally proposed by Dundas et al. [40], was extended in
[11,12] in a way that allowed one to distinguish between direct
and indirect double-ionization events. That is accomplished
due to different values of parameters a and b, defining different

FIG. 1. Geometry of the ES model. (a) Saddle tracks forming the
directions along which electrons are allowed to move. The polariza-
tion axis points along z. (b) Different regions of the configuration
space used to define the state of the system: the neutral atom A,
singly charged ions Si , and doubly charged ions Di . The parameters
are a = 12.5 a.u. and b = 6 a.u.

regions in the configuration space. In particular, for b < a

simultaneous double-ionization events can be detected as
transitions across the common border between a neutral atom A

and regions Di that correspond to double ionization. For b = a

those borders shrink to a point and disappear for b > a, requir-
ing more complex indicators for the direct double ionization.

Of course, the choice of a and b affects the results, but
fortunately only weakly so. For instance, making them twice
as big will change quantitative values for, e.g., ionization
yields, but does not, as verified by us, change the qualita-
tive picture and will therefore still allow us to compare the
reduced-dimensionality models. The actual values used in our
simulations are the same as those taken in previous studies
[11,40] for double-ionization studies.

Within the same model it is also possible to obtain momen-
tum distributions, however, a different computational approach
is needed [9,12]. First, one needs to rewrite the Hamiltonian
(5) in the velocity gauge, where the vector potential is given
by

A(t) = −
∫ t

0
F (τ )dτ. (6)

Next it is assumed that electrons that travel a large distance
from the nucleus, say, 200 a.u. and more, experience a neg-
ligible Coulomb interaction with the nucleus, are unlikely to
turn back, and follow an evolution governed predominantly
by the laser field. For such electrons it is then plausible to
assume that all Coulomb terms may be ignored, leaving only
the kinetic part in the Hamiltonian (recall that now the velocity
gauge is used). In such a case, the evolution is efficiently
performed in the momentum representation as it reduces to a
multiplication by a proper phase factor. Furthermore, evolving
the wave function in the momentum representation allows
one to keep all information about an infinite position space;
no parts of the wave function are lost due to the absorbing
boundary conditions. The ES model describes a two-electron
system, thus it is necessary to consider also an intermediate
case, i.e., when only one electron is far away and the other
is still relatively close to the nucleus. In such a case, only
the interaction of the distant electron with the nucleus and
the other electron is neglected, while the electron close to the
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FIG. 2. (a) Geometry of the c.m. model. Here Zc and z, the
directions of the center of mass and the relative electronic coordinate,
respectively, are collinear with the electric-field polarization direc-
tion; ρ is the cylindrical radial direction of relative motion in the x-y
plane. (b) Dimensions for evaluating the problem.

core evolves with the Coulomb electron-nucleus interaction
included. Eventually, the full evolution is performed in three
different regions, i.e., in a region with both electrons close to
the nucleus (evolution with the full Hamiltonian), in a region
with one electron close to the nucleus and the other at a larger
distance (semiapproximate Hamiltonian), and in a region with
two distant electrons (full-approximate Hamiltonian). At the
end of the calculations, one collects all parts of the wave func-
tions from the three regions in the momentum representation,
while the part related to bound states is smoothly extracted.
The squared modulus of the wave function in the momentum
space gives a momentum distribution. A detailed description of
the method, including the procedure for transferring the wave
function between different regions, is presented in [12].

For standard simulations within the ES model the following
parameters are used: a soft-core parameter of ε2 = 0.6 (yield-
ing the correct ground-state energy for He), the spatial grid step
�r1 = �r2 = 0.2, and the temporal step of �t = 0.05. The
computations for an aligned electrons model employ the same
algorithm in this work. The change of the system geometry is
expressed in the change of the Hamiltonian (5),

H =
2∑

i=1

⎛
⎝p2

i

2
− 2√

r2
i + ε2

+ F (t)ri

⎞
⎠

+ 1√
(r1 − r2)2 + ε2

. (7)

