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Schlömilch’s formula is generalized and applied to the thermal Casimir effect of a fermionic field confined to a
three-dimensional rectangular box. The analytic expressions of the Casimir energy and Casimir force are derived
for arbitrary temperature and edge sizes. The low- and high-temperature limits and finite-temperature cases are
considered for the entire parameter space spanned by edge sizes and/or temperature. In the low-temperature
limit, it is found that for typical rectangular box, the effective two-dimensional parameter space spanned by the
two edge-size ratios can be split into four regions. In one region, all three forces between three pairs of faces
are attractive, and in another two regions, the force along the longest edge becomes repulsive, and in the last
region the force along both the longest and medium sized edges becomes repulsive. Three forces cannot be
made simultaneously repulsive. For the waveguide under low temperature, the Casimir force along the longer
side of the waveguide cross section transforms from attractive to repulsive when the aspect ratio of the cross
section exceeds a critical value. For the parallel plate scenario under low temperature, our results agree with
previous works. For high-temperature limit, it is shown that both the Casimir energy and force approach zero
due to the high-temperature suppression of the quantum fluctuation responsible for the Casimir energy. For the
finite-temperature case, we separate the parameter space into four subcases (C1–C4) and various edge-size and
temperature effects are analyzed. In general, we found that in all cases the Casimir energy is always negative,
while the Casimir force at any finite or low temperature can be either repulsive or attractive depending on the
sizes of the edges. For the case (C1) that is similar to parallel plates with relatively high temperature, it is
found that the Casimir force is always attractive, regardless the change of the plate separation. At the given
temperature, the Casimir energy and force densities approach the infinite parallel plate limit even when the plate
edge size is two times the plate separation. For the case (C2) that is similar to a waveguide with relatively high
temperature, the Casimir force along the longer side of the waveguide cross section transforms from attractive
to repulsive when this side exceeds a critical value. This critical point forms a boundary in the parameter space
when the shorter edge of the waveguide cross section changes and the boundary values decrease with respect to
temperature increase. Case (C3) covers the low-temperature parallel plate, typical rectangular box, and waveguide
geometries. For the waveguide case, the force along the waveguide longitude also transforms from attractive to
repulsive when the waveguide length exceeds certain critical values. These critical values change with respect
to temperature in a nontrivial way. For the typical waveguide case (C4) at low temperature, the Casimir energy
density along the longitudinal direction is a constant while force density decreases linearly as the waveguide
length increases. Finally, for any fixed temperature, there exists a boundary in the parameter space of edge sizes
separating the attractive and repulsive regions. Besides, the Casimir energy for an electromagnetic field confined
in a three-dimensional box is also derived.

DOI: 10.1103/PhysRevA.98.012512

I. INTRODUCTION

First proposed in 1948 [1], the Casimir effect has been
studied extensively using both experimental and theoretical
approaches. In the simplest case, the Casimir effect is known
as an attraction (or repulsion) between two parallel conducting
plates due to the fluctuations of vacuum energy. Experimen-
tally, it has been observed using different materials, geometries,
and measurement setups [2–5]. Theoretically, it is usually
studied according to the geometry and boundary conditions,
temperature, and nature of fields.

*junjijia@whu.edu.cn

Aside from the usual parallel plates geometry, other ge-
ometries such as cylindrical, spherical boundaries, rectangular
cavities, and spherical-plate geometries are often studied. In
particular, the study of spherical boundaries first by Boyer [6]
and later by Milton et al. [7] for electromagnetic field showed
that the Casimir force could be repulsive too. The theory of
Casimir effect for systems with boundaries of real body was
established by Lifshitz in Ref. [8], where he also considered
the effect of temperature.

Temperature is another important factor influencing the
Casimir effect. The thermal Casimir effect was calculated for
electromagnetic and/or scalar field confined in rectangular
cavities in Refs. [9–13]. Lim and Teo studied the Casimir
effect for massless scalar field and electromagnetic field
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[14,15] for piston geometries. Lin and Zhai discussed the
finite-temperature Casimir effect in general p-dimensional
rectangular cavity [16]. Finite-temperature Casimir effect for
electromagnetic field with a boundary of a spherical shell was
computed by Balian and Duplantier [17], giving the free energy
in low- and high-temperature limits.

