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Dipole polarizability calculation of the Cd atom: Inconsistency with experiment

B. K. Sahoo*

Atomic, Molecular and Optical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,

Chinese Academy of Sciences, Wuhan 430071, China

Yan-mei Yu†

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 16 November 2017; published 31 July 2018)

Three earlier relativistic coupled-cluster (RCC) calculations of dipole polarizability (αd ) of the Cd atom are
not in good agreement with the available experimental value of 49.65(1.65) ea3

0 . Among these two are finite-field
approaches in which the relativistic effects have been included approximately, while the other calculation uses
a four-component perturbed RCC method. However, another work adopting an approach similar to the latter
perturbed RCC method gives a result very close to that of experiment. The major difference between these
two perturbed RCC approaches lies in their implementation. To resolve this ambiguity, we have developed
and employed the relativistic normal coupled-cluster (RNCC) theory to evaluate the αd value of Cd. The distinct
features of the RNCC method are that the expression for the expectation value in this approach terminates naturally
and that it satisfies the Hellmann-Feynman theorem. In addition, we determine this quantity in the finite-field
approach in the framework of a four-component relativistic coupled-cluster theory. Considering the results from
both approaches, we arrive at a reliable value of αd = 46.02(50) ea3

0 . We also demonstrate that the contribution
from the triples excitations in this atom is significant.

DOI: 10.1103/PhysRevA.98.012513

I. INTRODUCTION

Accurate values of the electric dipole polarizabilities (αd )
of atomic states are necessary for high-precision experiments
on optical lattices, atomic clocks, quantum information, and
many other important areas of atomic and molecular physics
[1–5]. Comparisons between the calculated αd values and
experimental results could serve as benchmarks to validate
many-body methods [6–10]. Methods that are capable of
yielding results in close agreement with high-precision exper-
imental results are considered to be accurate and suitable for
the evaluation of properties of atomic systems, and their values
can be treated as reliable when experimental results are not
available. Many-body calculations are performed using finite-
size many-electron and single-electron basis wave functions
as approximations have to be made in determining higher-
order correlation effects due to limitations of computational
resources. A large number of numerical operations are per-
formed; thus it is not possible to estimate uncertainties in the
calculations due to numerical truncations. In such a situation,
just a comparison of a calculated value with an experimental
result cannot reliably validate a method [11]. Therefore, it is
imperative to perform calculations using many-body methods
that can capture a wide range of physical effects and have the
merit of capturing correlation effects to all orders of the residual
Coulomb interaction at different levels of approximation and
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are size-extensive in order to apply them for high-precision
studies. To ascertain the accuracies of the results, it is necessary
to check the consistencies in the results by employing a
number of theories that are equivalent to all-order many-body
perturbation methods.

Many-body perturbation theory (MBPT) was first devel-
oped by Brueckner [12–14] and Goldstone [15]. Newer ver-
sions of this theory are now widely used to calculate atomic
wave functions and properties in many-electron systems. Im-
portant steps to determine atomic dipole polarizabilities were
taken by Dalgarno and his collaborators [16,17] and Kelly
[18]. The approach adopted by Dalgarno and collaborators
solves an inhomogeneous differential equation to obtain the
first-order wave function using Rayleigh-Schrödinger pertur-
bation theory. This approach, known as the coupled-perturbed
Hartree-Fock method or random phase approximation (RPA),
can predict αd values very accurately in some cases, but it
does not account for a number of different classes of electron
correlation effects. On the other hand, the approach adopted
by Kelly using the MBPT method pioneered by Brückner
and Goldstone follows a diagrammatic technique in which
the contributions from different types of electron correlation
effects can be illustrated in a transparent manner. However, it
is not simple to include higher-order correlation contributions
in this approach as it treats the residual Coulomb interaction
Hamiltonian and the dipole operator (D = | �D|) as two differ-
ent perturbations. Another suitable approach to determine αd

for atomic systems is to use a finite-field method, in which the
interaction Hamiltonian due to �D with an arbitrary external
electric field is added to the atomic Hamiltonian to obtain the
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energy eigenvalues [19–21]. Then the αd values are inferred
from the second derivative of the energy with respect to the
electric field. The disadvantage of this approach is that it
neglects the higher-order corrections to the energies due to
the electric field. Hence, there is a loss of numerical accuracy
in the results. This approach is suitable for the molecular
systems where the electron orbitals, described by the Cartesian
coordinate system, are mixed in parities and computations are
minimized by utilizing group symmetry identities [22,23]. For
determining αd values of atoms in this approach, one can
choose a special group symmetry. However, it cannot still
describe atomic orbitals with the same accuracy as in the
spherical coordinate system. It is to be noted that it is possible
to work with mixed parity orbitals in the spherical coordinate
system, but it will be computationally more expensive.