C. Algorithm for the center-of-mass model

The c.m. model follows from the simple observation made
by Ruiz et al. [26] that classically, in linearly polarized fields,
the component of the atomic c.m. momentum perpendicular to
the field polarization direction is conserved and thus may be
set to zero. For two-electron systems, one of the coordinates
then vanishes. The conservation of the angular momentum
projection on the polarization z axis reduces the problem
further so that only three dimensions out of the initial six
remain. They are the relative cylindrical radial coordinate ρ =
|ρ1 − ρ2| and the field-parallel coordinates z1 and z2 of both
electrons or, equivalently, Zc = (z1 + z2)/2 and z = (z1 − z2)
for the coordinates of the c.m. and the relative position. The
last coordinate pair is useful as the z coordinate decouples
from the electric field (see Fig. 2). The momentum operators
in the c.m. representation have the forms P = p1 + p2 and

p = (p1 − p2)/2. The Hamiltonian of the system is then

H = HZc
+ Hz + Hρ, (8)

where

HZc
= −1

4

∂2

∂Z2
c

+ A2
Z − iAZ

∂

∂Zc

+ 1

3
V,

Hz = − ∂2

∂z2
+ 1

3
V,Hρ = − 1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

3
V, (9)

with AZ the vector potential of the laser field (here the velocity
gauge is used, although the length gauge may be used as well)
and V the sum of Coulombic interactions

V = 1√
z2 + ρ2

− 2√(
Zc − z

2

)2 + ρ2

4 + ε2

− 2√(
Zc + z

2

)2 + ρ2

4 + ε2
. (10)

The TDSE is solved via the operator splitting technique
as described above [see Eqs. (1) and (2) for the Hamiltonian
(8)]. Note the unusual symmetric distribution of the potential
onto all parts in Eq. (9). Elementary unitary steps in Eqs. (1)
and (2) are evaluated with the Crank-Nicolson method. It is
particularly efficient for this problem as in each unitary step
only derivatives along a single coordinate are present, resulting
in tridiagonal matrices that may be efficiently inverted. The
wave function is defined, of course, on a three-dimensional
grid. More details on the algorithm may be found elsewhere
[41].

Ionization yields are computed by integrating the wave
function in the region r > 12.5 a.u.; for calculating the double-
ionization yield, the additional conditions used are

√
z2

1+ρ2/4>z0

and
√

z2
2+ρ2/4>z0 as well as z0 = 12.5 a.u. Again, as for the ES

model, the choice of z0 is to some extent arbitrary, so we set
z0 = a (the original proposition of the model [26] uses z0 = 12
a.u.).

For calculating the final momentum distribution, the trans-
formation of the wave function corresponding to the double-
ionized state from the coordinate representation to the mo-
mentum representation is realized by a fast Fourier transform
along the z and Zc directions and by a Hankel transform
along the ρ direction. Such a wave function is obtained by
extracting bound states from the full wave function. In our
algorithm the spatial criterion for separating bound and free
states is used. The part of the wave function corresponding to
the region with radius less than the given value z0 is multiplied
by a function that tends to zero in the neighborhood of zero
radius and becomes equal to unity when the radius equals z0.
We use a Gaussian function for this purpose, with standard
deviation equal to 10 a.u. The value of z0 for calculating
momenta distribution is taken to be 30 a.u. Both the ionization
yields and the momentum distributions obtained using our
implementation are in agreement with those obtained by the
authors of the original algorithm [42]. For standard simulations
the following parameters are used: a soft-core parameter of
ε2 = 0.135, a spatial grid step �z = �Zc = �ρ = 0.3 a.u.,
and a temporal step �t = 0.05 a.u.
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D. Algorithms for classical simulations

Important advantages of classical algorithms in compar-
ison to quantum ones are their higher efficiency and lower
requirements for computational resources. They allow one to
analyze the original two-electron system without dimensional
constraints and for a wide range of field intensities. Due to
the classical consideration of electrons motion one can trace
back the particular double- or single-ionized trajectory and
can deduce additional information about the mechanism of
ionization and the preliminary conditions of the system that
favor an ionization event.

The classical algorithm for our two-electron system is based
on the analysis of the Hamiltonian for the respective model by
numerical integration of the canonical equations of motion.
As the system which we consider is nonintegrable, special
attention should be paid to stability of the numerical algorithm
used for its solution [43,44]. In our work the numerical
integration was based on the symplectic Runge-Kutta-Nyström
algorithm [45] with its parameters chosen properly to give a
minimal effective error.