The Casimir effect also depends crucially on the nature
of the field, i.e., scalar, fermionic, gauge field, and mass
of the field. In particular, the fermionic field Casimir effect
is considered by a series of papers. The Casimir effect for
massless Dirac field confined between two parallel plates was
studied by Johnson [18] and Milonni in Ref. [19], where
they showed that the Casimir force is attractive as in the
case of electromagnetic field. Calculations by Gundersen and
Ravndal [20] showed the Casimir force becomes repulsive
at sufficiently high temperatures for massless fermions also
confined between parallel plates. In this work, many interesting
properties such as temperature inversion symmetry, energy-
momentum tensor, and fermion condensate were discussed.
The Casimir energy for a massless fermionic field confined in
a three-dimensional rectangular box at zero temperatures was
studied by Seyedzahedi et al. [21], showing the Casimir energy
is negative as opposed to the case of a three-dimensional sphere
considered by Milton [22] where the Casimir energy is positive.
Besides, extra dimension corrections for a three-dimensional
box with massless fermionic field were considered by Sukamto
and Purwanto [23].

In this paper, we extend the above works by study of the
thermal Casimir effect at arbitrary temperature for a massless
fermionic field confined in a rectangular box. In doing this, we
used the generalized Schlömilch’s formulas for the evaluation
of the frequency summation. We also used this method to
study the thermal Casimir effect of an electromagnetic field
confined to a three-dimensional rectangular box and found
that the resulting Casimir energy in a cube at zero tempera-
ture agrees perfectly with previously reported results at low
temperature [13].

This paper is organized as follows. In Sec. II, the
Schlömilch’s formula is briefly introduced and generalized
to the cases of double series and triple series. In Sec. III,
the generalized Schlömilch’s formulas are applied to the
thermal Casimir effect of an electromagnetic field confined
in a rectangular box. In Sec. IV, the thermal Casimir effect
is considered for a massless fermionic field confined in a
rectangular box with MIT bag model boundary condition. The
general formulas of the Casimir energy and force for arbitrary
temperature and edges sizes are derived in this section. Then, in
Sec. V the Casimir effect in the entire parameter space spanned
by the temperature and three edge sizes is thoroughly studied,
in both analytical and numerical ways. Section VI summarizes
the findings and outlines potential extensions of the work and
other possible applications of the generalized Schlömilch’s
formula.

II. SCHLÖMILCH’S FORMULA AND ITS
GENERALIZATION

A useful formula first discovered by Schlömilch [24,25] and
used in many works [26–28] (see [29] for older papers) is the

following:

α
∑

k

k

e2αk − 1
+ β

∑
k

k

e2βk − 1
= α + β

24
− 1

4
, (1)

where α, β > 0, αβ = π2, and the sum here and after runs
from 1 to infinity until otherwise explicitly specified. A formula
derived from Eq. (1), which is also useful by itself, is [29]

∑
k

ln(1 − e−αk ) =
∑

k

ln
(
1 − e

−4π2k
α

)− ln α

2
− π2

6α

+ α

24
+ ln (2π )

2
. (2)

The similarity between the Bose-Einstein distribution and
terms in Eq. (1) enables its possible applications in physics,
particularly in Casimir effects. It is observable the functions
in the sums on the left side of Eq. (1) look like the average
energy uA of a single resonator in Planck’s law for the energy
spectrum [30]

u(ν, T ) = 8πν2

c3
uA = 8πν2

c3

hν

ehν/(kBT ) − 1
, (3)

where T is the temperature and kB is the Boltzmann con-
stant. Because of this, Eqs. (1) and (2) are useful to cal-
culate the internal energy U and free energy F of a one-
dimensional linear harmonic oscillators system with discrete
frequencies [31]

U =
∑

n

[
h̄ωn

2
+ h̄ωn

eh̄ωn/(kBT ) − 1

]
, (4)

F =
∑

n

[
h̄ωn

2
+ kBT ln(1 − eh̄ωn/(kBT ) )

]
. (5)

For a three-dimensional linear harmonic oscillator system, the
series in Eqs. (4) and (5) will contain more than one summation.
Therefore, the generalizations of Eqs. (1) and (2) to the cases
of double series and triple series are necessary for the purpose
of application in Casimir effect.

