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Decomposed description of Ramsey spectra under atomic interactions
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We introduce a description of Ramsey spectra under atomic interactions as a sum of decomposed components
with differing dependence on interaction parameters. This description enables intuitive understanding of the loss
of contrast and asymmetry of Ramsey spectra. We derive a quantitative relationship between the asymmetry and
atomic interaction parameters, which enables their characterization without changing atom density. The model is
confirmed through experiments with a Yb optical lattice clock.
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I. INTRODUCTION

Ramsey spectroscopy is one of the standard techniques of
precision measurements of atomic resonances [1]. It employs
two excitation pulses, typically of equal length τ , that are
separated by a dark interval, where atoms are in a freely
evolving quantum superposition state. The resulting excitation
probability as a function of the frequency of the exciting field
shows characteristic spectra as in Fig. 1. Compared to Rabi
spectroscopy where atoms are exposed to a single, continuous
pulse, Ramsey spectroscopy is capable of providing a reduction
in linewidth by a factor of 1.7 for a given interrogation time
[1,2]. It is also possible to extend the Ramsey method to
achieve better controls of atomic states. An example for this
is the hyper-Ramsey scheme [3], where the addition of a third
pulse, along with careful control of amplitude and phase, can
eliminate frequency shifts resulting from the excitation field
itself [4].

In a situation where multiple atoms are interrogated simul-
taneously, their interactions are of significant importance for
precision measurements. For example, the resulting frequency
shifts in cesium fountain clocks need to be either measured
continuously and with great accuracy [5], or the conditions
governing the interactions have to be precisely controlled to
minimize their effect [6].

When p-wave atomic interactions (described by antisym-
metric wave functions) are dominant, their dependence on the
excitation probability can be used to control the collisional
shifts [7,8]. This control of collisional shift is experimentally
feasible in certain systems of ultracold atoms, such as neu-
tral 171Yb, where the contribution caused by p-wave atomic
interactions is sufficiently larger than that of s-wave atomic
interactions (described by symmetric wave functions). Our
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work focuses on situations where this assumption of p-wave
dominance is valid.

The shift of the central peak is usually the most relevant con-
cern for precision measurements [9,10], while atomic interac-
tions also alter the shape of the entire spectrum, manifesting as
loss of contrast and asymmetry as discussed in Ref. [11]. Here
we present a model that decomposes the Ramsey spectrum into
the sum of two components distinguished by their dependence
on the interaction parameters. This intuitively describes the
loss of contrast due to atomic interactions through the simulta-
neous presence of both components. We also derive a formula
which quantitatively relates the summed interaction parameter
W , which will be discussed in detail later, to the asymmetry
of the Ramsey spectra. A measurement method based on this
allows measuring the strength of atomic interactions without
changing the atom density. The new model is experimentally
confirmed using our 171Yb optical lattice clock.

II. THEORETICAL MODEL

We consider spin-polarized fermionic atoms trapped inside
a one-dimensional (1D) optical lattice oriented along the z

axis. The lattice is created by the standing wave of a laser at
a magic frequency minimizing the ac Stark shift of the clock
transition [12]. The tight confinement along the lattice axis
allows interrogation of atoms in the Lamb-Dicke regime for
the co-propagating clock laser.

As described in Ref. [7], we first consider a simple case
where two fermions 1,2 are trapped inside a lattice site.
We assume that these fermions are spin polarized along the
direction of a homogenous external magnetic field B. We
denote the vibrational quantum number of atom i = 1,2 along
the j = x,y,z direction as nij .