In the most general setting, the studied two-electron system
is described by a 6D Hamiltonian of the form

H =
2∑

i=1

⎛
⎝p2

i

2
− 2√

r2
i + ε2

+ F(t) · ri

⎞
⎠

+ 1√
(r1 − r2)2 + ε2

, (11)

where pi = {pxi
,pyi

,pzi
} and ri = {xi,yi,zi} are 3D momenta

and position vectors of electrons i = 1 and 2, respectively.
The initial phase-space coordinates required for integration

of the canonical equations of motion are generated by the
pilot atom’s two-electron trajectory technique at zero-field
amplitude [13,14]. The pilot trajectory is started at zero-
position-space coordinates, whereas its initial momenta are
obtained by random distribution of residual energy Er , which is
the difference between the ground-state energy and a fictitious
potential energy arising from including the smoothing factor ε,
i.e., Er = Eg − 1/ε. The pilot atom’s two-electron trajectory
is integrated until the energetically allowed position and
momentum spaces are fully populated.

To reach the entire population of the energetically allowed
space for our case, the pilot atom’s trajectory was run for
time t = 104 a.u., producing an ensemble of about 107 initial
points. The initial coordinates for the pilot atom’s two-electron
trajectory are chosen randomly. One should note that some
alternative techniques for generating initial conditions are pos-
sible. An important example is a widely used microcanonical
ensemble technique [27,29,31,46]. We implemented and tested
both methods and found that the choice between them is
irrelevant for generating initial distribution for our problem
as both lead to a very similar value of ionization yields. We
use the pilot atom’s two-electron trajectory technique as it
provides much faster calculations. The ground-state energy is
set to Eg = −2.936 a.u. for all our classical simulations.

In order to obtain reasonable information about ionization
yield a large ensemble of 107 trajectories is used for calcula-
tions in the presence of a laser field. At the end of the pulse,
single- and double-ionization events are extracted by applying

FIG. 3. Single- and double-ionization yields (probability of a
given process) as a function of laser field intensity obtained
by quantum-mechanical simulations. Single- and double-ionization
yields are marked by open and closed symbols, respectively; results
for the ES model are marked by blue squares and for the c.m. model
by red triangles. In both cases a four-cycle sin2 pulse was assumed.

the spatial criterion; the electron is considered to be ionized if
its distance from the nucleus is large, i.e., r > 100 a.u.

In contrast to atoms described in quantum formalism,
classical atoms may experience autoionization in the absence
of an external field due to intensive many-body Coulombic
interactions [47,48]. Such an autoionization may be several
orders more intensive than the expected ionization by the
external laser field, thus one has to eliminate the effect. It
is done by introducing the ε term to the Hamiltonian in the
same manner as in the quantum-mechanical models. For all
our classical simulation we set ε2 = 0.6. Following the method
described above, the numerical simulations for the quantum
ES, aligned-electron, and c.m. models given by Eqs. (5),
(7), and (8), respectively, are reproduced classically in the
framework of Hamiltonian dynamics.

III. IONIZATION YIELD COMPARISON

The ionization yield is one of the most important quantities
characterizing the ionization dynamics of atomic and molec-
ular systems. In Figs. 3 and 4 one can see the dependence of
the ionization yield on the laser field intensity obtained from
quantum and classical simulations.

The first striking observation coming from the analysis of
both graphs is the low probability of ionization in the c.m.
model: For both classical and quantum calculations the yield
appears to be less than that for 1D + 1D and for (classical
only) 3D + 3D models. This is quite understandable from the
classical mechanics. So, let us first explain the difference be-
tween c.m. and aligned-electron models, based on geometrical
arguments.

The condition of setting the c.m. radial coordinate to zero
is in fact a kind of a holonomic constraint. It implies the rule
that both electron radial coordinates are the same, up to a sign:
ρ1 = −ρ2. For single ionization the electron’s escape is most
probable along the z polarization axis, or ρ1 ∼ ρ2 ∼ 0. While
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FIG. 4. Single- and double-ionization yields as a function of the
laser field intensity obtained by classical simulations. Single- and
double-ionization yields are marked by open and closed symbols,
respectively; results for the ES model are marked by blue squares,
for the c.m. model by red triangles, for the Rochester model by black
diamonds, and for the full 3D classical model by green circles. For
all the simulations 800-nm four-cycle pulses of sin2 shape were used.

for the full 6D case this condition by no means restricts the
second electron position, in the c.m. case the second electron
should have the same radial coordinate. In other words, the
number of possible electronic spatial configurations that lead
to an escape of an electron is considerably smaller for the c.m.
model, resulting in a smaller ionization output.

