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Electron correlations in the antiproton energy-loss distribution in He
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We present ab initio calculations of the electronic differential energy-transfer cross sections for antiprotons
with energies between 3 keV and 1 MeV interacting with helium. By comparison with simulations employing
the mean-field description based on the single-active electron approximation we are able to identify electron
correlation effects in the stopping and straggling cross sections. Most remarkably, we find that straggling exceeds
the celebrated Bohr straggling limit when correlated shake-up processes are included.
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I. INTRODUCTION

Inelastic collisions of charged particles with matter probe
the response of many-electron systems ranging from linear
response in the perturbative limit to the strong-field nonlinear
response in the nonperturbative regime at low projectile ve-
locities. The characteristic energy loss, stopping power, and
energy straggling (the second moment of the energy-loss dis-
tribution) are among the most important variables quantifying
this response. Their investigation dates back to the early work
by Bohr [1,2] more than 100 years ago and continues to
date [3–15]. Present interest in the energy-loss distribution is
derived from both fundamental aspects of inelastic many-body
physics as well as a host of technological and radiation physics
applications. The most prominent examples of the latter in-
clude hadron-therapy protocols in oncology, subsurface layer
deposition in semiconductors, and material protection against
long-term radiation exposure for space exploration.

Only recently, progress in methods for exact numerical
solutions of the time-dependent many-electron problem, and
the increased availability of computational power has opened
up opportunities for fully ab initio simulations of the many-
electron response to charged-particle penetration. The pro-
totypical case in point for which a—within the numerical
accuracy—exact solution is nowadays possible is the inelastic
scattering of antiprotons with helium [5,16]. This system con-
stitutes the benchmark for the inelastic many-body response
and for the energy-loss distribution in inelastic collisions for
several reasons: Helium is the simplest atomic system where
correlation effects play a prominent role. Antiprotons are the
simplest case of a hadronic projectile that provides a time-
dependent Coulomb field driving excitation and ionization
without adding complications associated with the charge-
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transfer channel. Moreover, comparison between proton and
antiproton projectile scattering allows for the exploration of the
Barkas effect [17], the variation of the many-electron response
under charge conjugation. Pioneering computational studies of
correlated two-electron charged-particle-induced processes in
He including the Barkas effect in double ionization [18–20]
and correlation effects in ionization of helium [21,22] were
performed by Reading and Ford using the forced impulse
approximation [23]. Nowadays, for p̄ + He collisions the time-
dependent Schrödinger equation (TDSE) for the two-electron
problem can be solved in its full dimensionality without any
approximation.

On the experimental side, the low-energy antiproton ring
(LEAR) at CERN has allowed studying fundamental scattering
and recombination processes involving antiprotons [15–17].
The extra low energy antiproton (ELENA) ring is expected to
significantly increase the flux of antiprotons usable in scatter-
ing experiments in the near future [24]. The first full quantum
calculations for p̄ + He beyond perturbative calculations were
performed within the single-active electron (SAE) model by
Schiwietz et al. [24] using an atomic-orbital expansion and by
Lühr and Saenz [25] employing a semiclassical close-coupling
approach to the effective one-electron TDSE for p̄ + He using
a B-spline basis for the radial wave functions. They found siz-
able disagreement with the first stopping power measurement
by Agnello et al. [26] (reevaluated by Rizzini et al. [27]) for
helium both below and above the stopping power maximum
and attributed the discrepancies with the experiment at lower
energies to multielectron or correlation effects neglected within
the SAE model. A step towards partially including those were
very recently taken by Bailey et al. [5] using a multiconfig-
uration expansion of the He target wave function within the
convergent close-coupling (CCC) approach. True two-electron
processes, such as double ionization and excitation ionization
were, however, still approximated by sequential one-electron
excitation and ionization of He and He+.
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For straggling, i.e., the second moment of the energy-loss
distribution, available experimental data, as well as theoretical
results are still remarkably scarce despite its importance for
applications. For gas-phase targets only very few measure-
ments are available [9–11,28]. Theoretical treatments, to date,
rely on perturbation theory converging to the high-energy limit
TB = 4πZ2

pZT e2 for electronic straggling derived by Bohr [2]
from classical binary encounter scattering of the projectile on
ZT independent free electrons of the target atom. Remarkably,
at nonasymptotic energies ab initio simulations appear to be
still missing to date.

In the present paper we present a fully ab initio simulation of
the electronic energy-loss distribution for antiproton scattering
on helium atoms. The two-electron response is treated—within
the limits of numerical convergence—exactly and allows to
clearly identify the influence of electronic correlations on the
energy-loss distribution. Most notably, multielectron shake-
up processes yield energy-loss fluctuations in excess of the
celebrated Bohr straggling limit TB . Atomic units are used
unless stated otherwise.

II. THEORETICAL METHODS

A. Background

The passage of charged particles through matter with atom
number density N and thickness �x is accompanied by an
energy loss resulting, for an initially monoenergetic beam with
energyEp = 1

2mpv2
p, in energy-loss distributionP (ε) with ε =

E − Ep, the energy transferred to the target atoms. For dilute
matter such as gas targets where nonlinear density effects can
be safely neglected, P (ε) is related to the differential energy-
transfer (DET) cross section dσ (ε)/dε as

P (ε) = N �x
dσ (ε)

dε
. (1)

The mean energy loss, the first moment of P (ε), is, accordingly,
given by

〈�E〉 = N �x S, (2)

with

S =
∫

ε
dσ (ε)

dε
dε, (3)

the energy-loss cross section S, the mean loss per target atom.
The so-called stopping power or stopping force (− dE

dx
) follows

from Eqs. (2) and (3) as

−〈�E〉
�x

= N (−S), (4)

where the minus sign indicates energy lost by the projectile
and transferred to the electronic degrees of freedom of the
target atom. Likewise, the straggling parameter �2 related to
the second moment of the DET follows as

�2 = N �x T, (5)

with

T =
∫

ε2 dσ (ε)

dε
dε (6)

referred to as the atomic straggling cross section.T is a measure
for fluctuations in the energy-loss distribution.