The state of the two atoms can be written in a four-state
basis composed of (in order) three triplet states |gg〉, |ee〉,
and |eg+〉 = (|eg〉 + |ge〉)/√2 and a singlet state |eg−〉 =
(|eg〉 − |ge〉)/√2, depending on whether each atom is in the
electronic ground state |g〉 or in the excited state |e〉. Since
the overall wave function of spin-polarized fermions has to be
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FIG. 1. Ramsey spectrum with (blue dashed line) and without (red
solid line) atomic interactions. Without interactions, the spectrum is
symmetric about δ = 0. Atomic interactions shift the nth peak to
δI
n. The separations from the center fringe d I

n and d I
−n then become

unequal, resulting in asymmetry. As an example, d I
3 and d I

−3 are
shown. Plotted spectrum is obtained by a sequence of two τ = 16 ms
π

2 pulses separated by a 60 ms dark interval.

antisymmetric about particle exchange, atom pairs in the triplet
and the singlet electric states have antisymmetric and sym-
metric spatial wave functions respectively. We will therefore
refer to their lowest order interactions as p-wave and s-wave
interactions, since higher order interactions are suppressed due
to the low temperature of the atoms. Respectively, we denote
the corresponding energy shifts as interaction parameters V αβ

and Uαβ for atomic states α = g,e and β = g,e [7,13] as
shown in Fig. 2. In the presence of an electromagnetic field
of detuning δ = ωl − ω0 from the atomic resonance ω0, the
two-body Hamiltonian in the four-state basis becomes [7]

Ĥ =

⎛
⎜⎜⎜⎜⎝

δ + V gg 0 �/
√

2 	�/
√

2
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2
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2 0 Ueg

⎞
⎟⎟⎟⎟⎠, (1)

where � = (�1 + �2)/2 and 	� = (�1 − �2)/2 are the
mean and deviation of the Rabi frequencies experienced by

FIG. 2. Energy shifts of two-atom states due to the atomic
interactions whose strength is denoted by interaction parameters V αβ

and Uαβ . Straight arrows show energy differences in terms of detuning
δ, and curved arrows indicate coupling strengths expressed as Rabi
frequencies.

the two atoms. 	�/� corresponds to the inhomogeneity of
the Rabi frequency of the atoms. As the contribution from
s-wave interactions is on the order of O( 	�2

�
2 ), the contribution

becomes negligible when the Rabi frequency of the atoms is
homogeneous. However, it is generally difficult to completely
eliminate 	�, since any misalignment of the clock laser from
the axis of strong confinement causes the Rabi frequency to
depend on the radial vibrational modes nx and ny [14].

The Rabi frequency is treated as constant during the ex-
citation pulses, which are characterized by a pulse area �τ .
For atoms initially in the state |gg〉, we use the Hamiltonian
in Eq. (1) to calculate the excitation probability P (δ) after a
Ramsey sequence consisting of two identical pulses separated
by a dark time T , during which � and 	� are zero. For the
calculation of P (δ), we assume that the lifetime of the excited
state |e〉 is long enough compared to the Ramsey sequence
and thus ignore the effect of the spontaneous decay. For small
inhomogeneity 	�/�, P (δ) can be decomposed into a sum
of two oscillating components as

P (δ) = A1(δ) cos2

[
(δ − V eg + V gg)T + φ(δ)

2

]

+A2(δ) cos2

[
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, (2)

with envelope functions

A1(δ) = �
2

(�
2 + δ2)3

sin2

(
1

2
τ

√
�

2 + δ2

)

×{�2
[cos(τ

√
�

2 + δ2) + 1] + 2δ2}2, (3)
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and the additional phase arising from the finite pulse length τ

φ(δ) = arctan

⎡
⎣ 2δ

√
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2 + δ2 sin(τ

√
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2 + δ2)
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2 + 2δ2) cos(τ

√
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2 + δ2) + �
2

⎤
⎦, (5)

which is an odd function. As shown in Fig. 3(a), this additional
phase can be well approximated as φ(δ) � δτ . In the limit
of weak interactions (V αβ → 0), the phases of the oscillating
components given by the first and second line of Eq. (2) are
identical and P (δ) simplifies to the Ramsey spectrum without
atomic interactions. Otherwise the V eg − V gg and −V eg + V ee

terms introduce different phase shifts without affecting the
envelope functions A1 and A2. Note that for T � τ , the
slow variation of A1 and A2 is negligible compared to the
oscillation resulting from δT , and thus the oscillatory behavior
of the spectrum is mostly explained by the cosinusoidal part
of Eq. (2). Physically, as can be seen from the phase of the
cosinusoidal part, the A1 term (A2 term) is generated by
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(a)