This generalization is done by the technique of contour
integral. Consider the following contour integrals, which can
be easily shown to be zero since there is no pole inside the
contours:

‰
G(z)dz =

‰
1

e−uzi − 1

√
z2 + m2

eα
√

z2+m2 − 1
dz = 0, (6)

fi
G̃(z)dz =

fi
1

euzi − 1

√
z2 + m2

eα
√

z2+m2 − 1
dz = 0, (7)

where parameters u,m, α are all positive. The contours are

shown in Fig. 1, where ρ is the radius of the small half or quarter
circles. The width and height of each contour are specified by
points A and B with values

2Nπ

u
< A <

2(N + 1)π

u
and√

m2 + 4N2π2

α2
< B <

√
m2 + 4(N + 1)2π2

α2
, (8)
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FIG. 1. Contours of integrals (6) (upper contour) and (7) (lower
contour) and some of their poles.

where N is some positive integer. In this plot, we also draw
some of the poles of G(z) that are relevant to the contour,

zleft = i

√
m2 + 4n2π2

α2
, zdown = 2nπ

u
(n = 1, 2, . . . , N )

(9)

and poles of G̃(z)

z′
left = −i

√
m2 + 4n2π2

α2
, zup = 2nπ

u
(n = 1, 2, . . . , N ).

(10)

Equations (6) and (7) lead to

ˆ A

ρ

[G(x) + G̃(x)]dx + i

ˆ B

0
[G(A + iy) − G̃(A − iy)]dy

+
ˆ 0

A

[G(x + iB ) + G̃(x − iB )]dx

+ i

ˆ ρ

B

[G(iy) − G̃(−iy)]dy

= iπ

{
1

2
ResG(0) − 1

2
ResG̃(0) +

N∑
n=1

[ResG(zleft )

+ ResG(zdown) − ResG̃(z′
left ) − ResG̃(zup)]

}
, (11)

where

ResG(zleft ) = −ResG̃(z′
left )

= i4π2n2

α3
√

m2 + 4n2π2/α2(eu
√

m2+4n2π2/α2 − 1)
,

(12)

ResG(zdown) = −ResG̃(zup) = i
√

m2 + 4n2π2/u2/u

eα
√

m2+4n2π2/u2 − 1
, (13)

ResG(0) = −ResG̃(0) = im

u(eαm − 1)
. (14)

It is not hard to see that

lim
xory→∞ G(x + iy) = lim

xory→∞ G̃(x − iy) = 0, (15)

and the second and third integrals in Eq. (11) vanish when A

and B, equivalently N , go to infinity. Then, letting u = 2π/θ ,
Eq. (11) can be recast into the equality

∑
n

√
θ2n2 + m2

eα
√

θ2n2+m2 − 1

= −8π3

θα3

∑
n

n2√
4π2n2

α2 + m2
(
e

2π
θ

√
4π2n2

α2 +m2 − 1
)

− m

2(eαm − 1)

+ 1

θ

(ˆ ∞

0

√
x2 + m2

eα
√

x2+m2 − 1
dx +

ˆ ∞

m

√
y2 − m2

e
2π
θ

y − 1
dy

)
. (16)

Note that this equation implies Eq. (1). This can be seen by
setting θ = 1 and m = 0 in Eq. (16) and carrying out the
integral using formula [32]ˆ ∞

0

xs−1e−ax

1 − e−x
dx = �(s)ζ (s, a), (17)

where �(s) is gamma function and

ζ (s, a) =
∑
n=0

1

(n + a)s
(18)

is the Hurwitz zeta function and ζ (s, 1) ≡ ζ (s) is the Riemann
zeta function.