The same arguments help us understand the c.m.
vs 1D + 1D comparison. While for the c.m. case the
configurations with ρ1 ∼ ρ2 ∼ 0 constitute a minority, for the
aligned-electron case the configurations with ρ1 = ρ2 = 0
are the only possible ones yielding a much larger output.
Although the ES 1D + 1D model puts both axes in a nonzero
angle to the z axis, in fact it affects only the effective field
strength value, multiplying it by a cosine of this angle, thus
allowing one to use the same explanation.

The sequential double-ionization yields follow the same
scenario: The second electron ionization implies that both
electrons are in the neighborhood of the z axis, thus reducing
the number of possible configurations and consequently the
total yield. At the same time the NSDI signal requires the
electron correlation which occurs only when both electrons
are close to each other (ρ1 − ρ2 ∼ 0), but once ρ1 = −ρ2,
it leads to the pronounced condition ρ1 ∼ ρ2 ∼ 0 and thus a
lowered ionization yield. Since all the above explanations are
essentially geometrical, they can be applied to the quantum
case as well: The quantum data show a similar trend.

The important parameter to look at is the ratio between
yields for doubly and singly ionized atoms. Its dependence
on field intensity is depicted in Fig. 5. The ratio between

FIG. 5. Ratio of double- to single-ionization yields as a function
of the laser field intensity for the c.m. (triangles) and the ES (squares)
models obtained by quantum simulations. The solid and dash-dotted
lines denote the ratio calculated with the rate equations with constants
C = 0.012 and C = 0.08, respectively.

double- and single-ionization yields for both algorithms has
approximately the same “flat” shape in the regime of intensities
studied. It correlates very well with the saturation of that ratio
observed in experiments [7] as well as in the double-ionization
model [49] based on the rescattering mechanism [50]. On the
other hand, such a ratio allows for a quantitative comparison
with experiment since volume averaging effects (due to laser
intensity variation across the sample), while affecting strongly
the yields themselves, may modify this ratio by a factor of 2
at most. Both the experiment [7] and theory [49,51,52] give
the saturation value of He2+/He+ being of the order of 10−3,
an order of magnitude smaller than the ratio obtained for the
ES model and almost two orders smaller than this ratio in the
c.m. model (compare Fig. 5). This discrepancy again indicates
that the predictions of restricted-dimensionality models may
be qualitative at best. One could make an attempt to calculate
this ratio classically, but Fig. 4 reveals that classical ensemble
calculations fail to reproduce any plateau in the ionization yield
ratio for the chosen Coulomb smoothing parameter ε2 = 0.6.
By allowing for more freedom and using different smoothing
parameters for electron-nucleus and electron-electron interac-
tions, one may significantly modify the ratio between doubly
and singly ionized species, bringing it closer to experimental
values. We mention such a possibility only as we do not want
to complicate the studied model further.

It is not surprising that ionization yields deduced from
classical simulations are much bigger than those from quantum
calculations. This seems to be a general property of all the
classical simulations as seen from the comparison of data
from classical [34,35,48,53–55] and quantum [9–12,56,57]
simulations.

One should note that both quantum algorithms (ES and c.m.)
have their limitations on the laser field intensities for which
the calculations can be performed. Both algorithms become
inadequate at obtaining ionization yields for an electric-field
amplitude less than 1014 W/cm2 as any possible reduction of
spatial and temporal grid size gives rise to parasitic numerical
effects. The c.m. algorithm also has its upper limit on intensity:
Larger intensities and laser field wavelengths require larger
spatial grid sizes and thus a larger amount of computer memory,
as well as computation time. For 800 nm and an intensity of
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2.5 × 1015 W/cm2 in the laser field the converged calculations
require already 128 GB of memory.

The Ammosov-Delone-Krainov formula [37] was devel-
oped for calculating the rate of single-electron ionization
within the single-active-electron approach under the influence
of the electric field F (t) [58],

WADK
ij =

(
3e

π

)3/2
j 2

3n∗3
ij

1

2n∗
ij − 1

(
4ej 3

(2n∗
ij − 1)n∗3

ij |F |

)2n∗
ij −3/2

× exp

(
− 2j 3

3n∗3
ij |F |

)
, (12)

where j → i = j − 1 denotes ionization of atoms or ions of
charge j and n∗

ij = j/
√

2Eij is an effective principal quantum

number related to ionization energy Eij = E
j+
0 − E

(j−1)+
0 .

Such a rate can be used for setting the ionization rate equations
[59] for populations of the neutral atom P0, single P1 ionized
ion, or double P2 ionized ion:

Ṗ0 = −W01P0 − W02P0,

Ṗ1 = W01P0 − W12P1,

Ṗ2 = W02P0 + W12P1.