We will focus in the following on the energy transfer to
the electronic degrees of freedom. Energy transfer to the He
nucleus (“nuclear stopping”) is negligible at high collision
energies [24] and provides only a small correction to the
stopping cross section of �10% even at lowest energies
(Ep = 3 keV) considered here. Also for higher moments of
the energy-loss distribution, the nuclear scattering channel
may contribute only a small tail extending to high energies
due to rare “hard” binary collisions at a (screened) Coulomb
potential. Nuclear contributions can be readily accounted for
by elastic binary collisions at a screened Coulomb potential
and will be, for completeness, included when we compare with
experiments. We also note that for transmission through dense
gas targets, the energy-loss distribution dσ (ε)/dε resulting
from the individual atomic collisions should be self-convoluted
in a multiple-scattering setting. Our focus in the following is on
single collisions at a multielectron atom in a dilute gas target.

Early theories on the stopping power (− dE
dx

) or stopping
force based on either classical binary collision approximations
[1,2] or first-order quantum approximations [4,6] can be writ-
ten in terms of the dimensionless so-called stopping number
L(E) as

−dE

dx
= N

4πe2Z2
pZ2

T

mev2
p

L(E), (7)

with Zp (ZT ) as the nuclear charge of the projectile (target),
vp as the speed of the incident projectile, me as the mass of
the electron, and N as the number density of the target atoms.
Well-known approximations for the stopping number include
the classical Bohr logarithm,

LBohr(E) = ln
1.123mev

3
p

Zpe2ω
, (8)

with ω as the classical oscillator (or mean transition) frequency
and the Bethe logarithm derived from the first Born approxi-
mation,

LBethe(E) = ln
2mev

2
p

h̄ω
. (9)

A multitude of more sophisticated approximations has been de-
veloped over the years approximately including corrections for
the Barkas effect, binding shell corrections, so-called “bunch-
ing” effects accounting for deviations from the independent-
electron response in atoms and solids, as well as interpolations
between the low-energy regime and the high-energy regime
where the Bohr approximation applies covering the stopping
maximum [14,15].

B. Semiclassical impact-parameter approach

The numerical solution of the TDSE for a nonperturba-
tive treatment of the electronic DET cross section involves,
generally the (semiclassical) impact-parameter (IP) approach.
Accordingly, the projectile is treated as a classical charged
particle moving on a straight-line trajectory �R(t) = �b + �vpt .
Here �b is the impact-parameter vector, and �vp is the pro-
jectile’s velocity. In turn, the electronic dynamics driven by
the time-dependent Hamiltonian H (t) is treated fully quantum
mechanically by solving the TDSE. The IP approximation is
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well justified and leads to negligible errors for the antiproton
energies above a few keV, the projectile energies considered
in the following. The impact-parameter-dependent transfer
probability density Pi→f (ε; b,vp) from the i initial state to the
f final state representing excitation or ionization is determined
by the projection of the numerically evolved state |�(b,vp,tt )〉,
parametrically dependent on impact parameter and projectile
velocity, onto the corresponding exit-channel state |ψf (Ef )〉,

Pi→f (ε; b,vp) = |〈ψf (Ef )|�(b,vp,tt )〉|2, (10)

where ε = Ef − Ei with Ei as the energy of the initial state
(i.e., the ground state of the target) and Ef as the energy of
the final state (excited, singly, and doubly ionized states) at
the termination point tt of the time propagation. As tt is finite
in a realistic numerical simulation, Pi→f must be tested for
convergence as a function of tt . In Eq. (10), the rotational
symmetry of the He initial state was used rendering Pi→f

dependent only on the magnitude b of the impact-parameter
vector. From Eq. (10) the differential energy-transfer cross
section follows as:

dσ

dε
(ε) = 2π

∫
db b

∑
f

Pi→f (ε; b,vp), (11)

where the sum extends over those degenerate final states f that
contribute to the fixed energy transfer ε.

The total energy loss or stopping cross section can be
expressed as

S(vp) = 2π

∫
bS(b; vp)db, (12)

where S(b; vp) is the impact-parameter-dependent mean en-
ergy loss given in terms of the loss distribution [Eq. (10)] by

S(b; vp) =
∑∫

f

εPi→f (ε,b; vp)dε. (13)

Analogously, the straggling cross section reads

T (vp) = 2π

∫
bT (b; vp)db, (14)

where T (b; vp) is the impact-parameter-dependent straggling
which can be calculated from the energy-transfer probability
density,

T (b; vp) =
∑∫

f

Pi→f (ε,b; vp)[ε − S(b; vp)]2dε. (15)

Alternatively to the explicitly channel-resolved expressions
Eqs. (13) and (15), S and T can be directly expressed in terms of
expectation values of the unperturbed electronic Hamiltonian
H0 calculated with the initial (E0) as well as the evolved state
|�(b,vp,t)〉,

S(b; vp) = 〈E〉 − E0, (16)

with

〈E〉 = 〈�(b,vp,t)|H0|�(b,vp,t)〉, (17)

and

T (b; vp) = 〈E2〉 − 2〈E〉[E0 + S(b; vp)] + [E0 + S(b; vp)]2

(18)

with

〈E2〉 = 〈�(b,vp,t)
∣∣H 2

0

∣∣�(b,vp,t)〉. (19)

Within a fully converged calculation and in the limit t → ∞,
Eqs. (16) and (18) would be equivalent to Eqs. (13) and (15).
However, since the numerical propagation must be terminated
at a finite time tt when both the departing antiproton and
the ionized electron are still at a moderately large distance
from the He target as well as from each other, the projections
Eq. (10) as well as the expectation values Eqs. (17) and (19)
may be affected by, in general, different termination errors.
We estimate the size of such errors by comparing S and T

calculated by the two alternative methods.