(b)

FIG. 3. (a) φ (red solid line) plotted together with the approxi-
mation δτ (blue dashed line) for τ = 16 ms π

2 pulse. (b) A1 and A2,
plotted as red solid and blue dashed lines, respectively, for the same
parameters as (a). As a reference, A1 + A2, which corresponds to the
envelope of the Ramsey spectra in the absence of atomic interactions,
is also plotted as dotted gray lines.

the interference between the phase of |gg〉 and |eg+〉 states
(|eg+〉 and |ee〉 states) during the dark time (see Fig. 2). Note
that these envelope functions do not depend on the atomic
interactions, or the length of the dark time T . For illustration,
A1 and A2 are plotted in Fig. 3(b) for a typical Ramsey
sequence. While A1 and A2 have comparable contributions
to the spectrum in the central part, A1 starts to dominate over
A2 with increased detuning, which reflects the decrease in the
population in the |ee〉 state. In general, the phase shifts of
the two decomposed components are not equal (V eg − V gg �=
−V eg + V ee), resulting in a loss of contrast where both A1 and
A2 exist. In a typical spectrum, this effect is most visible in the
center region (Fig. 1).

We now discuss the frequency shift in the picture of
the decomposed description. First, as shown in Fig. 1, we
enumerate the peaks starting at δ = 0. We also denote the nth
peak’s original positions in the absence of atomic interactions
as δn, for which φ(δ) ∼ δτ yields δn ∼ 2πn

T +τ
. In the vicinity of

δn, P can be expanded as a quadratic function as

P (δ) � −α[A1(δn)(δ − δn − V eg + V gg)2

+A2(δn)(δ − δn + V eg − V ee)2] + const (6)

using a positive constant α. It can be rewritten as

P (δ) � −α(A1 + A2)
(
δ − δI

n

)2 + const, (7)

where δI
n represents the position for the nth peak in the presence

of atomic interactions. As a consequence, the frequency shift
can be written as

δI
n − δn = A1(δn)(V eg − V gg) + A2(δn)(−V eg + V ee)

A1(δn) + A2(δn)
. (8)

As can be seen in the equation, δI
n − δn is an average of the shift

of each oscillating component weighted by their amplitudes.
After some calculations, δI

n − δn becomes

δI
n − δn = V ee − V gg

2
− δ2

n + �
2

cos
(
τ

√
δ2
n + �

2)
2
(
δ2
n + �

2) W, (9)

with W = −2V eg + V gg + V ee. For the center peak in partic-
ular, the shift becomes

δI
0 = V ee − V gg

2
+

(
p1 − 1

2

)
W, (10)

where p1 is the excitation probability after the first pulse.
This result is identical to that of Ref. [7]. It shows that W is
experimentally accessible by measuring δI

0 for various values
of p1, and we shall refer to this as the p1-based measurement
method.

In the following we quantitatively formalize the asymmetry
of the Ramsey spectrum using Eq. (8). When accounting for
atomic interactions, the frequency separation d I

n from the 0th
peak is

d I
n = ∣∣δI

n − δI
0

∣∣. (11)

As a measurable quantity for the asymmetry of the Ramsey
spectrum for the ±nth peaks, we define

an = d I
n − d I

−n

2
. (12)

By substituting Eq. (11) and using the result of Eq. (9) together
with the antisymmetry of the peak positions δn = −δ−n, the
asymmetry an becomes

an = δI
n + δI

−n

2
− δI

0 = CnW, (13)

where we have defined

Cn = 1

2

⎡
⎣cos(�τ ) − �

2
cos

(
τ

√
�

2 + δ2
n

) + δ2
n

�
2 + δ2

n

⎤
⎦. (14)

Since Cn depends only on the known experimental quantities �

and δn, it is possible to directly relate the measured asymmetry
an to W using Eq. (13), and we shall refer to this method as
the asymmetry-based measurement method of W .