One of the key differences between the spherical and
Cartesian coordinate systems for carrying out calculations is
that the atomic orbitals are divided into radial and angular
factors in the former case. Thus, all the physical operators are
expressed using spherical tensors to take care of the angular
momentum selection rules. The coupled-cluster (CC) theory is
an all-order perturbative method, and it is size-consistent and
size-extensive, for which it is referred to as the gold standard for
treating correlation effects in many-electron systems [24–26].
For performing CC calculations in a spherical coordinate
system using atomic orbitals with definite parities, the two-
body interactions and the CC wave operators must be expanded
in terms of multipoles [27]. We have developed different meth-
ods in the relativistic CC theory framework (RCC method)
to calculate αd values of atomic systems in the spherical
coordinate system [8,9,28,29]. Since the atomic orbitals in
this case have definite parities, we had perturbed the RCC
wave functions by considering D as the external perturbation
to first order. This is similar in spirit to the aforementioned
approach by Dalgarno [16,17] in which we obtain the solution
to the inhomogeneous differential equation in terms of the
first-order perturbed RCC wave function. In addition, our
RCC method also gives contributions from various electron
correlation effects in terms of Goldstone diagrams, similar
to Kelly’s approach [18]. We have applied this method to
a number of atomic systems to determine αd values very
accurately [8,9,28]. In one of our works, we had obtained
αd = 45.86(15) ea3

0 for the Cd atom [9] using our RCC theory,
where the corresponding experimental value has been reported
as 49.65 ± 1.49 ± 0.16 ea3

0 [30]; with the net uncertainty this
value is αd = 49.65(1.65) ea3

0 . In the same study, we had
also obtained these values for other atoms belonging to the
homologous group of Cd in the periodic table like Zn and
Hg, which were in very good agreement with their respective
experimental results [9]. In fact, our findings were also in
agreement with the previous calculations, which were obtained
by applying other variants of CC theories in the finite-field
procedure. These calculations, however, were performed using
quasirelativistic [6] and scalar two-component Douglas-Kroll
[7] Hamiltonians in contrast to our four-component relativistic
Hamiltonian to account for the relativistic effects. Following
these works, another group has reported the αd value as
49.24 ea2

0 [10] employing a perturbative RCC method like ours
[9] and has referred to it as the perturbed RCC (PRCC) method
in the singles and doubles approximation and perturbed RCC

with partial triples [PRCC(T)] method when triples effects
were included. This calculation is very close to the central
value of the experimental result and is in disagreement with all
the previous calculations. Thus, it is necessary to understand
the reasons for the disagreement among these theoretical
calculations and find a more reliable value of αd of the Cd
atom. Analysis of these methods reveals that there were no
additional physical effects included in the PRCC method which
could be responsible for improving the result. This means
that the difference in the implementation procedures for both
four-component perturbative RCC methods is responsible for
the discrepancies between the results.

The RCC theories employed in Refs. [8–10] are size-
extensive. In the framework of these theories, the expression
for the energies terminate, but the expectation values corre-
sponding to different properties do not. Recently, we have
observed that the inclusion of higher-order nonlinear terms in
the nonterminating series in the evaluation of αd and permanent
electric dipole moment (EDM) in the 199Hg atom influences
the results significantly [31]. Therefore, it is imperative to
adopt a relativistic CC method in the spherical coordinate
system in which the expectation value terminates naturally.
This would be particularly relevant in the evaluation of αd for
Cd atom where the results of the calculations from different
methods are inconsistent and differ substantially from the
measured value. In this context, the normal coupled-cluster
(NCC) method [26,32,33] would be more appropriate for the
evaluation of αd . This method satisfies the Hellman-Feynman
theorem. Moreover, in the NCC method, the expressions for
both energies and expectation values corresponding to different
physical properties terminate in a natural way. The normal-
ization factor in this method is equal to unity. The additional
effort of implementing this method for determining αd is that it
is necessary to solve the unperturbed and perturbed equations
for both the bra and ket states. This amounts to a substantial
increase in the computational efforts to perform calculations
using the NCC method in comparison with the CC method.
Complexities grow further to implement it in the spherical
coordinate system along with the angular spherical tensor
products. Due to recent demands to perform high-accuracy
calculations in the atomic systems, we have developed the
NCC method in the four-component relativistic theory (RNCC
method) adopting the spherical coordinate system, and it has
been applied to calculate EDM and αd values of the 199Hg
atom [34]. In this work, we apply the RNCC method to find
αd of the Cd atom and compare the result with the other
theoretical and experimental values. Furthermore, we also
estimate this quantity in the finite-field approach using the
four-component Dirac-Coulomb (DC) Hamiltonian in the mul-
tireference coupled-cluster (MRCC) program [35]. By assessing
various uncertainties and checking consistencies in the results
from different methods at various levels of approximations, a
precise value of αd has been given. We also elucidate trends
of correlation effects in the determination of this quantity by
comparing intermediate results from a number of lower-order
many-body methods and from different RCC and RNCC terms.
In fact, there exists another CC approach for the determination
of polarizabilities by evaluating the second derivative of
energies [36]. However, development of such a method using a
spherical coordinate system is not straightforward, and it will
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require one more order expansion of (R)CC operators. This
will give three different perturbed (R)CC operators similar to
the approach described in Ref. [37] for studying EDMs, and it
will lead to handling complicated tensor products to account
for the angular momentum couplings in the calculations of the
perturbed wave functions.

The remaining part of the paper is organized as follows: In
the next section, we give briefly the theory of the atomic dipole
polarizability. In Sec. III we describe the RCC and RNCC
theories and then discuss and present the results in Sec. IV. We
mention our conclusions in Sec. V. Unless stated otherwise,
we use atomic units (a.u.) throughout the paper.

II. THEORY

The energy of the ground state of an atom in the presence of
an external weak electric field of strength �E can be expressed
in the perturbation theory as [1,2]

E0(| �E |) = E0(0) − αd

2
| �E |2 − · · · , (1)

where E0(0) is the energy of the state in the absence of the
electric field and αd is known as the dipole polarizability of
the state. It is obvious from the above expression that αd can
be determined by evaluating the second-order differentiation
of E0(| �E |) with a small magnitude of electric field �E as

α = −
(

∂2E0(| �E |)
∂| �E |∂| �E |

)
| �E |=0

. (2)

This procedure is known as finite-field approach for evaluating
αd , which involves calculations of E0(| �E |) after including
the interaction Hamiltonian Hint = − �E · �D with the atomic
Hamiltonian. For achieving numerical stability in the result,
it would be necessary to repeat the calculations by considering
a number of | �E | values.