C. Time-dependent close-coupling method

For accurate energy-loss values and energy-loss distribu-
tions a high-precision description of the collision between
the projectile and one target atom is required. In order to
achieve this goal, we numerically solve the time-dependent
Schrödinger equation describing the quantum dynamics of the
two active electrons of the He target in the presence of the
passing-by antiproton [16].

The time-dependent Hamiltonian is given by

H (t) = H0 +
2∑

i=1

1

|�ri − �R(t)| , (20)

with H0 as the unperturbed electronic Hamiltonian of the
helium atom,

H0 =
2∑

i=1

(
−∇2

i

2
− 2

ri

)
+ 1

|�r1 − �r2| . (21)

We solve the TDSE,

i
∂�(t)

∂t
= H (t)�(t), (22)

by the time-dependent close-coupling (TDCC) method
[16,29,30]. Briefly, the fully correlated two-electron wave
function is represented in the basis of symmetrized coupled
spherical harmonics [16], whereas the radial partial-wave
functions are represented using the finite element discrete
variable representation (FEDVR) method [31,32] where each
radial coordinate is divided into segments with variable lengths
(i.e., FEs). Then, inside each FE the radial wave function is
represented on a local polynomial basis (i.e., DVR) built on
top of a Gauss-Lobatto quadrature to ensure the continuity at
the FE boundaries.

For the temporal propagation of the wave function the short
iterative Lanczos method with adaptive time steps is applied
[33,34]. The time evolution of our system is started with the
projectile located at Rz = −40 a.u. and with the ground-state
He target located at the center of our coordinate system. The
ground state of helium was obtained by propagating an initial
trial wave function in negative imaginary time (t → −iτ ). The
time propagation is continued up to the termination time tt
at which the position Rz = 80 a.u. (the distances from the
He atom at impact-parameter value zero) of the antiproton
is reached. For channel-resolved energy-transfer densities
[Eq. (10)] we project onto asymptotic channel wave functions,
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which are constructed as a symmetrized product of single-
electron wave functions, thus they neglect the electron-electron
and electron-projectile interactions in the continuum. These are
correct only in the limit R → ∞ and, if ionization is involved,
ri → ∞. Therefore, errors due to the finite propagation time
need to be checked.

D. Mean-field approximation

In order to quantify the role of correlations in the DET
distribution and to compare with previous nonperturbative
calculations for stopping [5,24,25,35] we perform in paral-
lel mean-field simulations. For the calculation of the DET
distribution, they involve two separate approximations to be
kept track of. The first one is the approximation of the
exact Hamiltonian by the sum of two effective single-electron
Hamiltonians,

H (t) =
2∑

j=1

H eff
j (t), (23)

with

H eff
j (t) = −∇2

j

2
+ Veff (rj ) + 1

|�rj − �R(t)| , (24)

where the effective mean-field potential Veff accounts for the
nuclear Coulomb field and the mean screening field provided
by the other electron. Using a static screening potential as in
the following:

Veff (r) = −Zc + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
, (25)

where Zc is the charge of the residual ion and the model
parameters are taken from Ref. [36] in the TDSE,

i
∂�j (t)

∂t
= H eff

j (t)�j (t) (26)

leads to the SAE approximation [37–40]. Alternatively, within
time-dependent density-functional theory (TDDFT), Veff con-
tains dynamical screening due to the self-consistent coupling
of the evolution to the time-dependent electronic density ρ =∑

j |�j |2 [41–44]. Within the TDDFT approach, correlation
effects can be taken into account on the mean-field level.

Final-state probabilities for excitation (EX) and ionization
(I ) follow from the projection amplitudes P

(1)
f = |〈�f |�j 〉|2.

Unlike for the projection of the fully correlated two-electron
wave function, these P

(1)
f are one-electron probabilities on

a mean-field level. Therefore, to account for multielectron
processes (specifically in the case of He, two-electron pro-
cesses), a second approximation is invoked, the independent
event model (IEM). This applies to both the SAE and the
TDDFT approaches. Accordingly the joint probability for e.g.
ionizing one and exciting the other electron is approximated
by PEX−I = 2P

(1)
EXP

(1)
I . Analogously, double ionization (DI)

is approximated by PDI = P
(1)
I P

(1)
I . Such an IEM for multi-

electron processes can be modified to account for an assumed
sequentiality of these processes. For example, sequential dou-

ble ionization is expressed as P
Seq.

DI = P
(1)
I

+
P

(1)
I , where P

(1)
I

is the one-electron ionization probability for neutral helium,

whereas P
(1)
I

+
is the ionization probability of He+ calculated

from Eq. (26) with the effective potential [Eq. (25)] reduced to
the bare Coulomb potential (−2/r).

