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Trap-induced shape resonances in an ultracold few-body system of an atom and static impurities
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Hybrid systems of ultracold atoms and trapped ions or Rydberg atoms can be useful for quantum simulation
purposes. By tuning the geometric arrangement of the impurities, it is possible to mimic solid-state and molecular
systems. Here, we study a single trapped atom interacting with a set of arbitrarily arranged static impurities and
show that the problem admits an analytical solution. We analyze in detail the case of two impurities, finding
multiple trap-induced resonances which can be used for entanglement generation. Our results serve as a building
block for the studies of quantum dynamics of complex systems.
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I. INTRODUCTION

Ultracold trapped atoms have found numerous applications
in the field of quantum simulations of many-body physics
[1]. Properties of ultracold atomic systems can be tuned
in experiment using external electromagnetic fields, which
provide the opportunity to shape the trapping potential ex-
perienced by the atoms [2] as well as their interactions [3].
Both bosonic and fermionic atomic species are available. These
favorable properties lead to a number of accomplishments
with ultracold atoms in optical lattices such as observation
of superfluid-Mott insulator transition [4], superexchange
interactions for simulations of spin lattice Hamiltonians [5],
many-body localized phases of matter [6], or exotic quantum
states such as the supersolid phase [7,8]. Quantum computation
schemes involving cold atoms have also been proposed based
on various mechanisms such as state-dependent potentials,
exchange interactions, trap-induced resonances, and other
[9–15].

In recent years, great progress has been made in realization
of other quantum technology platforms such as trapped ions
and Rydberg atoms [16–19]. Interestingly, trapped ions and
cold atoms can be combined into a novel hybrid quantum
system [20]. Such systems allow for study of multiatom single-
ion molecular processes [21]. A chain of trapped ions can act as
a periodic external potential for cold atoms, emulating a solid
state with atoms playing the role of mobile electrons [22].
Another promising hybrid system involves trapped Rydberg
atoms acting as impurities instead of ions. Rydberg atoms can
be arranged in arbitrary three-dimensional structures using
optical tweezers [23–26]. In a similar way to the solid-state
simulation [22], one can view hybrid systems as potential sim-
ulators of complex molecular phenomena such as formation
and reconfiguration of chemical bonds or excitation transport
in macromolecules. Here, the atoms would play the role of
electrons and the impurities would mimic nuclear cores.

To further increase the potential of such systems and
uncover their novel applications, the interaction of a single

atom with other particles needs to be understood first. This
is similar to finding natural orbitals of a molecular system. In
this work, we make a first step in this direction by showing that
the problem of finding the eigenstates of a single harmonically
trapped atom interacting with arbitrarily many impurities can
be approached analytically in the limit of the low collision
energy, when the atom-ion interaction can be modeled with the
s-wave regularized delta pseudopotential [27]. We provide a
general method of solving the Schrödinger equation describing
such a system based on free function method [28], along with
its application to a simple case of two impurities.

The structure of this paper is organized as follows. In Sec. II,
we first introduce the general Hamiltonian of a trapped atom
interacting with many static impurities. Then, we present the
method based on Green’s function formalism that reduces the
problem of solving the Schrödinger equation to a search of
the roots of a single function expressed in terms of the
Green’s functions. The details of the derivation are described
in Appendix A. In Sec. III, we apply this general method to
a system consisting of a single harmonically trapped atom
interacting with two static impurities. For the case of sym-
metrically placed impurities, we calculate the lowest-energy
levels as a function of the distance between the impurities and
the atom-impurity scattering length. In addition, we compare
the obtained results with a variational approach exploiting a
simple trial wave function. We provide also the analysis of
the avoided crossings that appear in such a system due to the
trap-induced resonances. A summary of the results and the
feasibility of the molecular simulator are provided in Sec. IV.

II. MODEL

In this section, we first describe the Hamiltonian of the
system, and then present the method of solving the stationary
states of the system. The procedure we follow is based on
the Green’s function approach, and the method yields the
energies and wave functions of the particle interacting with
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FIG. 1. An interaction potential experienced by a trapped atom
(red sphere) in the presence of two localized impurities (purple and
green spheres), which are localized by external trapping potentials
(purple and green). In the vicinity of the static particles, the trapping
potential is modified by the atom-impurity interaction; the gray
surface is the effective potential experienced by the atom.

the impurities. Since the interaction between the particles is
effectively zero ranged, the whole description of the problem
is reduced to finding zeros of a simple function, given by a
determinant of a finite, known matrix.