To estimate αd in the spherical coordinate system, we can
expand the ground state wave function of the atom in the
presence of a weak electric field as

|�0〉 = ∣∣� (0)
0

〉 + | �E |∣∣� (1)
0

〉 + · · · (3)

with |� (0)
0 〉, |� (1)

0 〉 etc. as the ground state wave function in
the absence of the electric field, its first-order correction in the
presence of electric field, and so on. From the second-order
perturbation expansion, we get

αd = 2〈
�

(0)
0

∣∣� (0)
0

〉 ∑
I �=0

〈
�

(0)
0

∣∣D∣∣� (0)
I

〉〈
�

(0)
I

∣∣D∣∣� (0)
0

〉
E

(0)
0 (0) − E

(0)
I (0)

= 2〈
�

(0)
0

∣∣� (0)
0

〉 ∑
I �=0

∣∣〈� (0)
0

∣∣D∣∣� (0)
I

〉∣∣2

E
(0)
0 (0) − E

(0)
I (0)

, (4)

where |� (0)
I 〉 are the excited states of the atom with energies

E
(0)
I (0). Allowing a mathematical formulation, we can express

the first-order perturbed wave function of |� (0)
0 〉 due to D as

∣∣� (1)
0

〉 =
∑
I �=0

∣∣� (0)
I

〉 〈
�

(0)
I

∣∣D∣∣� (0)
0

〉
E

(0)
0 (0) − E

(0)
I (0)

. (5)

Thus, the expression for αd can be written as [29]

αd = 2

〈
�

(0)
0

∣∣D∣∣� (1)
0

〉
〈
�

(0)
0

∣∣� (0)
0

〉 . (6)

In the ab initio approach, the above first-order perturbed wave
function |� (1)

0 〉 can be obtained as the solution to the following
inhomogeneous equation [29]:(

H − E
(0)
0

)∣∣� (1)
0

〉 = −D
∣∣� (0)

0

〉
. (7)

This is equivalent to Dalgarno’s approach [16,17] except
the fact that the solution for the above first-order perturbed
equation has to be obtained for the dipole operator D in place
of the interaction Hamiltonian Hint. Though the dimensions
of �D and Hint are not same, mathematically the solution of
|� (1)

0 〉 in Eq. (7) can give rise to the expression for αd that is
equivalent to Eq. (4). Further, we can express

αd = 1

| �E |
〈�0|D|�0〉
〈�0|�0〉 , (8)

when |�0〉 is evaluated only up to linear in | �E | correction.

III. METHODS FOR CALCULATIONS

The exact wave function in the (R)CC theory is expressed
as [38]

|�0〉 = eT̂
∣∣�N

0

〉
, (9)

where |�N
0 〉 is the reference determinant, obtained using the

V N potential of the [4d105s2] configuration of Cd in the Dirac-
Hartree-Fock (DHF) method and T̂ is known as the (R)CC
excitation operator given by

T̂ =
N∑

k=1

T̂k =
∑

a1<a2 ···<ak

i1<i2···<ik

t
a1a2...ak

i1i2...ik
a+

1 i−1 a+
2 i−2 · · · a+

k i−k , (10)

where + and − superscripts on the second quantization
operators represent the creation and annihilation of electrons in
the virtual (denoted by a) and occupied (denoted by i) orbitals,
respectively, and t are the amplitudes in the excitation process
in an N -electron system. The (R)CC approaches considering
up to TN operators with N = 2, 3, 4, . . . , known as the (R)CC
singles and doubles (CCSD), (R)CC singles, doubles, and
triples (CCSDT), (R)CC singles, doubles, triples, and quadru-
ples (CCSDTQ), etc., methods, constitute a hierarchy, which
converges to the exact solution of the wave function in the
given one-particle basis set.

The amplitudes t of the (R)CC operators are ob-
tained by projecting bra determinants 〈�a1a2...ak

i1i2...ik
|e−T̂ =

〈�N
0 |a+

1 i−1 a+
2 i−2 . . . a+

k i−k e−T̂ from the left of the Schrödinger
equation Ĥ |�0〉 = E0|�0〉, with the ground state energy E0,
as [24,25]〈

�
a1a2...ak

i1i2...ik
|H |�N

0

〉 = E0δk,0 (k = 1, . . . , N ), (11)

where H = e−T̂ Ĥ eT̂ = (Ĥ eT̂ )c and the subscript c means
connected terms with the atomic Hamiltonian Ĥ .