E. The Bohr model

The pioneering study of the energy-transfer process be-
tween an incident charged particle and the atomic targets
performed by Bohr [1,2] dates back more than a century
predating even his quantum atomic model. Apart from historic
interest, it still serves as a useful guide for the processes
underlying contemporary models for stopping and straggling.
Bohr’s model for energy loss involves two contributions: the
close collision regime for small impact parameters b < b0

approximated by binary Coulomb scattering between the
classical electron on the incident charged particle and the
distant-collision regime for large impact parameters for which
the projectile supplies the time-dependent electric field that
excites the electron with oscillator (i.e., transition) frequency ω

(reminiscent of Thomson’s atom model of harmonically bound
electrons).

A smooth transition between the two regimes is expected
at an intermediate impact parameter b0 which must simulta-
neously fulfill two requirements: b0 should be large compared
to the so-called collision diameter bc = Zpe2/(mev

2
p) [1,12]

but small compared to the characteristic impact parameter for
resonant excitation of the target electrons br ≈ vp/ω [1,12] by
the time-dependent Coulomb field of the passing-by projectile.
These two requirements can be combined (bc < br ) to obtain
the criterion for the validity of the Bohr model,

vp >

(
2Zpe2ω

me

)1/3

, (27)

where the classical oscillator frequency ω should be replaced
by a typical quantum excitation frequency the order of mag-
nitude of which is given by the first ionization potential
Ip1 , h̄ω 	 Ip1 .

Within the framework of this classical model, Bohr also de-
rived the (nonrelativistic) high-energy limit for the straggling
cross section, i.e., the second moment of the DET which is
given by the projectile-energy-independent constant,

TB = 4πZpZT e2. (28)

For later reference we emphasize that Eq. (28) describes the
response of ZT independent (classical) electrons implicitly
invoking the IEM. Remarkably, Eq. (28) has remained to date
the benchmark with which current experimental and theoretical
results for straggling are to be compared.

III. ANGULAR MOMENTUM BASIS CONVERGENCE

Since both the TDCC for solving the full two-electron
dynamics as well as the mean-field models, such as the SAE,
are based on the numerical solution of the time-dependent
Schrödinger equation, rigorous numerical checks are required.
Although convergence with respect to size and density of the
radial grid, time-propagation parameters, or length of the pro-
jectile trajectory has been tested previously [16,37], a critical
issue of particular relevance for the present paper is the conver-
gence with respect to the number of partial waves or angular
momenta included. During energetic binary collisions there is
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FIG. 1. (a) The SI0 impact-parameter-resolved DET dσ (b,ε)/dε

and (b) the energy-transfer square (ε2) rescaled DET as a function
of electron ejection energy for the 1 MeV antiproton projectile at
fixed the b = 1 a.u. impact parameter. This impact-parameter value
was chosen to coincide with the maximum of the impact-parameter-
dependent DET. TDCC and SAE results with different angular
momentum basis sizes (Lmax) are compared for the SI0 channel. In
(b) the binary collision energy loss (2v2

p) is indicated with a vertical
dotted line.

a large energy and momentum transfer from the projectile to
the electron, which also implies a large angular momentum
transfer. If the truncated angular momentum basis is not large
enough to accommodate such angular momentum transfers,
then the probability for generating high-energy continuum
electrons will be significantly suppressed. The importance of
including high-angular momentum partial waves is not specific
to the numerical solution of the TDSE or to the energy loss but
has been previously observed in a first Born approximation
calculation of the angular distribution of high-energy elec-
trons emitted in p̄ + He collisions [45,46]. Since this effect
is more pronounced at high projectile velocities, we have
performed the angular momentum basis convergence tests at
1 MeV antiproton energy, the highest energy considered in this
paper.

We compare the impact-parameter-resolved DET
dσ (b,ε)/dε ≡ ∑

f Pi→f (ε; b) from the TDCC for the
exclusive single-ionization channel with the second electron
remaining in the ground state denoted in the following by
SI0 with the corresponding SAE results [Fig. 1(a)]. We
also checked for ε2dσ (b,ε)/dε, the DET weighted with the
squared energy transfer which places enhanced weight on large
energy and angular momentum transfers entering straggling
[Fig. 1(b)]. Obviously, convergence is reached when the

FIG. 2. The truncation error for stopping and straggling as a func-
tion of the angular momentum basis size Lmax at E = 1 MeV (vp =
6.32 a.u.) and b = 1 a.u.

maximum classically allowed binary encounter momentum
transfer �p ∼ 2vp 	 13 a.u. at an impact parameter on the
order of the atomic radius b 	 1 a.u. corresponding to an
angular momentum transfer of Lmax 	 b �p 	 13 a.u. can
be accurately represented. In the case of the full TDCC
simulation we choose a highly asymmetric partial-wave basis
with 0 � l1 � Lmax � 20 for the ionized electron whereas l2
is constrained to low angular momentum l2 = 0,1, . . . ,l2, max

where we find convergence already for l2, max = 1.
The truncation error as a function of the maximum of total

(coupled) angular momentum Lmax included (Fig. 2) shows
that previously used small angular momentum basis sizes
(Lmax � 6) for the calculation of the ionization cross section
[5,16] are insufficient to accurately account for the stopping
and straggling at high energies. We estimate the truncation
error by comparison with the reference calculations Sref and
Tref in which the contributions of very high L � Lmax 	 15
from corresponding SAE calculations are included, since for
asymptotically high L, the influence of correlation effects can
be safely excluded.

IV. DIFFERENTIAL ENERGY-LOSS DISTRIBUTIONS

A. Differential energy transfer

The DET cross section dσ (ε)/dε integrated over the impact
parameter [Eq. (11)] is the key quantity of interest determining
the stopping and straggling.