(13)

The rate W02 of NSDI cannot be determined from the ADK ap-
proach, but to determine it we employ the fact that for the region
of field amplitudes of interest the sequential double ionization
is much less intensive than NSDI and the ratio of He+ and
He2+ yields is almost constant. Thus one can set W02 = W01C,
where the constant C = 0.012 is defined phenomenologically
from TDSE-based ES numerical calculations (see Fig. 5). The
results of the straightforward integration of Eqs. (13) is shown
in Fig. 6. The resulting curves are sensitive to value of C. To
show that we performed the integration of Eqs. (13) with an
“incorrect” value of C = 0.08 corresponding to data obtained
by the c.m. algorithm, the resulting double-ionization curve
does not properly fit numerical data.

Surprisingly, the ionization yields obtained with the ADK
formula coincide with the ones obtained using the ES algorithm
very well. At the same time, the ADK formula is known to
fit the full 6D He calculation provided by Parker et al. [57].
Thus one can conclude that the ES algorithm provides data that
may be qualitatively correct, which is quite a surprising and
refreshing result. On the other hand, some of the agreement
may be purely accidental.

IV. PHOTOELECTRON MOMENTUM DISTRIBUTION
COMPARISON

A study of the momentum distribution is necessary to under-
stand the mechanism of double ionization [19]. It constitutes
a cornerstone of the photoelectron holography technique [60].
The ES, aligned-electron, and c.m. methods are able to provide
parallel momentum distributions, i.e., a snapshot of electronic
wave functions in the momentum representation as a function
of the first and second electrons’ momenta parallel to the z

electric-field direction. The corresponding sample plots are
given in Figs. 7(a) and 7(b).

The differences between these two figures can be explained
by two factors: technical and geometrical. The first concerns

FIG. 6. Single- and double-ionization yields as a function of the
laser field intensity. The points correspond to quantum-mechanical
simulations as described in Fig. 3. The lines without symbols
correspond to yields obtained via the Ammosov-Delone-Krainov
formula. The solid line denotes the single-ionization yield. Dash-
dotted and dashed lines both correspond to double-ionization yields
obtained with correct, C = 0.012, and incorrect, C = 0.08, coeffi-
cients, respectively.

the computation of the wave function in the momentum
representation. For the part of the wave function that reached
the borders of physical space, the ES algorithm preserves it
in the momentum representation. Thus, the information about
electrons that escape the computational space before the end of
the evolution, and thus presumably the fastest ones, is not lost
[12]. Our realization of the c.m. algorithm does not possess
such an ability and the information about some portion of fast
moving electrons may be missing provided the spatial grid for
computations is not large enough.

The geometrical factor explains the presence and intensity
of the interference picture. In the ES model the propagation of
electronic waves is restricted to the plane, making their inter-
ference clear (the corresponding image is not shown) [12,61].
For experimental relevance one should introduce smoothing
by Gaussian functions; this is done in Figs. 7(a) and 7(b).
Increasing the number of dimensions provides the electronic
system with a much larger number of possible quantum paths
leading to blurring of the interference structure. In this sense
the c.m. model simulations yield more realistic predictions as
experiments deal with full 3D problems. The c.m. model is sup-
posed to behave better than the ES one when multidimensional
details of electron-core rescattering processes are needed, e.g.,
for problems of photoelectron holography.

One should note that as the c.m. code is evaluated in the
coordinate representation, for the sake of accounting for all the
produced photoelectron momenta, one should keep the coordi-
nate space rather large to not let any part of the wave function

013405-7



DMITRY K. EFIMOV et al. PHYSICAL REVIEW A 98, 013405 (2018)

FIG. 7. Released electron momentum distribution computed with (a)–(c) quantum and (d)–(f) classical simulations for (a) and (d) the c.m.,
(b) and (e) the ES, and (c) and (f) the aligned electron models. Simulations were done for the 800-nm field of intensity 6.3 × 1014 W/cm2. The
parameters of the grid for quantum models are, for the ES and the aligned electron plot, 4096 × 4096 points with coordinate step size 100/512
a.u., and for the c.m. model, 3372 × 1686 × 454 points with coordinate step size 0.3 a.u.; the laser pulse consists of four cycles. The plots in
(b) and (c) are smoothed with Gaussian functions 0.12 a.u. wide. The value of ε2 = 0.58 in (c) corresponds to the same energy of the ground
state as in (b). Classical data were obtained with the use of (d) 4 × 107 sample trajectories for the c.m. model, (e) 4 × 107 sample trajectories
for the ES model, and (f) 5 × 106 sample trajectories for the aligned electron model. For classical simulations the same spatial criterion of the
double-ionization event was used and an eight-cycle laser pulse was applied.

escape from it. Thus, with the same set of parameters given,
calculating momentum distributions requires many times
larger spatial grids than calculating ionization yields or high-
harmonic spectra. The ES algorithm does not have such a com-
plication, as the part of the electronic wave function that moved
far enough from the atomic core is then treated in the momen-
tum representation, which requires a relatively small grid size.