The few-body system studied in this work is composed
of a single atom and many impurities. We assume that each
impurity is trapped tightly by its separate external trapping
potential. We consider the impurities to be localized at pre-
determined positions and refer to them as static impurities.
An example of such a situation is displayed in Fig. 1, where
a single atom moves in a harmonic trapping potential with
two different impurities localized by separate traps (purple and
green potentials in the figure). The atom-impurity interaction
is assumed to be local, i.e., the characteristic interaction range
is much smaller than other length scales such as the trap size
and de Broglie wavelength.

The Hamiltonian of a trapped atom interacting with N static
impurities is given by

H = − h̄2

2m
� + Vtr(r) +

N∑
i=1

Vai(ri), (1)

where Vtr denotes the trapping potential, and ri = r − di is
the position of the atom with respect to the ith impurity. We
approximate the true atom-impurity interaction potential by
the contact pseudopotential

Vai(ri) = giδ(ri)
∂

∂ri

ri . (2)

Here, the parameter gi = 2πh̄2ai/m is the coupling strength,
which is expressed in terms of the effective atom-impurity
scattering length ai and the mass m of the atom. Note that
we allow the atom to interact with each impurity with its own
potential, so the coupling strength gi can depend on the index
i of the impurity. The contact potential approximation is valid
[10,29,30] provided that the characteristic scales of length and
energy, denoted, respectively, by R∗ and E∗, of the interaction
potential fulfill the following conditions: l0 � R∗, di,j � R∗,
and E∗ � E0, where l0 is the characteristic length of the
trapping potential, di,j = |di − dj | is the distance between the
impurities, and E0 denotes the characteristic energy scale of
the trap (see Fig. 2). As the typical length scales on which
the traps can be operated are of the order of micrometers and

FIG. 2. The mechanism of the resonance and the characteristic
length and energy scales in the system. If the bound states of the
atom-impurity potential are at the same level as the bound state in the
trap (solid line potential), there is a resonance and the avoided crossing
appears (see, e.g., Fig. 3 or 8). The wave function for such state is a
mixture of the trap state and the states localized on the impurities [see
Figs. 7(d), 7(f), and the text for details]. Dashed line potential depicts
a situation when the bound states of the atom-impurity potential are
at different positions (dashed line potential) than the bound state of
the trap, and the system is far from the avoided crossing.

the value of R� can range from ∼100 Bohr radii a0 for neutral
atoms to ∼5000 for ion-atom systems, this separation is usually
fulfilled.

The Hamiltonian from Eq. (1) leads to the following time-
independent Schrödinger equation:[

− h̄2

2m
� + V (r) +

N∑
i=1

giδ(ri)
∂

∂ri

ri

]
�(r) = E�(r). (3)

In order to find the eigenstates of this equation, we start by
expanding the (yet unknown) wave function �(r) in the basis
states φn(r), so that �(r) = ∑

n cnφn(r). We use the basis in
which the noninteracting part of the Hamiltonian is diagonal.
To find the wave function �, we insert its expansion in the
chosen basis into Eq. (3) and obtain a set of equations for the
coefficients cn (see Appendix A for details of the derivation).
The result yields

�(r) =
N∑

i=1

∑
n

giki

φ∗
n(di)φn(r)

E − En
, (4)

where ki are given by

ki =
[

∂

∂ri

ri�(r)

]∣∣∣∣
r=di

. (5)

The solution � depends on the coefficients ki , which in turn
depend on �. Therefore, solution has to be found in a self-
consistent way.

To proceed with the construction of � and evaluation of
ki , we first recall the expression for the Green’s function (see
Appendix B fore more details):

G(di ,r) =
∑

n

φ∗
n(di)φn(r)

E − En
. (6)
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Note that G depends on the energy E, but we dropped this
dependence in the notation for brevity. We then insert the
solution for � from Eq. (4) into Eq. (5), and rewrite it using
Eq. (6) to finally arrive at

ki =
N∑

j=1

gjkj

[
∂

∂ri

riG(dj ,r)

]∣∣∣∣
r=di

. (7)

This is a linear equation for the coefficients ki , and it can be
put into the matrix form

D̂N · �k = 0, (8)

where �k = (k1, . . . ,kN ) and the matrix

D̂N (E) =

⎛
⎜⎝
g1Gr(d1,d1)−1 . . . gNG(dN,d1)

...
. . .