Whereas dσ (ε)/dε is a continuous function above the first
ionization threshold Ip1 = 24.6 eV, it is discrete below Ip1 .
In order to display the continuity across the threshold we
analytically continue dσ (ε)/dε for 0 � ε � Ip1 as

dσ

dε
=

∑
n,l,m

σnlmD(n,l) ≈
∑
n,l,m

σnlm(En+1,l − En,l)
−1, (29)

with D(n,l) as the spectral density of bound states of a given
n,l and En,l as the energy of the excited bound state. Both
above and below the threshold the multiple (quasi) degen-
eracies are included. As expected for Coulomb interactions,
dσ (ε)/dε is continuous and finite across the first ionization
threshold (see the inset of Fig. 3). At all collision energies,
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FIG. 3. The energy-transfer cross section dσ (ε)/dε as a function
of ε for different antiproton impact energies E. The inset shows the
finite cross section at and the continuous transition across the first
ionization threshold.

ionization dominates over (exclusive) bound-state excitations
(Fig. 3). This implies that a typical mean energy transfer, i.e.,
the mean value of this distribution, is somewhat larger than
Ip1 suggesting also a value suitable for ω in Bohr’s model
[Eq. (27)]. We observe a power-law behavior of the high-
energy tail of dσ (ε)/dε ∼ ε−α (α 	 2.2 for energies below
the binary encounter limit) as expected. The DET also contains
some fluctuations (most visibly for 10 keV), which are the trace
of the unresolved Fano resonances [47,48]. The discontinuities
of the DET in the 0.9 a.u. < ε < 2.9 a.u. energy-transfer
interval signify the appearance of the ionization-excitation
channels. As expected, for each collision energy the high-
energy tail of the transfer distribution extends to the binary
encounter limit ε = (2vp)2/2 above which electron emission
is strongly suppressed.

B. Comparison with the Bohr model

Another energy-loss distribution, differential in impact pa-
rameter, but integrated over all energy-transfers, S(b; vp) is of
considerable conceptual interest. This distribution allows a di-
rect comparison of the TDCC simulation with the original Bohr
model for energy loss (Fig. 4). Since (correlated) multielectron
processes are not included in the Bohr model we restrict for this
comparison the TDCC energy loss to one-electron processes by
projecting the evolved state exclusively onto one-electron in-
elastic channels, i.e., pure single ionization (SI0) and pure sin-
gle excitation with the second electron remaining in the ground
state (EX0) [Eq. (10)]. It should be noted that in Bohr’s close-
collision model the impact parameter of the projectile refers
to the quasifree electron whereas in the quantum calculation it
denotes the distance to the ionic core of the target. Only upon
averaging over the ensemble of classical electrons representing
the initial bound state the two agree. Moreover, in the close-
collision model the classical electron is assumed to be at rest
in the target frame thereby neglecting the initial momentum-
space distribution, i.e., the Compton profile of the initial state.

Whereas at lower projectile energies [vp < 1, Fig. 4(a)],
neither the close-collision contribution expected to be ap-
plicable for b < b0 nor the distant-collision contribution for

b > b0 approximates the TDCC results well, in the pertur-
bative regime [E = 1 MeV, vp = 6.32, Fig. 4(b)] the distant
collision, overall, yields reasonable agreement. The latter is,
obviously, related to the fact that, to some extent, it successfully
mimics the dipole transitions by virtual photon absorption
[49,50] closely related to first-order quantum perturbation
theory. For the comparison we have fitted the oscillator fre-
quency ω in Bohr’s distant-collision model to TDCC results
for large impact parameters (b > b0 = vp/ω). The resulting ω

(Fig. 4) closely matches the expectation of a mean excitation
energy slightly above Ip1 = 0.9 a.u. (24.6 eV) as suggested
by the DET cross section (Fig. 3). As expected, for low
antiproton energies [Ep ∼ 16 keV, Fig. 4(a)] and outside the
validity of the Bohr model [Eq. (27)], the transition between
the close- and the distant-collision regimes is not smooth.
With increasing antiproton energies this transition smoothens,
and at high antiproton energies (1000 keV) there is a large
impact-parameter region where the close- and distant-collision
energy-loss predictions overlap. In view of the simplicity
of the Bohr model, the agreement between Bohr’s distant-
collision model (with fitted ω) and the high-precision TDCC
calculations for energies above ≈100 keV when restricted to
one-electron processes is remarkably good. The discrepancies
to the close-collision model are generally larger, in part, due to
the neglect of the atomic Compton profile. The latter deficiency
can be corrected within the framework of more advanced
classical models, in particular, the classical-trajectory Monte
Carlo method [51–53].

C. Multielectron energy-loss channels

By comparing the present TDCC ab initio approach with
the IEM using SAE calculations (for details and definitions,
see Sec. II D) as input, the importance of different single-
and multielectron energy-loss channels and the influence of
correlations in each of these can be assessed. To this end
we group the final states of the energy-transfer probabili-
ties Pi→f (ε,b,vp) into four different exit channels: single
ionization with the second electron remaining in the ground
state (SI0), single excitation with the second electron in the
ground state as well (EX0), simultaneous single ionization and
shake-up excitation of the second electron (SI-EX) and double
ionization (DI). We note that the contributions from double
excitations leading to the formation of autoionizing resonances
are implicitly included in the SI0 and SI-EX channels as we do
not explicitly project onto them. We note that their contribution
to total stopping and straggling is, in particular, at high collision
energies negligibly small. The one-electron channels SI0 and
EX0 allow for a direct comparison between the TDCC and
the mean-field models, such as the present or previously
employed SAE approximations and for probing for electron
correlation effects in one-electron transitions. These are to be
distinguished from true multielectron transitions (SI-EX and
DI) for which models [5,24,25] based on SAE approxima-
tions, TDDFT, or convergent close-coupling calculations have
invoked, in addition, the IEM thereby neglecting explicitly
correlated transitions. Such dynamical correlations are fully
accounted for by the present TDCC simulation. Overall, the
relative importance of different loss channels varies only
weakly over a wide range of collision energies (Fig. 5). The
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FIG. 4. The mean energy loss S(b; vp) [Eq. (13)] as a function of the impact parameter for different antiproton energies: (a) 16 keV and
(b) 1000 keV. The present TDCC results contain only the inelastic one-electron channels: single ionization (SI0) and single excitation (EX0)
with the second electron remaining in the ground state and are compared to the predictions of the Bohr model for close and distant collisions
[1,12]. The oscillator frequencies as given in the figures are obtained by fitting the distant collision model to the TDCC results at large impact
parameters.