III. EXPERIMENTAL CONFIRMATION

To test the theoretical model, measurements were per-
formed with the Yb optical lattice clock [15]. Figure 4 gives an
overview of the experimental setup. Atoms are cooled down
through two stages of a magneto-optical trap and trapped in
the magic wavelength optical lattice. This is created by a
retroreflected beam with a radius of w � 43 μm at the trap
position. Its intensity is actively stabilized using an acousto-
optic modulator (AOM). The axial motional statenz is sideband

012704-3



YANAGIMOTO, NEMITZ, BREGOLIN, AND KATORI PHYSICAL REVIEW A 98, 012704 (2018)

FIG. 4. Overview of the experimental setup of our 171Yb optical
lattice clock. The upper left inset shows the relevant electronic states
of the 171Yb atom, along with the wavelengths and natural linewidths
of the transitions between them.

cooled via the red sideband transition 1S0(nz) → 3P 0(nz − 1).
The suppression of the red sideband after the cooling sequence
indicates that more than 95% of the atoms populate the axial
vibrational ground state nz = 0. Atoms are spin polarized in
the mF = 1/2 or −1/2 state by optical pumping on the 1S0-3P 1

transition, reducing the population in the undesired spin state
to less than 1%. The excitation probability after the clock
laser pulses is determined by measuring the fluorescence on
the 1S0-1P 1 transition using a CCD camera. The lifetime of
the excited 3P 0 clock state [16] is significantly longer than
our experimental sequences, which justifies our assumption of
negligible spontaneous decay.

Figure 5 shows a Ramsey spectrum taken with a particularly
strong confinement corresponding to a trap depth of 650Er,

FIG. 5. Experimental Ramsey spectrum (blue dashed line) for
τ = 30 ms π

2 pulses and T = 150 ms with an atom number of
∼1500, which corresponds to an average number of 1.5–3 atoms
per lattice site. To increase atomic interactions, the trap depth is
set to a large value of 650Er. Gray line indicates the theoretical
spectrum without atomic interactions. Red line includes interactions
with W̃ = 2π×1.6 Hz obtained from experimental data by the
asymmetry-based measurement.

where Er = h2

2mλ2 is the lattice photon recoil energy for an atom
mass of m and lattice wavelength λ = 759 nm. The comparison
to a theoretical spectrum calculated based on Eq. (2) clearly
shows that the model successfully reproduces the loss of
contrast that is more pronounced in the center of the spectrum
than in the side lobes.

We have defined the interaction parameters through the
energy shift due to two-body atomic interactions. While the
experimental system of the 171Yb clock is not designed to
specifically populate two atoms per lattice site, it is possible to
describe the overall interaction of a larger number of atoms in
the weakly interacting regime as a sum of pairwise interactions

FIG. 6. (a) Asymmetry a4 plotted as a function of the atom num-
ber with a linear fit. For our Ramsey sequence with τ = 16 ms, T =
100 ms, and �τ = π

2 , the fourth peak is located at δ4/2π = 34 Hz.
(b) Asymmetry an measured for different τ with pulse areas �τ =
0.8π,1.0π,1.2π,1.4π as indicated. All the points are measured with
the atom number of ∼3000. The black dashed lines indicate the
position of the nth peak for each pulse length. (c) Collisional
frequency shift of the central peak δI