We also perform calculations starting with the V N−2 po-
tential for the [4d10] configuration of Cd in the DHF wave
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function calculation by expressing

|�0〉 = ŴeT̂
∣∣�N−2

0

〉
, (12)

with T̂ =
N−2∑
k=1

T̂k , and the doubly valence electron attachment

operator Ŵ = ∑N−2
k=1 Ŵk is defined as

Ŵ =
∑

a3<a4 ···<ak

i3<i4···<ik

w
a3a4...ak

i3i4...ik
a+

1 a+
2 a+

3 i−3 · · · a+
k i−k , (13)

for the corresponding amplitude w. In this approach, we
evaluate the double attachment energy �E2

att in the equation-
of-motion framework as

[H, Ŵ ]
∣∣�N−2

0

〉 = �E2
attŴ

∣∣�N−2
0

〉
. (14)

In the finite-field procedure, we first calculate the total
energy by considering the DC Hamiltonian, H ≡ H DC, of the
atom given by

H DC =
∑

i

⎡
⎣c αi · pi + βic

2 + Vnuc(ri ) +
∑
j�i

1

rij

⎤
⎦, (15)

where α and β are the Dirac matrices, c is the speed of light,
and Vnuc(r ) is the nuclear potential energy in the atom. We use
the MRCC program [35] to perform the RCC calculations in
the finite-field approach. The one-body and two-body integrals
were generated using the DIRAC package [39] for the MRCC

program. We evaluate energies E0(| �E |) by considering the total
Hamiltonian as H ≡ H DC + Hint using a number of | �E | values
as 0.0, 0.0005, 0.001, and 0.002 in a.u. to estimate αd .

In the finite-field approach it is not required to define
separate T̂ operators of the RCC method in the absence and
presence of the interaction Hamiltonian Hint in the atomic
Hamiltonian. However, it is necessary to do so in the perturba-
tive approach of the RCC method. For this purpose, we express
the RCC wave function in this case as

|�0〉 = eT̂ (0)+| �E |T̂ (1) ∣∣�N
0

〉
, (16)

where T̂ (0) represents for the RCC operator that accounts
for electron correlation effects due to the electromagnetic
interactions only and T̂ (1) takes care of correlation effects due
to both the electromagnetic interactions and the D operator,
respectively, to all orders. In the perturbative expansion, this
corresponds to∣∣� (0)

0

〉 = eT̂ (0) ∣∣�N
0

〉
and

∣∣� (1)
0

〉 = eT̂ (0)
T̂ (1)

∣∣�N
0

〉
. (17)

Both |� (0)
0 〉 and |� (1)

0 〉 can be determined by obtaining am-
plitudes of the T̂ (0) and T̂ (1) RCC operators. The amplitude
determining equation for T̂ (0) is same as Eq. (11) for the
DC Hamiltonian. The T̂ (1) amplitude-determining equation is
given by [8,9,28,31]〈

�
a1a2...ak

i1i2...ik

∣∣H DC
T̂ (1) + D

∣∣�N
0

〉 = 0. (18)

It to be noted that for solving the amplitudes of T̂ (0), the
projected 〈�a1a2...ak

i1i2...ik
| determinants have to be even parity,

whereas they are the odd parity for the evaluating the T̂ (1)

amplitudes. In the CCSD method approximation, we denote
the RCC operators as

T̂ (0) = T
(0)

1 + T
(0)

2 and T̂ (1) = T
(1)

1 + T
(1)

2 , (19)

where subscripts 1 and 2 stand for the singles and doubles
excitations, respectively.

After obtaining these solutions, we can evaluate αd , follow-
ing Eq. (6), as [9,34]

αd = 1

| �E |

〈
�N

0

∣∣eT †
DeT

∣∣�N
0

〉
〈
�N

0

∣∣eT †
eT

∣∣�N
0

〉 = 1

| �E |
〈
�N

0

∣∣eT †
DeT

∣∣�N
0

〉
f c

= 2
〈
�N

0

∣∣eT (0)†
DeT (0)

T (1)
∣∣�N

0

〉
f c

, (20)

where f c stands for the fully contracted terms. The above
expression contains a nonterminating series eT †(0)

DeT (0)
. This

is computed self-consistently as discussed in Refs. [9,34].
It is worth mentioning two things here. First, the normaliza-

tion factor in Eq. (20) appears explicitly in the PRCC method,
while, as shown above, it cancels out in our approach. Second,
partial triple excitation is included in the PRCC(T) method by
defining a perturbative operator as

T
(1),pert

3 = 1

3!

∑
abc,pqr

(
H DCT

(1)
2

)pqr

abc

εa + εb + εc − εp − εq − εr

(21)

with a, b, c and p, q, r subscripts denoting the occupied and
unoccupied orbitals, respectively, and considering it as a part
of T (1) in their property-evaluating expression like Eq. (20). To
make a similar analysis, we also include the above operator in
Eq. (20) in our method to estimate the partial triples effects to
the CCSD method and refer to this approach as the CCSD(T)
method in order to be consistent with the notation of Ref. [10].
However, it should be noted that the T

(1)
1 operator is the

dominant over T
(1)

2 in the perturbative approach owing to the
one-body form of the D operator. Thus, the above approach
cannot estimate triples effects rigorously. On the other hand,
T

(0)
2 dominates over the T

(0)
1 operator due to the two-body

nature of the Coulomb interaction. Therefore, it is necessary
to include important triples effects through the T (0) operator.
We define another triple excitation operator as

T
(0),pert

3 = 1

3!

∑
abc,pqr

(
H DCT

(0)
2

)pqr

abc

εa + εb + εc − εp − εq − εr

(22)

and consider it as a part of the T (0) operator. Moreover,
we include both the T

(0),pert
3 and T

(1),pert
3 operators in the

amplitude-determining equations as well as in the property-
evaluating expression given by Eq. (20). We refer to this
procedure as the CCSDTp method in the present work.