...
g1G(d1,dN ) . . . gNGr(dN,dN )−1

⎞
⎟⎠, (9)

where the regularized Green’s function, which appears on
the diagonal of D̂N , is Gr(di ,di) = [ ∂

∂ri
riGE(di ,r)]|r=di

. Note

that the matrix D̂N depends on the energy E only through
the Green’s function. The Green’s function for the trapping
potential can be given either analytically or it can be calculated
numerically [31,32]. The diagonal elements of D̂N (E) can
be then calculated assuming the following expansion of the
Green’s function:

G(r,r′) −−−→
|�r|→0

g0(R) + g1(R)

|�r| , (10)

where �r = r − r′ and R = (r + r′)/2. The regularization
then leads to D̂ii

N (E) = g0(di). In Appendix B, we provide the
expressions for g0(R) and g1(R) for the spherically symmetric
harmonic potential [see Eq. (B11a)]. In such a case, the
functions g0 and g1 depend only on radius R = |R|.

Solutions of Eq. (8) exist provided that the determinant of
D̂N is equal to 0. For fixed positions di and coupling strengths
gi , the determinant is a function of a single variable E only,
and its roots are identified as the eigenenergies of the system,
i.e., detD̂N (En) = 0 for the nth stationary state. For each
eigenenergy En, the corresponding wave function, expressed
in terms of ki [see Eq. (4)] is obtained by evaluating the kernel
(the null space) of the matrix D̂N (En).

III. TWO IMPURITIES IN A HARMONIC TRAP

With the general solution at hand, we now consider a
single atom interacting with two impurities that are located at
positions d1 and d2 in a spherical harmonic trap with frequency
ω. We assume that all the scattering lengths are the same and
equal to a. To simplify the notation, we transform the prob-
lem into dimensionless units of oscillator length and energy,
l0 = √

h̄/mω and E0 = h̄ω, respectively. The dimensionless
coupling strength, naturally entering into the problem in the
place of the coupling gi = g, is then equal to γ = 2πa/l0.

The stationary states, their energies, and wave functions
are calculated from Eq. (8). Here, �k = (k1,k2), and the matrix
D̃(E) ≡ D̂2(E)/γ stems from Eq. (9):

D̃(E) =
(

Gr(d1,d1) − γ −1 G(d2,d1)
G(d1,d2) Gr(d2,d2) − γ −1

)
. (11)

Since in the matrix D̃(E) the rows and columns are linearly
dependent, only the ratio of ki can be evaluated, i.e., k1/k2 =
−[D̃(E)]12/[D̃(E)]11. The absolute values of ki can then be
determined from the normalization condition for � in Eq. (4).
The required Green’s function in this case can be evaluated
analytically; the necessary formulas are given in Appendix B.
Note that the regularized Green’s function, necessary for the
diagonal elements of the matrix in Eq. (11), is equivalent to the
function g0(di), given by Eq. (B11a), in the expansion (10) of
the full Green’s function.

A. Symmetric case

Below we focus on the case of two impurities placed
symmetrically with respect to the origin d1 = −d2 = d. We
assume that the impurities are located on the z axis, and we
take d = (0,0,d). Note that the distance between the impurities
is equal to 2d.

To find the energies, we search for the roots of det D̃(E)
given by Eq. (11). First, we calculate the energies of
the system for different values of the distance 2d between the
impurities and different scattering length a characterizing the
atom-impurity interaction.

Figure 3 presents the dependence of the energy levels of
the system on the impurities’ positions for six different values
of a/l0 = ±0.4, ±1.0, and ±10. In general, the eigenstates
can be classified according to the symmetry z → −z of the
Hamiltonian into even and odd states, denoted in the figure
with blue dotted and red dashed lines, respectively. As can be
observed from the figure, for very large separations between the
impurity atoms, the energy spectrum approaches the spectrum
of the unperturbed harmonic oscillator Eho

n = h̄ω(n + 3/2)
with n = 0,2,4, . . . for even and n = 1,3,5, . . . for odd states.
For separations comparable to the oscillator length, the ob-
served energies deviate from the harmonic oscillator case due
to the presence of the impurities. For separations between
the impurities much smaller than the other length scales of
the model (a and l0), when the distance d is of the order
of the interaction range of the true potential, the description
of the interaction in terms of the contact pseudopotential
is no longer valid. Interestingly, the odd states do not feel
the contact potential for d = 0, recovering the unperturbed
harmonic oscillator limit in this case, but the even states for
d = 0 do not approach the results obtained by Busch [33] for
a single impurity. In the limit d → 0, our model in terms of
two separate regularized delta potentials is no longer valid.

Let us first discuss the results for negative a presented
in the bottom row in Fig. 3. In the case of a = −0.4l0 [see
Fig. 3(d)], we observe relatively small perturbation compared
to the harmonic oscillator case. The energy shift becomes
larger with increasing magnitude of the scattering length a [see
Figs. 3(e) and 3(f)]. However, for small d, when the harmonic
potential is negligible, the energy of the atom is negative,
indicating the presence of a bound state.