On the other hand, the ES algorithm suffers from the
problem of the “empty cross” in the momentum distribution
plot [12]. The cross occupies space along the pr1 and pr2

axes; the wave function inside it has a magnitude many orders
smaller than in the neighboring regions. It arises from cutting
the wave function, in the coordinate representation, in the area
with coordinates close to zero. It is this area that contains most
of the low-momentum electrons. Thus one should be careful
extracting the bounded part of the wave function. We have
found that for the ES model the optimal value of distance at
which the cutting is performed is 50 a.u. The c.m. algorithm
is affected by this feature much less, mostly because electrons
with zero momentum pz are not restricted to be in the close
neighborhood of the atomic core, but can stay far from it due
to the ρ coordinate.

The described factor is also geometrical and can be il-
lustrated with classical trajectory calculations. In Figs. 7(d)
and 7(e) one can see two plots for the z-axis momentum
distribution of two electrons for the same problem studied.
First, one can note that the general shape of the distribution
is quite similar to that of the quantum case in Figs. 7(a) and
7(b). This leads to the conclusion that the classical calculations
are much more appropriate in studies of electronic momentum
distributions than for ionization yield studies. Second, the cross
in the momentum distribution is present quite prominently in
both the ES and aligned electron cases and it arises for the same
reason: Electrons with pr ∼ 0 are located in the area r ∼ 0. For
this set of classical calculations the length of the laser pulse was
taken to be twice as large as that for the quantum computations,
as it is hard to collect enough double-ionization events for a
four-cycle pulse.

One may observe, furthermore, that quantum momentum
distributions for the same intensity are significantly larger
than classical ones. This is a phenomenon often observed in
classical-quantum comparisons (see, e.g., [62]) and may be
attributed to quantum tunneling that allows one to explore the
momentum space forbidden by classical mechanics.
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In addition, an obvious signature of very strong electronic
repulsion in the aligned electron model can be found by
analyzing momentum distributions. In Figs. 7(c) and 7(f) one
can see the pronounced low-probability area along the pz1 =
pz2 direction. Releasing electrons with the same momenta
would mean having their positions close to each other, which
is quite unlikely due to the electron repulsion.

V. CONCLUSION

As mentioned in the Introduction, a study of two-electron
ionization in strong laser fields at infrared frequencies is
beyond the reach of full quantum simulations. There are several
possible reduced-dimensionality models with different fea-
tures and different numbers of dimensions. We have compared
in our work three of the most popular choices for such models.
The aligned-electron model (the Rochester model) gives unre-
alistic electron momentum distributions because the Coulomb
repulsion suppresses the experimentally observed dominance
of equal-momentum events. Here the Eckhardt-Sacha model
provides a significant improvement, with the same number
of degrees of freedom and the same numerical complexity.
Moreover, it performs remarkably well in comparison with the
ADK model for the calculation of electron ionization yields.

The center-of-mass model has one degree of freedom more
(three instead of two) and necessarily it is more demanding in
terms of the computer time and memory. The ionization yields
given by both the Eckhardt-Sacha and center-of-mass models
give qualitative trends of similar accuracy. Single-electron
yields are also in qualitative agreement with the ADK
theory. For momentum distribution the center-of-mass model
yields results in closer agreement with experiments; for

the Eckhardt-Sacha model additional smoothing simulating
experimental resolution is needed to remove a pronounced
interference pattern.

Most of the differences between those two models can be
understood with the application of geometric reasoning. In this
sense, the classical trajectory simulations of multiple-electron
ionization provided evidence for the above explanations. The
calculations have also shown that classical trajectory simula-
tions can reproduce the distributions of electron momenta in
strong fields.

In our analysis of the models, we have focused on the two
most important observables: the ionization yield and the final
electron momentum distribution. The case of higher-harmonic
generation requires further study.
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