one-electron channels dominate SI0 at small impact parameters
and EX0 at large impact parameters. This explains the success
of mean-field models for stopping. However, correlated multi-
electron processes, in particular, the SI-EX processes provide a
significant contribution throughout and become nearly as large
as SI0 at large impact parameters and collision energies. For
these processes the SAE and similar mean-field models with
their uncorrelated IEM extension completely fail (Fig. 5).

The SAE-IEM does not account for the correlated shake-
up of the second electron during the ionization process.
The importance of such a shake-up has recently been also

demonstrated in the timing of photoionization by attosecond
pulses [54–56]. Also for DI, the SAE-IEM mostly fails, how-
ever, with the remarkable exception in the perturbative regime
at high collision energies. Here the SAE-IEM reproduces the
TDCC quite well indicating that direct uncorrelated double
ionization dominates over shake-off.

By contrast, for true one-electron transitions the present
SAE yields excellent agreement for SI0 at all energies and
impact parameters whereas for EX0 the agreement is still
good with minor deviations observable. The latter can be
easily explained by the fact that the final excited state in

FIG. 5. Exit-channel decomposition of the energy loss S(b; vp) as a function of the impact parameter for different antiproton energies
(16, 100, and 1000 keV) obtained within the framework of the present TDCC and SAE-IEM models. Single ionization (SI0), single excitation
(EX0), correlated excitation-ionization (SI-EX), and double ionization (DI). In the SAE approximation the IEM is invoked to approximate
multielectron transitions.
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FIG. 6. Exit-channel decomposition of the straggling probability T (b; vp) as a function of the impact parameter for different antiproton
energies (16, 100, and 1000 keV) obtained in the framework of the present TDCC and SAE-IEM models. Single ionization (SI0), single
excitation (EX0), correlated excitation-ionization (SI-EX), and double ionization (DI). Within the SAE approximation, the IEM is used to
approximate multielectron transitions.

neutral helium carries the signatures of electron correlations
and screening missing in the SAE model.

The relative importance of the different loss channels
changes when higher moments of the energy-loss distribu-
tion are considered. Specifically, for the impact-parameter-
dependent straggling T (b,vp) (Fig. 6) the SI0 channel still
provides the largest contribution at small impact parameters,
whereas at large impact-parameter values the contributions
from the SI-EX and EX0 channels dominate. Most notably, the
contribution from shake-up ionization (SI-EX) to energy-loss
fluctuations is large enough to leave its mark on the integrated
straggling cross section.

V. THE STOPPING AND STRAGGLING CROSS SECTIONS

The total stopping and straggling cross sections are cal-
culated by integration over all impact parameters [Eqs. (12)
and (14)]. For the stopping cross section we can compare
our present TDCC results for p̄ in He with the available p̄

experimental data of Agnello et al. [26] as reevaluated by
Rizzini et al. [27] and with the experimental data of Kottmann
for stopping of negatively charged muons (μ−) in He [57].
Since the mass of μ− (=207 a.u.) is large compared to that of
the electron (mμ � me), inelastic electronic processes induced
by isotachic (equal velocity) μ− and p̄ projectiles should
closely resemble each other and allow for a direct comparison
of their stopping cross sections. We also compare with other
available theoretical results (Fig. 7). Among those, the most
advanced available approach is that of Bailey et al. [5] based
on the CCC method in which the two-electron wave function is
represented in a basis of target pseudostates and propagated in

time numerically. SI0 and EX0 are numerically accurately rep-
resented whereas double ionization and excitation ionization
are approximated by a sequential independent event model.

FIG. 7. The stopping cross section S(vp) as a function of antipro-
ton impact energy. The present TDCC results are compared to the
experimental data for p̄ [26,27] (experimental uncertainty as the
shaded blue area) and μ− colliding with He [57] and to other
theoretical calculations: CCC of Bailey et al. [5]; atomic-orbital
close coupling of Schiwietz et al. [24]; semiclassical B-spline close-
coupling calculations of Lühr and Saenz [25]; and the binary collision
theory of Sigmund and Schinner [15]. The TDCC results also include
the contribution from nuclear stopping.

012707-8



ELECTRON CORRELATIONS IN THE ANTIPROTON … PHYSICAL REVIEW A 98, 012707 (2018)

With the exception of high projectile energies (>100 keV),
the agreement between the CCC and the TDCC calculations
is quite good, primarily because the dominant SI0 channel
is treated in both approaches equivalently. The discrepancies
observed for projectile energies above 100 keV can be at-
tributed to the angular momentum basis truncation errors in the
CCC calculations in which the maximum angular momentum
value was Lmax = 6. This suppresses the formation of the
high-energy part of the ionization spectrum (see Fig. 1) and
leads to the underestimation of the stopping cross section.