To identify the lowest energies of the atom with bound states
for small d, we calculate the bound-state energies of the atom
in free space, with neglected trapping potential. To this end, we
refer to Eq. (11), when now G denotes the Green’s function of
the atom in free space. The results, i.e., the roots of det D̃(E)
with E < 0, are depicted in Fig. 3 with gray solid lines. In free
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FIG. 3. The lowest-energy levels of the atom as a function of the distance between the impurities, equal to 2d , for different values of the
scattering length a. The dotted blue and dashed red lines denote even and odd states, respectively. The solid gray lines display the energy levels
of the bound states (E < 0) in absence of the trap.

space, for a < 0, only even bound states (with E < 0) exist if
2d < |a|. At 2d = |a|, the energy of the state crosses the zero
threshold and enters into the continuum.

Let us now turn to the positive values of the scattering length
a [see Fig. 3(a)]. At large separation between the impurities,
the lowest state is a doubly degenerate superposition of
dimer bound states. The energy of the dimer in free space
approaches −h̄2/2ma2, but it is lifted quadratically in our
case due to the external harmonic trap. At small separations,
the trapping potential is negligible and the splitting between
the bound states of different symmetry becomes significant.
The state lower in energy is always even and the higher is
odd.

We note that the energy of the odd molecular state increases
with decreasing separation between impurities. At sufficiently
small separations, the odd molecular state cannot exist in free
space since it enters the continuum, as can be observed from
Fig. 3(a) or 3(b) (gray line). In the presence of the trap, the
odd molecular state survives as there is no continuum, but its
energy still increases with decreasing separation. As a result,
the odd-state energy can turn out to be larger than the first
trap-extended even state, and so the first two lowest-energy
levels of the system are of even character. This odd molecular
state forms avoided crossing with trap-extended odd states, as
can be most clearly observed in Fig. 3(a).

For larger scattering lengths, the odd state can even be
pushed into the continuum [compare Figs. 3(b) and 3(c)].
We note that the splitting between the bound states decays
exponentially with the distance, as is the case for the H2

+
molecule [34]. The system considered here acts as a precursor
for molecular physics simulation by reproducing the core
features of the simplest possible molecule.

In general, avoided crossings appear due to the trap-induced
shape resonance mechanism [10]. Each of the potentials,
describing impurity-atom interaction, can support a bound

state. Its energy can be lifted above the zero-energy threshold
by the external potential. If the total energy is brought into
degeneracy with this bound state, a the trap-induced resonance
occurs. This is similar to the simpler case of two harmonically
trapped atoms studied in [35], but more complex due to the
reflection symmetry present in our problem.

Avoided crossings in the spectrum represent resonances
and breakdown of the perturbation theory. Trap-induced shape
resonances have been shown to be useful for controlling the
quantum state of the system. Below, we recall only a few
examples. The avoided crossings due to the trap-induced shape
resonances can be applied to perform two-atom quantum logic
gates [10], for spectroscopy and coherent control of ultracold
molecular dimers, and production of ultracold molecules
tunable by the trap parameters. In [35], these resonances
were applied for two purposes: construction of a quantum
phase gate and coherent transfer of particles into higher Bloch
bands in an optical lattice. In [36], the trap-induced shape
resonances in reduced dimensionalities were used for quantum
state control and spectroscopy of atom-ion molecules. In [13],
resonances due to traps were exploited for construction of a fast
two-qubit quantum phase gate between an atom and an ion. In
[15], trap-induced shape resonances were studied in external
double-well trapping potential, and proposed to perform fast
quantum gate operation by applying an external magnetic field
leading to Feshbach resonances. In our case, trap-induced
shape resonances are due to the degeneracy of molecular states
between many impurities and trap-extended states. Therefore,
our setup allows not only for generation of entangled states
or quantum gates operations between two particles, but also
for realization of quantum state control, and coherent transfer
of population from trap-extended states into superposition
of molecular states localized in two separate spatial regions.
Such states might prove useful for generation of many-particle
entangled states, or for metrological and quantum information
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processing applications, and for simulations of molecular
systems from quantum chemistry.

In Fig. 3(a), we observe narrow avoided crossings since the
scattering length is small, and thus the coupling between the
levels is weak. The splitting in the avoided crossings increases
with growing a, as can be observed from Figs. 3(b) and 3(c).
The reflection symmetry of the system with respect to z → −z

implies the presence of a state of different symmetry between
each two states of the same symmetry experiencing an avoided
crossing. Specifically, at the positions of the avoided crossings
in Figs. 3(a)–3(c), between each two energy levels of the same
symmetry (the same color) there is a state of different symmetry
(of other color). This effect originates from the presence of two
bound states, which are almost degenerate, but have different
symmetries and do not couple with each other.