0 is measured for different
excitation probability p1 after the first Ramsey pulse. All error
bars represent 1-σ statistical uncertainties without accounting for
instability of experimental parameters.
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[7]. In the following, we use the effective interaction param-
eters Ṽ αβ to represent the total energy shift resulting from
interactions with all other atoms in the same site, averaged
over the entire lattice. In this way, the model can be tested by
comparing the effective W̃ values obtained through p1-based
and asymmetry-based methods. To ensure comparable condi-
tions, following measurements are performed for a constant
trap depth of ∼200Er, and a Ramsey sequence of T = 100 ms
dark time, enclosed by pulses of � = 2π×15.6 Hz. For the
asymmetry-based measurement, the pulse length is chosen as
τ = 16 ms for a pulse area of π

2 . We investigate the peaks
identified by n = ±4, which show a significant asymmetry at
sufficient signal P ∼ 0.5 to avoid loss of clock stability due to
reduced signal-to-noise ratio.

Measurements of an are performed by alternately stabilizing
the clock laser to the 0th and ±nth peaks using a threefold
interleaved measurement sequence. First, we investigate the
atom number dependence of an to find the results shown in
Fig. 6(a). The absence of a significant nonlinearity indicates
negligible effects of three-body collisions, which are expected
to manifest as a contribution with a quadratic dependence on
atom number. The linear dependence allows us to normalize
the results to a reference atom number in the following.

The actual measurement of W̃ through the asymmetry-
based method is performed by measuring an for various n

and Ramsey pulse areas �τ and fitting the result for W̃ using
Eq. (13). The measurement results are shown in Fig. 6(b)
together with interpolations according to the fit. The good
agreement of the measurement points and theoretical curves
confirms the validity of Eq. (13) over a wide range of param-
eters. The increased magnitude of an for larger pulse areas
�τ reflects that the amplitude of Cn has a positive correlation
with �τ . Dashed lines indicate the position of each peak with
varying pulse length τ . Their tilt and curvature are due to the
contribution from φ(δ). All the points are fitted simultaneously
to find W̃ = 2π × (0.90 ± 0.02) Hz [17] for the typical atom
number of 3000. Since atoms are distributed over 500–1000
lattice sites, this represents 3–6 atoms per site.

The alternative measurement of W̃ is performed by measur-
ing the frequency shift of the central peak δI

0 for various p1 and
fitting the result using Eq. (10) for W̃ . For each measurement,
p1 is set to a desired value by changing the pulse areas of both
of the Ramsey pulses. δI

0 is then determined by measuring the
shift of the central peak while alternating between high atom

number N (H) and low atom number N (L). The frequency shift δI
0

for a specific atom number N (T) is extrapolated as δ
I(H)
0 −δ

I(L)
0

N (H)−N (L) N
(T)

where δ
I(H)
0 − δ

I(L)
0 is the shift measured in the experiment. The

measurements results for δI
0 are fitted as a linear function of p1

in Fig. 6(c), and the fitting gives W̃ = 2π×(1.07 ± 0.06) Hz
for the nominal atom number of N (T) = 3000 used in the
asymmetry-based measurements.

The stated uncertainties represent only the statistical uncer-
tainty of the contributing measurements and do not account for
changes in experimental conditions between measurements.
Realistically, we expect about ∼5% variation in the trap depth
D for each measurement. This implies ∼10% uncertainty
of W̃ , when considering the empirically observed scaling
of collisional frequency shifts as D2 or greater. A similar
discrepancy will occur if the number of populated lattice sites
changes. We thus consider the two methods to show agreement
within our measurement precision.

IV. CONCLUSION

In conclusion, the decomposed description succeeds in
providing simple explanations for the loss of the contrast of
the Ramsey spectra in the presence of atomic interactions,
and the theoretical prediction shows great agreement with
the experiment. The quantitative relationship between the
asymmetry and the interaction parameter W shown in this
research reveals that the Ramsey spectra contain information
about atomic interactions, which form an important systematic
effect in atomic clocks. Specifically, the asymmetry-based
measurement allows extracting information about the strength
of the atomic interactions without changing the atom density,
which will find useful applications in a case where changing
atom number introduces additional effects such as the variation
of the populated number of lattice sites.
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