Remarkably, both state-of-the art calculations disagree with
the p̄ experimental data by Agnello et al. [26] as reevaluated
in Ref. [27]. At low antiproton energies both the TDCC and
the CCC results lie outside the error bars. Below 10 keV, the
contribution from nuclear stopping sets in. We have therefore
also included these corrections. However, the result still lies
outside the quoted error interval of the experiment (Fig. 7).
Most significantly, the stopping power maximum appears to be
displaced in the experiment to higher collision energies (close
to 150 keV). As discussed in Ref. [5] these discrepancies may
result in part from the complex processing of the experimental
data which give only indirect access to S(vp). Closer agreement
is found with the experimental μ− data, in particular, the pro-
jectile velocity (or equivalent energy) for which the stopping
cross section reaches its maximum coincides with that in the
simulation. Yet, noticeable discrepancies in magnitude appear
as well whose significance is difficult to assess in view of the
unknown experimental uncertainties.

Earlier calculations have been performed within the frame-
work of one-electron models. They include the atomic-orbital
close-coupling model of Schiwietz et al. [24], the electron-
nuclear dynamics model by Cabrera-Trujillo et al. [35], and the
pseudostate close-coupling approach by Lühr and Saenz [25].
Contributions of two-electron processes to the stopping cross
section are approximately included in these calculations em-
ploying an IEM. The agreement between these one-electron
models [24,25] and the present two-electron calculations is
good at high antiproton energies (>200 keV), whereas at lower
antiproton energies the one-electron calculations overestimate
the stopping cross section. It is of conceptual interest to
identify the origin of this discrepancy. To this end, we have
decomposed the TDCC results for S(vp) into the contributions
due to the one-electron processes SI0 and EX0 and the two-
electron processes DI and SI-EX. At intermediate energies
50 keV < E < 200 keV the SI0 and EX0 contributions agree
very well with the present SAE model and with that of Lühr and
Saenz [25]. In this energy regime the discrepancy is thus due
to the overestimation of uncorrelated multielectron transitions
within the IEM. At even lower energies (<50 keV) additional
discrepancies appear already in the SI0 and EX0 contributions
to stopping indicating that in this strongly nonperturbative
regime electron correlation effects play an important role
already in one-electron transitions.

The binary collision theory for stopping by Sigmund
and Schinner [15] originally designed for swift heavy ions
is based on an interpolation of the stopping numbers L

between the classical one-electron binary collision model
at low collision speeds [Eq. (8)] and the Bethe limit at
high speeds [Eq. (9)]. Multielectron effects are indirectly
included via shell corrections and screening. Its application

to p̄ + He yields qualitative agreement with the ab initio
calculations while systematically underestimating the stopping
cross section below and around the stopping maximum. At
high collision energies, the binary collision theory converges,
by construction, to the Bethe limit and agrees quite well
with the present TDCC results. For a critical comparison
with the experiment it is worthwhile recalling the limitations
of the present TDCC approach to stopping. Deviations from
a classical straight-line trajectory or diffractive scattering are
neglected from the outset. Such effects are, however, expected
to be negligible for equivalent projectile energies above a
few keV (for μ− slightly higher than for p̄). Furthermore,
the present asymmetric angular momentum basis limiting the
accessible angular momenta of the spectator electron of the
primary collision event with the projectile to l � 1 cannot reli-
ably account for secondary violent electron-electron scattering
events that have been identified in the equal energy-sharing
region of double ionization by high-energy photons [58,59]
and in the electronic Thomas scattering [60–63] mediating
simultaneous charge transfer and ionization in charged-particle
collisions. Such processes have, however, negligible cross
sections compared to single ionization or excitation ionization
and are not expected to significantly influence the stopping
cross section. Short-ranged nonelectromagnetic interactions,
including weak interactions are negligible as well since stop-
ping is strongly dominated by distant collisions and long-range
interactions. The main limitation is thus the nonrelativistic
treatment. Although for the numerical results presented with p̄

energies up to 1 MeV corresponding to γ � 1.005 relativistic
corrections are still very small, at higher energies they may
become significant. The high-energy behavior of stopping and
straggling discussed here refers to the nonrelativistic limit
only.

Despite its importance for characterizing the DET distri-
butions, experimental results on straggling cross sections for
gas targets are still remarkably sparse [9–11,64] as most of
the measurements are performed for solid targets [14]. In
particular, for p̄ on He neither experimental data nor numerical
simulations appear to be available. The only available measure-
ments somewhat related to the present calculations are those of
Bonderup and Hvelplund [9] performed for proton projectiles
on a He gas target.

We present here an ab initio straggling simulation for
antiprotons using the fully correlated TDCC approach as well
as the SAE model (Fig. 8). The energy-independent Bohr strag-
gling cross section TB [Eq. (28)], based on the energy transfer
in classical binary collisions with quasifree electrons, gives
the natural scale for straggling and provides a useful order-
of-magnitude estimate. We therefore display the experimental
results for p on He and the theoretical predictions for p̄ on He
in units of TB . Of particular interest is the convergence behavior
of T (vp) towards TB at high collision energies as frequently
assumed or implied. Indeed, the present SAE simulations as
well as the TDCC restricted to one-electron processes, i.e.,
the sum of the SI0 and EX0 contributions agree very well
with each other over the entire range of energies investigated
(3 keV � E � 1 MeV) and monotonically approach the Bohr
limit TB .