For the calculation of αd using Eq. (20) in the (R)CC
method, the bra state was used as the complex conjugate of
the ket state. In the (R)NCC method, however, the ket state is
determined in the same way as the (R)CC method, but another
bra state is used for the corresponding ket state |�0〉 and is
expressed by [32,33]〈

�̃0

∣∣ = 〈
�N

0

∣∣(1 + �̂)e−T̂ , (23)
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where �̂ is a de-excitation operator defined as

�̂ =
N∑

k=1

�̂k =
∑

i1<i2 ···<ik
a1<a2···<ak

t̃ i1i2...ik
a1a2...ak

i+1 a−
1 i+2 a−

2 · · · i+k a−
k , (24)

where t̃ represents amplitude for the corresponding de-
excitation operator. The following biorthogonal condition
between these two states is evident:

〈�̃0|�0〉 = 〈
�N

0

∣∣(1 + �̂)e−T̂ eT̂
∣∣�N

0

〉 = 1. (25)

If 〈�̃0| has the same eigenvalue E0 of |�0〉, then 〈�̃0| can be
used in place of 〈�0| in the calculation of an expectation value.
This choice of bra in the (R)NCC method also satisfies the
Hellmann-Feynman equation [33] in contrast to the ordinary
(R)CC method. This is attained with the following prerequisite
condition: 〈

�N
0

∣∣�̂H
∣∣�N

0

〉 = 0. (26)

Indeed, this is the case as per the amplitude-solving equation
Eq. (11) of T̂ . Now it is necessary to expand the �̂ operator
perturbatively like the T̂ operator to obtain the first-order
perturbed wave function of the bra state for the evaluation of
αd . Thus, we write

〈�̃0| = 〈
�̃

(0)
0

∣∣ + | �E |〈�̃ (1)
0

∣∣ + · · ·
= 〈

�N
0

∣∣(1 + �(0) + λ�(1) + · · · )e−(T 0+| �E |T (1) ). (27)

Equating to terms of zeroth and linear in | �E |, we get〈
�̃

(0)
0

∣∣ = 〈
�N

0

∣∣(1 + �(0) )e−T (0)
(28)

and 〈
�̃

(1)
0

∣∣ = 〈
�N

0

∣∣[(1 + �(0) )T (1) + �(1) )e−T (0)
], (29)

respectively. In order to determine these wave functions,
amplitudes of the �(0) and �(1) RNCC operators are obtained
by solving the following equations [34]:〈

�N
0

∣∣�(0)H
DC + H

DC∣∣�a1a2...ak

i1i2...ik

〉 = 0 (30)

and 〈
�N

0

∣∣[�(1)H
DC + (1 + �(0) ){D + (H

DC
T (1) )c}],

× ∣∣�a1a2···ak

i1i2···ik
〉 = 0 (31)

respectively. It can be noticed that the above equations contain
more terms than the T (0/1) amplitude-solving equations. Since
it contains more nonlinear terms, it means efforts to code the
(R)NCC method are more than twice compared to those of the
(R)CC method.

Knowing amplitudes of the RCC and RNCC operators, we
can evaluate αd using the expression as [34]

αd = 1

| �E |
〈�0|D|�0〉
〈�0|�0〉 = 1

| �E |
〈�̃0|D|�0〉
〈�̃0|�0〉

= 〈
�N

0

∣∣(1 + �)e−T DeT
∣∣�N

0

〉
f c

= λ
〈
�N

0

∣∣(1 + �(0) )DT (1) + �(1)D
∣∣�N

0

〉
f c

. (32)

This expression does not have any nonterminating series in
contrast to the expression given by Eq. (20), and the normal-
ization of the wave function does not appear in a natural way.

Since D is an one-body operator, the above expression will also
have fewer terms for the evaluation of αd as the compensation
to the extra calculations for the amplitudes of the �̂ operator.
Nevertheless, it is desirable to obtain consistent values for
αd in the approximated RCC and RNCC methods in order
to justify reliability in the theoretical calculation of the αd

value. We define the NCC method with the singles and doubles
excitations approximation as the NCCSD method and the NCC
method with the singles, doubles, and important perturbative
triples excitations approximation as the NCCSD(T) method in
this work.

We also perform calculations employing many-body pertur-
bation theory considering n orders, say, of residual Coulomb
interactions [designated as the MBPT(n) method] to fathom
the propagation of electron correlation effects from lower- to
all-order many-body methods. In the finite-field approach, the
commonly known MBPT(n) approach has been adopted, while
we define the unperturbed and the first-order perturbed wave
operators in the wave function expansion approach as [8]

∣∣� (n,0)
0

〉 =
n∑

β=1

�(β,0)
∣∣�N

0

〉
(33)

and

∣∣� (n,1)
0

〉 =
n−1∑
β=1

�(β,1)
∣∣�N

0

〉
, (34)

respectively, where the first superscript index n represents
order of residual Coulomb interactions and the second su-
perscript 0/1 indicates presence of number of D operator in
the evaluation of these wave functions. In this framework, we
evaluate αd by [8]

αd = 2

∑n−1
β=0

〈
�N

0

∣∣�(n−β,0)†D�(β,1)
∣∣�N

0

〉
∑n−1

β=0

〈
�N

0

∣∣�(n−β,0)†�(β,0)
∣∣�N

0

〉 . (35)

It is worth noting that the MBPT(n) method in the perturbative
formulation is equivalent to the MBPT(n-1) method of the
finite-field approach as both involve up to the same orders of
residual Coulomb interactions.

Also by perturbing the DHF orbitals to first order by the
D operator and adopting a self-consistent procedure, we can
include the core-polarization effects to all orders in the RPA
for the evaluation of αd [9]. In this approach, we express

αd = 2
〈
�N

0

∣∣D�
(1)
RPA

∣∣�N
0

〉
, (36)

where the perturbed �
(1)
RPA wave operator is defined in our

earlier work [9]. From the differences between the results
obtained by the RPA and CCSD methods in the perturba-
tive approach, we can find contributions from the noncore-
polarization correlations to all orders.