To understand the properties of the avoided crossing be-
tween the extended states and the bound states in trap, we turn
to a simpler description. We adopt the variational approach in
which we make the following ansatz:

�(r) = v1ψ1(r) + v2ψ2(r), (12)

where the normalized wave function ψi(r) = ψ(r − di), and
the free-space wave function of the bound state is ψ(r) =
exp(−r/a)/(

√
2πar). Therefore, the wave function is a linear

combination of states that describe an atom localized around
each impurity. The minimum of the energy is achieved for vi

that satisfy(
H11 − E H12 − ES12

H21 − ES21 H22 − E

)(
v1

v2

)
= 0, (13)

where the matrix elements of the Hamiltonian are denoted by
Hij = 〈ψi |H |ψj 〉, and the overlap between the states is Sij =
〈ψi |ψj 〉. We solve the resulting equations numerically.

The results of the variational approach are presented in
Fig. 4. The bound states of different symmetries (for odd states
we have v1 = −v2 whereas for even v1 = v2) are displayed for
positive scattering lengths a = 0.4 l0 and l0 in Figs. 4(a) and
4(b), respectively. Even though the approximate wave function
works well reproducing the overall trend, the approach is miss-
ing the quantitative description of the avoided crossings. Fur-
thermore, the approximation breaks down when the distance
between the impurities is comparable to the scattering length,
and the overlap S12 deviates significantly from zero. In all the
other cases, i.e., for larger impurity separations and away from
the avoided crossing, the variational calculation is accurate.

To improve the approximate description of the wave
function in variational approach, we include into Eq. (12)
a third state, which corresponds to an extended state
(occupying the whole volume of the trap) of the unperturbed
harmonic oscillator. For illustration, we will only consider
the lowest trap-induced shape resonance, which occurs for
a/l0 = 0.4 at 2d/l0 ≈ 6. To this end, we add a third state
ψ3(r) = φ0(r), where φ0(r) ∝ exp(−r2/2l2

0 ) is the normalized
ground-state wave function of the harmonic oscillator, with
its corresponding amplitude v3 on the right-hand side in
Eq. (12). The minimization of the mean energy with such
an ansatz yields the energy as a function of the distance
2d between the impurities. Note that the same results are
obtained in a two-state model with appropriate symmetry of
the participating states, i.e., an even trap-extended state and
an even superposition of localized states.

FIG. 4. The dependence of the lowest-energy levels on the dis-
tance 2d between the symmetrically placed impurities. The results
are presented for a = 0.4 l0 [upper panel (a)] and a = l0 [lower panel
(b)]. The color code of the levels is the same as in Fig. 3. Additionally,
the dotted-dashed lighter blue and lighter red lines represent the
energies of the even and odd bound states, respectively, obtained
within variational approach.

In Fig. 5 we show the zoom-in of the avoided crossing
for a/l0 = 0.4. The full, original results are depicted with
dotted blue and dashed red curves, whereas lighter blue and
lighter red colors are dedicated for the variational approach.
Clearly, since the curves obtained within different methods
collapse onto each other, the simple three-state model gives the
quantitative description of the trap-induced resonance. Notice
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0

FIG. 5. Comparison of the results for a = 0.4 l0 in the vicinity of
the lowest avoided crossing obtained within the full method (dotted
blue and dashed red), and within the variational approach using three
states (lighter blue and lighter red). The inset zooms the vicinity of
the avoided crossing. The color code is the same as in Fig. 4.
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a=0.4l0

2.96 2.98 3.00 3.02 3.04 3.06 3.08 3.10

1.2

1.3

1.4

1.5

1.6

1.7

1.8

d/l0

E
/ E

0

FIG. 6. Comparison of energy levels in the vicinity of avoided
crossing. Red dashed line and blue dotted line denote odd and even
states of the system with impurities placed symmetrically along the
z axis in z = ±d . Gray dotted line denotes the energy levels of the
system, where the impurities are placed in z = −d and z = d + �d .
Here, �d = 0.025l0.

the presence of the state of different symmetry which passes
through the avoided crossing (red dashed straight line) without
being affected by the other states.