The analytic theory by Sigmund [14] also predicts a
monotonic increase towards TB for p̄ whereas for the charge-
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FIG. 8. Comparison between straggling cross sections for protons
and antiprotons colliding with helium, normalized to the Bohr
straggling number TB = 4πZ2

pZT . Shown are the present TDCC
and SAE results for antiprotons, the experimental data by Bonderup
and Hvelplund [9] for protons, and the analytic predictions by Sig-
mund [14] for protons and antiprotons. The smaller frame is a zoom in
on the high antiproton energy region showing the (non)convergence
of the presented results towards the classical Bohr limit.

conjugate projectile p this limit is approached from above
and displays a peak around 20 keV. The enhanced straggling
for p originates from the combined effects of the Barkas
contribution (∼Z3

p) [17] and the charge-transfer channel absent
for p̄.

The full TDCC, however, which includes the many-electron
transitions does not appear to converge to TB (see zoom in in
Fig. 8), T (vp) lies about 10% above TB . The slight decrease
by about 1% in the TDCC straggling between 500 keV and
1 MeV antiproton energies (see the zoom in of Fig. 8) might
suggest a possible delayed convergence towards TB , however,
from above rather than from below. Based on both numerical
evidence and analytic results for the nonrelativistic high-
energy limit this can be excluded since correlated two-electron
processes, most importantly, single ionization accompanied by
shake-up to excited states of He+ (SI-EX) provide a finite
contribution to T (vp) even as E → ∞. It should be noted
that a direct converged numerical calculation of T (vp) in the
limit vp → ∞ is computationally not feasible within a given
large but finite-size angular momentum basis and FEDVR.
Instead, we explore the asymptotic behavior of the two-electron
processes to the total straggling cross section by fitting and
extrapolating the ratios R of the channels (SI-EX)/(SI0 + EX0)
and (SI-EX + DI)/(SI0 + EX0) to the asymptotic expansion
in powers of E−1,

R(E−1) = R0 + a

E
+ b

E2
+ c

E3
. (30)

For both ratios the extrapolation yields nearly identical asymp-
totic limits of R0 	 0.1 (Fig. 9). Whereas the DI channel
provides a significant contribution at intermediate energies, the

FIG. 9. Straggling cross-section ratios as a function of the inverse
projectile energy. The TDCC data for the ratios R are fitted to the
following function: R(E−1) = R0 + a/E + b/E2 + c/E3. The R0

asymptotic values of the ratios are 9.4% [SI-EX/(SI0 + EX0)] and
9.7% [(SI-EX + DI)/(SI0 + EX0)].

asymptotic behavior is dominated by the correlated shake-up.
It is the rapid decrease in the DI contribution between 500 keV
and 1 MeV (or between 2 and 1 MeV−1, Fig. 9) which results
in the slight decrease in T (vp) mentioned above (Fig. 8, inset).

The finite additional contribution of SI-EX and, to a lesser
extent, of DI to the asymptotic straggling cross section beyond
its one-electron limit is consistent with earlier analytic and
numerical results of shake-up and shake-off processes in
photoionization [65–70] which are closely intertwined with
the analogous processes in charged-particle scattering [71,72].
Also in photoionization shake-up (i.e., SI-EX) and shake-off
(DI) converge to a finite fraction of the SI0 cross section in the
limit E → ∞ with shake-up dominating over shake-off. The
present findings are also consistent with earlier theoretical [73]
and experimental [74] data which show the SI-EX/SI0 ioniza-
tion cross-section ratio to converge towards a constant nonzero
value for large projectile velocities.

From the asymptotic behavior of R(E−1) [Eq. (30) and
Fig. 9] we estimate that the true (nonrelativistic) high-energy
limit of straggling is T 	 1.09TB rather than TB . Straggling is
thus shown for the prototypical case of helium to be sensitive to
multielectron processes not accounted for by the Bohr model.
This effect is expected to be more pronounced for heavier
multielectron atoms with a plethora of available shake-up as
well as correlated multiple shake-up–shake-off channels.

VI. CONCLUDING REMARKS

We have presented a fully ab initio simulation of the
electronic energy-loss distribution for antiproton scatter-
ing of He for antiproton energies ranging from 3 keV to
1 MeV using the TDCC method [16]. The first moment of
this distribution, referred to as the stopping cross section,
and the second moment, the straggling cross section, are
compared with other theoretical predictions and experiment
when available. We have addressed the well-known discrep-
ancy between several theoretical predictions [5,24,25] and
experimental data for the stopping cross section for p̄ [26,27]
and μ− [57]. Although we find slightly improved agreement
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with the p̄ experiment at high energies well above the stopping
power maximum, the discrepancies to the data persist at lower
energies whereas at intermediate energies our TDCC results
are in good accord with the recent CCC calculation [5] both of
which explicitly include electron correlation effects. Although
all numerical simulations employing either an effective one-
electron or the full two-electron time-dependent Schrödinger
equation agree with each other on the projectile velocity
of the stopping maximum, the stopping power maximum
of the p̄ experimental data differ from these predictions.
Compared to the p̄ data, better agreement is found between
the μ− experimental data and the theoretical predictions, in
particular, on the position of the stopping maximum, however
the magnitude of the μ− stopping cross section is somewhat
lower than the theoretical prediction for all equivalent energies.
The considerable spread and uncertainties in the available
experimental data suggest that further experimental tests are
desirable.

Both the stopping cross section and the straggling cross
section are shown to be influenced by electron correlation
effects. In particular, an ab initio simulation for straggling
reveals the importance of correlated multielectron transitions.
Ionization accompanied by excitation of the second electron
provides a nonvanishing contribution even at high collision
energies. This shake-up process is at the origin why the Bohr
straggling number is not approached at high energies but

surpassed. The present results provide benchmark data for
the role of correlations in stopping and straggling for the
simplest multielectron system, helium, for which a full ab
initio description is still feasible. We expect such multielectron
transitions in heavier atoms and more complex targets to be of
even greater importance.
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