We have estimated the Breit interaction contribution by
adding the following term [40] in the atomic Hamiltonian:

VB (rij ) = − 1

2rij

{ αi · αj + ( αi · r̂ij)( αj · r̂ij)}. (37)

We also estimate contributions from the lower order vacuum
polarization effects using the Uehling [VU (r )] and Wichmann-
Kroll [VWK (r )] potential energies and self-energy effects by
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including the corresponding potential energies due to the
electric and magnetic form factors that have been described
in our earlier work [41].

We use Gaussian-type orbitals (GTOs) to construct the
electron orbitals in the DHF method. The kth GTO in the basis
expansion is defined as [42]

χk (r ) = rle−ζkr
2
, (38)

with the orbital quantum number l and for an arbitrary pa-
rameter ζk . Similarly, we use Dyall’s uncontracted correlated
consistent double-, triple-, and quadruple-ζ GTO basis sets
[43], which are referred to as Xζ , where X = 2, 3, and 4,
respectively, in the DIRAC package [39], to generate the one-
body and two-body integrals for the MRCC program [35]. Each
shell is augmented by two additional diffuse functions (d-aug),
and the exponential coefficient of the augmented function is
calculated based on the following formula:

ζN+1 =
[

ζN

ζN−1

]
ζN, (39)

where ζN and ζN−1 are the two most diffuse exponents for
the respective atomic shells in the original GTOs. For the
spherical coordinate system in the perturbative approach of αd

calculation, we construct ζk using the even tempering condition
defining as

ζk = ζ0η
k−1, (40)

with two unknown parameters ζ0 and η. We have chosen the
ζ0 parameter as 0.00715, 0.0057, 0.0072, 0.0052, 0.0072, and
0.0072, and the η parameter as 1.92, 2.04, 1.97, 2.07, 2.54, and
2.54 for orbitals with l =0, 1, 2, 3, 4, and 5, respectively, after
optimizing the single-particle orbital energies.

IV. RESULTS AND DISCUSSION

In Table I we list the αd values of the Cd atom obtained
using various many-body methods and from the measurements.
Though we quote in this table two experimental values [30,44],
they are obtained from the same experimental setup. The
most precise measurement is reported as 49.65(1.65) ea3

0
[30], while we have been informed [45] that a value of
45.3 ea3

0 for the static polarizability can be inferred from
the preliminary experimental data of dynamic polarizabili-
ties reported using dispersive Fourier transform spectroscopy
analysis [44]. Following these measurements, the αd value of
Cd was theoretically studied by Kellö and Sadlej using the
nonrelativistic CC theory and the first-order basis sets in the
finite-field approach. They obtained the results as 57.39 ea3

0 and
55.36 ea3

0 in the CCSD and CCSD(T) approximations, respec-
tively. After inclusion of quasirelativistic correction through
the mass-velocity and Darwin terms, the final CCSD(T) value
was quoted as 46.80 ea3

0 . In fact, this study had suggested for
the first time large contributions from the triples and relativistic
effects to αd of Cd. This result was slightly smaller than the
above precise measurement. Later, this trend was confirmed
by Seth et al. [7] employing the CCSD(T) method. But they
had used pseudopotential in the two-component relativistic
Hamiltonian in their calculations. After few years of this work,
a four-component relativistic theory with the semiempirical
core potential in the configuration interaction (CICP) approach

TABLE I. A summary of αd values in ea3
0 of the Cd atom from

various calculations and measurements is presented. We give results
from the finite-field approach and perturbing wave function approach
in separate columns. As can be seen trends are different in both
approaches. Calculations carried out using (R)CC variant methods are
supposed to be more reliable. The CCSD and PRCC methods (and
their variants) are equivalent but differ only in the implementation
technique. Uncertainties are quoted within the parentheses, and
references from other works are cited beside the corresponding results.
The recommended value from the present work is quoted at the bottom
of the table.

Finite field Perturbation

αd values from this work
DHF 63.657 49.612
MBPT(2) 37.288 50.746
MBPT(3) 37.345
RPA 63.685
CCSD� 47.618
CCSD 48.073 45.494
NCCSD 44.804
CCSD(T) 45.586
CCSDTp 46.289
NCCSD(T) 45.603
CCSDT 45.852
CCSDTQ 45.927
�Breit 0.105
�QED 0.105
Final 46.015(203) 46.0(5)

αd values from previous calculations
DHF 62.78 [6], 63.37 [7] 49.647 [9]
MBPT(2) 39.14 [6], 38.52 [7]
MBPT(3) 45.97 [6], 45.86 [7] 35.728 [9]
MBPT(4) 45.06 [6], 47.10 [7]
CICP 44.63 [46]
CCSD 48.43 [6], 48.09 [7] 45.898 [9]
CCSD(T) 46.80 [6], 46.25 [7]
PRCC 49.15 [10]
PRCC(T) 49.24 [10]
Experiment 49.65 ± 1.49 ± 0.16 [30]

45.3 [44,45]
Recommended 46.02(50)

was employed and reported a value of 44.63 ea3
0 [46]. Apart

from this, it uses a sum-over-states approach mentioned by
Eq. (4) with the V N−2 potential. In the same work, the
authors also give calculated values of αd for the Zn and Hg
atoms using the CICP method, and the results were found
to be quite off from their respective experimental values. In
2014 we had employed our perturbative RCC theory in the
CCSD method approximation to estimate its value using the
four-component relativistic DC Hamiltonian and accounting
for correction from the Breit interaction [9]. The obtained
result, 45.86(15) ea3