B. Asymmetric case

The states and the energy levels of the atom divide into
separate classes, belonging to different irreducible repre-

sentations of the symmetry group [37], characterized by
different symmetry properties. Since d1 = −d2 the Hamil-
tonian is invariant with respect to the reflection in the
plane passing in-between the impurities and perpendicular
to the line joining the particles. To see how the coupling
between the states affects the energy levels, we break the
symmetry by perturbing one impurity’s position. Now, the
position d2 = −dez is unaffected, whereas d1 = (d + �d)ez,
where we denote by ez the unit vector pointing along the z

axis.
The energy levels of the atom in such a configuration with

�d = 0.025l0 are presented in Fig. 6. The dotted blue (even
states) and dashed red (odd states) lines are the full solutions of
the initial, unperturbed system, whereas the small-dotted gray
line represents energy levels of the perturbed Hamiltonian. All
the states are repelling, lifting the degeneracy, which results in
two very close avoided crossings between these states and one
of the extended state in the harmonic trap. This twin resonance,
facilitated by the controlled symmetry breaking of the system
and by the presence of the trap, signals the breakdown of the
usual Landau-Zener theory [38–40].

C. Wave functions in the symmetric case of two impurities

With our method we also determine the wave function of
the atom. Provided the coefficients ki are known, the wave

FIG. 7. Cuts along the z axis of the (renormalized) wave functions of the atom for different d and E with the scattering length a = 0.4l0
close to avoided crossings. Gray vertical lines denote the positions of the ions.
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a=0.4l0

(e)

(f)

(d)

(b)
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(a) (i)
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(h)
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1.8
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2d/l0
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FIG. 8. The vicinity of the lowest avoided crossing for a = 0.4l0.
Red dashed line and blue dotted line denote odd and even states of
the system with impurities placed symmetrically along the z axis in
z = ±d . The points marked with letters (a)–(i) indicate the parameter
values for which the eigenstates are studied in Fig. 7.

function is evaluated from Eq. (4), and it takes the form

�(r) =
N∑

i=1

gikiG(di ,r). (14)

In this sum, the energy E as well as the eigenstates are deter-
mined from Eq. (8). So far, we considered the energy levels
of the atom, and therefore we already determined the matrix
D̂2(E), which in our case of two symmetrically placed impuri-
ties takes a dimensionless form of D̃(E) [see Eq. (11)]. The so-
lution is then particularly simple since the symmetry property
imposes k1 = k2 for even states, and k1 = −k2 for odd states.

In Fig. 7, we present the cuts along the z axis of the wave
functions of nine eigenstates in the vicinity of the lowest
avoided crossing for a = 0.4 l0. For the clarity of presentation,
we plot the wave functions multiplied by a factor |z2 − d2|
to remove the divergence, which appears for z = ±d and
x = y = 0. Each divergence originates in the Green’s function,
which has a pole when its two arguments approach each
other, i.e., G(di ,r) ∝ 1/|r − di | for r ≈ di . This divergence
is responsible for the limiting behavior of the wave function
at vanishing atom-impurity distance. According to the contact
condition, �(r) is proportional to 1 − a/|r − di | in this case.

Figure 8 magnifies the relevant avoided crossing that we
investigate here in more details. The nine points, marked with
letters from (a) to (i), indicate the parameter values for which
the eigenstates are presented on the plots in Figs. 7(a)–7(i). The
points (a)–(c) correspond to the situation when the bound states
of the atom-impurity interaction potential are lower in energy
than the state of the trap (see Fig. 2). The point (a) indicates
the trap extended, even state of the atom with small admixture
of the states localized on the impurities. Figures 7(b) and 7(c)
[corresponding to points (b) and (c) from Fig. 8] show the even
and odd bound states of the atom. A similar situation occurs
when the bound state of the atom-impurity interaction potential
is slightly higher in energy than the trap state [plots (g)–(i) in
Fig. 7 corresponding to points (g)–(i) in Fig. 8], where the wave
functions are either localized mainly on the impurities [see the
plots (g)–(h)] or delocalized in the trap [see the plot (i)].

In the region where trap-induced resonance is present [see
Figs. 7(d)–7(f)], the trap extended state is mixed with the

states localized on the impurities in the vicinity of the avoided
crossing and corresponding amplitudes, v1 and v2, are of
the same order. This is explained by the variational model
embodied in Eq. (12). In addition to the states of the even
symmetry, we find a localized wave function of the bound
state with odd symmetry [see Fig. 7(e) corresponding to the
red point (e) lying on the red dashed line in Fig. 8].

IV. SUMMARY

In this work, we presented a general method of solving the
problem of a single atom interacting with N stationary impuri-
ties. The approach is based on the Green’s function formalism,
and assumes the contact potential approximation. The method
can be applied for arbitrary arrangement of the impurities, even
when the interaction strength is different for each one.