0 , was close to the previous CCSD(T)
calculations in the finite-field approach [6,7]. Following our
work, Chattopadhyay et al. had applied their PRCC(T) method
in the four-component relativistic theory and reported the αd

value as 49.24 ea3
0 [10]. This theoretical result was very close

to the experimental value of 49.65(1.65) ea3
0 . The difference
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FIG. 1. Yearwise progress of the αd value (in ea3
0 ) of the Cd atom

from various works.

between both the calculations was attributed to the inexactness
in the evaluation of the RCC expression of Eq. (20) in these
works. In fact, about 15% contribution of the total value
is added due to the normalization of the wave function in
Ref. [10], while we had omitted this contribution, arguing
its cancellation with the disconnected part of the numerator
[9]. In this work, we find values from both the CCSD and
NCCSD methods in the perturbative approach are very close
to each other. In fact, the results are becoming even closer
in the CCSD(T) and NCCSD(T) methods. This certainly
demonstrates normalization of the wave function does not
contribute to the αd value of the ground state of a closed-shell
atomic system in the RCC theory framework. Moreover, our
results from the finite-field approach using the CCSDT and
CCSDTQ methods with the four-component relativistic DC
Hamiltonian are also close to the results of the perturbative
CCSD(T) and NCCSD(T) methods. Even though both the
procedures, finite-field and perturbative, adopted here are very
different, good agreement between the results obtained from
these calculations strongly advocate for their reliability. We
recommend its value as 46.02(50) ea3

0 by taking into account
various uncertainties as discussed below. We show gradual
progress in the experimental and theoretical results over the
years in Fig. 1, which clearly indicates most of the theoretical
results agree with each other except the values from the PRCC
and PRCC(T) methods.

In the Table I we also give corrections from the Breit
(given as �Breit) and QED (given as �QED) interactions
explicitly by estimating them from RPA. We found these
contributions are negligibly small. Therefore, uncertainties to
αd can come mainly from the finite-size basis used in the
calculations and contributions from the neglected higher-level
excitations. The results obtained by us earlier in Ref. [9] and
in this work by the CCSD method differ slightly due to use
of different basis functions. We had also estimated contribu-
tions from the partial triples but only through the perturbed
T

(1),pert
3 RCC operator including in the amplitude-determining

TABLE II. Demonstration of convergence of result in the per-
turbative approach with different set of active orbitals in the CCSD
method.

Basis set Active orbitals Result

Set I 1−15s, 2−13p, 3−13d , 4−10f 46.034
Set II 1−15s, 2−15p, 3−15d , 4−15f 45.872
Set III 1−17s, 2−17p, 3−17d , 4−16f 45.758
Set IV 1−17s, 2−17p, 3−17d , 4−16f , 5−14g 45.494
Set V 1−21s, 2−21p, 3−21d , 4−18f , 5−16g 45.494
Set VI 1−21s, 2−21p, 3−21d , 4−18f , 5−16g, 6−10h 45.494
Set VII 1−21s, 2−21p, 3−21d , 4−18f , 5−16g, 6−12h 45.494

equations of the CCSD method, which were referred to as the
CCSDpT method [9]. In this work, we have estimated these
contributions more rigorously after including triples effects
through the unperturbed and perturbed RCC operators as well
as estimating contributions from the T

(1),pert
3 RCC operator

in Eq. (20). In Table II we demonstrate convergence of the
result obtained using the perturbative approach in the CCSD
method. After accounting for uncertainties, we find that αd =
46.0(5) ea3

0 in the wave function perturbative approach. To
assess uncertainties associated with our result obtained in the
finite-field approach, we describe here how these calculations
were performed systematically up to the CCSDTQ method.
Contributions from different levels of excitations and inner
core orbital correlations, which was neglected in the CCSDT
and CCSDTQ methods, are listed in Table III. Due to limited
available computational resources, it was not possible to con-
sider correlations among all the core electrons in the CCSDT
and CCSDTQ methods using the MRCC program [35]. Thus,
we perform first the CCSD calculations using the 4ξ basis but
considering electrons only from the 3d, 4s, 4p, and 4d shells
(given as αCCSD

d ). Contributions from the inner core orbitals
were estimated using the 2ξ basis in the CCSD method and
given as αCore

d . We had, then, performed calculations using the
4s, 4p, and 4d orbitals in the CCSD and CCSDT methods. The
difference is quoted as triples contribution (given as αT

d ), and
uncertainty due to exclusion of other orbitals in the CCSDT
method is estimated by scaling their contributions in the CCSD
method. The quadruples effects are estimated using orbitals
from the 4d shell alone again with the 2ξ basis (given as α

Q
d ),

and the same value has been taken as the maximum possible un-
certainty due to the quadruple excitations arising from the other
less active inner orbitals. Details of these contributions along
with their uncertainties can be found in Table III. Adding all

TABLE III. Breakdown of various contributions to αd in ea3
0

of Cd along with their uncertainties from the finite-field approach
calculation in this work. Basis functions used in different steps are
also mentioned for clarity.