We applied the method to the case of two impurities placed
in a spherical harmonic trap. We determined energies and
wave functions of stationary states of the atom. The spectrum
exhibits multiple avoided crossings between the bound states
and the extended trap states. A simple three-states model
correctly reproduces the bound states in the trap as well as
the trap-induced resonances.

Our results can be further generalized to include energy-
dependent scattering lengths, which would allow for more
accurate treatment of long-range potentials, for instance, the
atom-ion polarization potential [41]. The method, by providing
single-particle orbitals, can serve as a starting point for more
involved calculations, such as dynamics of the atom in complex
quantum networks of impurities, or many-body system of
weakly interacting bosons interacting with multiple trapped
ions [42]. Assuming the Born-Oppenheimer approximation,
which is valid for light atoms, it is possible to include motion
of the impurities within the method, possibly capturing effects
such as atom-phonon coupling [22].

This work presents a study of a simplified case in which
the atom-impurity interaction is described using a zero-range
potential. This is sufficient as long as the characteristic length
scale of the interaction is much smaller than other length scales
such as the interparticle distance. Within this treatment, the
system has some characteristic features of a diatomic molecule
such as the presence of even and odd states. However, the truly
interesting case would be the one when the atom interacts
strongly with many impurities at the same time, where the
zero-range model does not apply. Experimental realization of
such a system would require bringing the impurities within
the characteristic atom-impurity interaction distance, e.g., hun-
dreds of nanometers in the ion-atom case. This cannot currently
be achieved with stationary impurities. Rigorous theoretical
description of such a system would require including the
motion of the impurities as well as using realistic interaction
potentials, resulting in a numerically challenging problem. The
current results can then serve as a limiting case.
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APPENDIX A: SOLUTION OF THE
SCHRÖDINGER EQUATION

In order to solve the Schrödinger equation for the atom [see
Eq. (3)], we first expand the unknown wave function �(r) =∑

n cnφn(r) in the basis φn of the stationary states of the atom
but without the impurities. Inserting the expansion of �(r) into
Eq. (3), we obtain

∑
n

cnEnφn(r) +
N∑

i=1

giδ(ri)
∂

∂ri

ri

[∑
n

cnφn(r)

]
r→di

= E
∑

n

cnφn(r), (A1)

where En denotes the energy corresponding to the state φn. The
next step is to project both sides of Eq. (A1) onto a single state
of the basis φ∗

m, in order to determine the expansion coefficients
cm:

N∑
i=1

giφ
∗
m(di)

∂

∂ri

ri

[∑
n

cnφn(r)

]
r→di

= (E−Em)cm. (A2)

Now, we replace back the expansion
∑

n cnφn(r) with �(r):

cm(E − Em) =
N∑

i=1

giφ
∗
m(di)

[
∂

∂ri

ri�(r)

]
r→di

. (A3)

Dividing both sides of Eq. (A3) by (E − Em), we finally obtain
the equation for the expansion coefficients cm:

cm =
N∑

i=1

giki

φ∗
m(di)

(E − Em)
, (A4)

where

ki =
[

∂

∂ri

ri�(r)

]
r→di

. (A5)

Substituting Eq. (A4) into the expansion of �(r) yields the
wave function in the following form:

�(r) =
N∑

i=1

∑
n

giki

φ∗
n(di)φn(r)

(E − En)
=

∑
i

kiG(di ,r), (A6)

where G(di ,r) = ∑
n φ∗

n(di)φn(r)/(E − En) is the Green’s
function (see Appendix B for details), and, therefore, we arrive
at the consistency condition given by

ki =
N∑

j=1

gjkj

[
∂

∂ri

riG(dj ,r)

]
r→di

. (A7)

Here, we notice that in the case of i �= j the regularization
operator is redundant, i.e., [ ∂

∂ri
riG(dj ,r)]r→di

= G(di ,dj ).
Therefore, the condition in Eq. (A7) can be rewritten in the
form of D̂N (E) · �k = 0, with D̂N (E) given by Eq. (9).

APPENDIX B: GREEN’S FUNCTION FOR SPHERICALLY
SYMMETRIC HARMONIC POTENTIAL

We discuss here the properties of the Green’s function for
an isotropic three-dimensional (3D) harmonic oscillator. The
analytical formulas for n dimensions were found in [43]. In the
case of an anisotropic harmonic trap, the Green’s function can
be expressed in terms of an integral that has to be calculated
numerically [44]. The Green’s function of a system described
by the Hamiltonian H0 is defined by

(H0 − E)G(r,r′) = −δ(r − r′). (B1)

This equation can be solved by expanding G in the basis of
H0, i.e., 3D harmonic oscillator wave functions in our case,
and the final expression is

G(r′,r) =
∑

n

φ∗
n(r′)φn(r)

E − En
, (B2)

where φn is the eigenfunction of H0 with eigenvalue En. This
expression is exactly the one in Eq. (6).

The Green’s function of the isotropic harmonic oscillator
was calculated analytically in [45], and is given in terms of the
confluent hypergeometric functions U and M:

G(r,r′) = exp

(
− ξ + η

2

){
�(1,E)

[
1 + 2ξη

ξ − η

(
∂

∂η
− ∂

∂ξ

)]
U

(1)
E (ξ )M (1)

E (η)

+ sign(r · r′)�(1,E + 1)
2
√

ξη

ξ − η

(
η

∂

∂η
− ξ

∂

∂ξ

)
U

(1)
E+1(ξ )M (1)

E+1(η)

}
, (B3)

where the function � is expressed in terms of the Euler gamma
function

�(1,E) = −1

2

(
1

π

)3/2

�

(
3

4
− E

2

)
, (B4)

while the dimensionless parameters ξ and η depend on the
positions r and r′:

ξ = 1
2 (r2 + r ′2 + |r − r′||r + r′|), (B5)

η = 1
2 (r2 + r ′2 − |r − r′||r + r′|). (B6)

The derivatives of the confluent hypergeometric functions
U and M are, respectively, given by [45]

∂

∂ξ
U (a,b,ξ ) = −aU (a + 1,b + 1,ξ ), (B7)

∂

∂η
M(a,b,η) = a

b
M(a + 1,b + 1,η). (B8)

To proceed, let us further introduce the following notation for
the sake of brevity:

F
(n)
E (x) ≡ F

(
4n − 1

4
− E

2
,
2n + 1

2
,x

)
,
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where F denotes the confluent hypergeometric function U or M , parameter n is an integer, and x denotes ξ or η defined in
Eqs. (B5) and (B6), respectively.

Substituting the derivatives into Eq. (B3), we obtain the following expression for the Green’s function:

G(r,r′) = exp

(
−ξ + η

2

){
�(1,E)U (1)

E (ξ )M (1)
E (η) + 2ξη

ξ − η
�(1,E)

(
3

4
− E

2

)[
2

3
U

(1)
E (ξ )M (2)

E (η) + U
(2)
E (ξ )M (1)

E (η)

]

+ sign(r · r′)�(1,E + 1)
2
√

ξη

ξ − η

(
3

4
− E

2

)[
2

3
ηU

(1)
E+1(ξ )M (2)

E+1(η) + ξU
(2)
E+1(ξ )M (1)

E+1(η)

]}
. (B9)

Expanding Eq. (B9) in the Taylor series, we obtain the following asymptotic behavior for in the limit when r′ approaches r:

G(r,r′)
�r→0−−−→ g0(R) + g1(R)

�r
, (B10)

where the distance between the points r and r′ is denoted by �r = |r − r′|, the mean position is given by R = |r + r′|/2, and
the functions g0 and g1 are, respectively, given by

g0(R) = − 1
4�(1,E) exp(−R2)

{
4RM

(1)
E (R2)U (1)

E (R2) − 1
3 (2E − 3)R5

[
2(2E − 7)M (3)

E (R2)U (3)
E (R2)

+ 10(2E − 3)M (2)
E (R2)U (2)

E (R2)
] + 15(2E − 7)M (1)

E (R2)U (3)
E (R2)

}
− 1

60 sign(r · r′)(2E − 1)�(1,E + 1) exp(−R2)R2{(−5 + 2E)R2M
(3)
E+1(R2)U (1)

E+1(R2)

− 10M
(2)
E+1(R2)

[
U

(1)
E+1(R2) + (2 − 4E)R2U

(2)
E+1(R2)

] + 15M
(1)
E+1(R2)

[
U

(2)
E+1(R2) + (2E − 5)R2U

(3)
E+1(R2)

]}
, (B11a)

g1(R) = − 1
12�(1,E)(2E − 3) exp(−R2)

[
2M

(2)
E (R2)U (1)

E (R2) + 3M
(1)
E (R2)U (2)

E (R2)
]

−sign(r · r′) 1
12�(1,E + 1)(2E − 1)e−R2

R3
[
2M

(2)
E+1(R2)U (1)

E+1(R2) + 3M
(1)
E+1(R2)U (2)

E+1(R2)
]
. (B11b)
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