Source Contribution Basis

αCCSD
d 47.678 ± 0.096 4ξ

�αT
d −1.370 ± 0.040 2ξ

�α
Q
d −0.075 ± 0.075 2ξ

�αCore
d −0.176 ± 0.023 2ξ
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these uncertainties together, we anticipate αd in the finite-field
approach as 46.015(203) ea3

0 . This is in very good agreement
with the value obtained in the perturbative wave function
approach. Now taking confidently the estimated uncertainties
from both procedures, we can recommend optimistically the
final αd value of the Cd atom as 46.02(50) ea3

0 .
It can also be noticed from Table I that the trends of our

finite-field results at the DHF value is very large, and the
MBPT(2) result is lower than the CCSD and CCSD(T) values.
The reason for the DHF value being large in this case is
understandable as it is obtained using the variational approach.
Compared to the finite-field approach, the trends obtained at
various levels of approximations in the perturbative approach
are completely different. In this formalism, the DHF method
does not give the largest value since the procedure to estimate
the expectation value in this case is not variational. RPA gives
a very large value with respect to the DHF result, implying
core-polarization correlations are very strong in this system.
The RPA value of the perturbative approach is close to the DHF
value of the finite-field approach. The reason is the DHF value
in the finite-field approach includes orbital relaxation effect,
which is explicitly taken care of by RPA in the perturbative
approach. As we had stated before, the MBPT(n) method
approximation in the perturbative approach is equivalent to the
MBPT(n-1) method approximation in the finite-field approach.
This is why the MBPT(2) value of the finite-field approach
matches the MBPT(3) value of the perturbative approach. The
above agreements between both procedures support correct
implementation of the methods. Also, a significant difference
between the RPA and CCSD results suggest that there are
also large contributions that come from the all-order noncore-
polarization effects. The final result is the outcome of the
cancellation between these two contributions, and it becomes
closer to the DHF value of the perturbative approach. Another
point to be realized is that the inclusion of contributions from
the triples excitations increase the value in the perturbative
formalism in contrast to the finite-field approach.

We also compare contributions from different RCC terms
(contributions from the H.c. terms are given separately) given
in Ref. [10] and from the present work in Table IV. We quote
explicitly the contribution due to normalization of the wave
function for the result reported in Ref. [10] by multiplying the
factor 1.157 listed in that reference. As can be seen, normal-
ization contribution is about 15% in the PRCC method, which
is absent in our result. Moreover, termwise contributions also
differ in both works. Therefore, the results between both works
differ not only due to the inclusion of the contribution from the
normalization of the wave function, but also due to different
amplitudes of the RCC operators. In Table IV we also compare
contributions from the RCC and RNCC terms to understand
how the amplitudes in the RNCC method are changed from
the RCC method. As can be seen, contributions from the
counterterms that replace H.c. terms of the CCSD method in the
NCCSD method are significantly different. However, the final
CCSD and NCCSD values are found to be very close. This
supports the validity of our results from our RCC methods.
In addition, close agreement between the results from the
CCSD(T) and CCSDTQ methods in the perturbed RCC theory
and finite-field approach, respectively, justifies our claim for
the high-accuracy αd calculations using these methods.

TABLE IV. Comparison of contributions to αd in ea3
0 among

various RCC terms from our CCSD and NCCSD methods with the
PRCC method of Ref. [10]. Contributions from the H.c. terms are
given separately in order to make a comparative analysis with the
contributions from the bra terms of the NCCSD method. Contribution
due to normalization factor of the wave function is given explicitly
for the PRCC method. Contributions from the higher-order nonlinear
terms that are not mentioned here are given combined as “Others.”
As can be seen, contributions from various RCC terms in the CCSD
and PRCC methods differ significantly. Also, the bra terms of the
NCCSD method give quite different values than the CCSD method,
but the final results agree with each other.

RCC RCC results RNCC RNCC

term This work Ref. [10] term result

DT
(1)

1 27.423 30.728 DT
(1)

1 27.423

T
(1)†

1 D 27.423 30.728 �
(1)
1 D 21.837

T
(0)†

1 DT
(1)

1 −1.756 −1.554 �
(0)
1 DT

(1)
1 −0.715

T
(1)†

1 DT
(0)

1 −1.756 −1.554 �
(1)
1 DT

(0)
1 −1.377

T
(0)†

2 DT
(1)

1 −3.594 −1.564 �
(0)
2 DT

(1)
1 0.0

T
(1)†

1 DT
(0)

2 −3.594 −1.564 �
(1)
1 DT

(0)
2 −2.867

T
(0)†

1 DT
(1)

2 0.112 0.121 �
(0)
1 DT

(1)
2 0.036

T
(1)†

2 DT
(0)

1 0.112 0.121 �
(1)
2 DT

(0)
1 0.0

T
(0)†

2 DT
(1)

2 1.008 1.030 �
(0)
2 DT

(1)
2 0.950

T
(1)†

2 DT
(0)

2 1.008 1.030 �
(1)
2 DT

(0)
2 0.981

Others −0.892 0.04 Others −1.464

Normalization −7.717

V. SUMMARY

We have carried out calculations of αd of the Cd atom
in the finite-field and perturbed RCC approaches. All-order
RCC theory is employed at various levels of approximations
to ascertain its accuracy. We find our calculation is in good
agreement with the previous theoretical results that are ob-
tained by the quasirelativistic and two-component relativistic
calculations, but differ substantially from another calculation
reported recently using a perturbed RCC approach similar
to ours. Based on our analysis, we recommend the value
46.02(50) ea3

0 rather than the the available experimental result
49.65 ± 1.49 ± 0.16 ea3

0 . This calls for performing further
measurements of αd of the Cd atom to verify our claim. We
also observe that the correlation trends for the finite-field and
the perturbed RCC approaches are different.
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