To generalize Eq. (16) to the case of double series, we
replace m in it by σm and then sum over m. One then obtains

∑
m

∑
n

√
θ2n2 + σ 2m2

e
√

θ2n2+σ 2m2 − 1
= −8π3

θ

∑
m

∑
n

n2

√
4π2n2 + σ 2m2

(
e

2π
θ

√
4π2n2+σ 2m2 − 1

) −
∑
m

σm

2(eσm − 1)

+1

θ

∑
m

ˆ ∞

0

√
x2 + σ 2m2

e
√

x2+σ 2m2 − 1
dx + 1

θ

∑
m

ˆ ∞

σm

√
y2 − σ 2m2

e
2π
θ

y − 1
dy, (19)

where θ, σ > 0. The first and second terms on the right side will be kept. The third term can be calculated again using Eq. (16),
and then for some terms using

1

ey − 1
=
∑

n

e−yn, (20)
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and lastly using the definition of Bessel function of an imaginary argument [33]

Kν (z) = (z/2)ν�(1/2)

�(ν + 1/2)

ˆ ∞

1
e−zt (t2 − 1)ν−1/2dt (21)

and the formula (17). For the fourth term, we only need to use Eqs. (20) and (21). Combining all, the final result of the double
series (19) is given by

∑
m,n

√
θ2n2 + σ 2m2

e
√

θ2n2+σ 2m2 − 1
= −8π3

θ

∑
m,n

n2

√
4π2n2 + σ 2m2

(
e

2π
θ

√
4π2n2+σ 2m2 − 1

) − σ

2

∑
m

m

eσm − 1

+ 1

θ

[
−8π3

σ
Y0

(
2π

σ

)
− ζ (2)

2
+ πζ (3)

σ
+ ζ (3)σ 2

16π2

]
+ σ

2π
Y1

(
σ

θ

)
, (22)

where functions Y0(x) and Y1(x) are

Y0(x) =
∑
m,n

m2K0(2πmnx), Y1(x) =
∑
m,n

m

n
K1(2πmnx). (23)

Equation (2) can also be generalized to the cases of double series. Letting θ = α/a and σ = α/b, then dividing Eq. (22) by α,
indefinitely integrating both sides with respect to α, and using the property of Bessel function [33](

d

zdz

)i

[zνKν (z)] = (−1)izν−iKν−i (z) (24)

at i = 1 for Y0 yields∑
n,m

ln
(
1 − e

−α

√
n2

a2 + m2

b2
) = Z2

(
a, b,

α

2π

)
− 1

2
Z1

(
α

2πb

)
+ a

[
ζ (2)

2α
− πζ (3)b

2α2
+ ζ (3)α

16π2b2
− 2π

α
Y1

(
2πb

α

)]

+ α

2πb
Y1

(
a

b

)
+ Q(a, b), (25)

where Z1(x) and Z2(x, y, z) are

Z1(x) =
∑
m

ln(1 − e−2πmx ), Z2(x, y, z) =
∑
n,m

ln(1 − e−2πx
√

n2/y2+m2/z2
) (26)

and the integral constant Q(a, b) is

Q(a, b) = 1

2
Z1

(
a

b

)
− ζ (2)

4π
+ ζ (3)b

8πa
− ζ (3)a2

8πb2
+ Y1

(
b

a

)
− a

b
Y1

(
a

b

)
. (27)

Note that the Z1(α/(2πb)) in Eq. (25) can be calculated by Eq. (2).
Finally, let us generalize Eqs. (1) and (2) to the triple series case. Applying Eqs. (16), (22), (20), and (21) to the triple series,

and performing the summation in the order of n, j , and m, yields its result

∑
n,m,j

√
θ2n2 + σ 2m2 + γ 2j 2

e
√

θ2n2+σ 2m2+γ 2j 2 − 1

= −8π3

θ

∑
k,m,j

k2√
4π2k2 + σ 2m2 + γ 2j 2

(
e

2π
θ

√
4π2k2+σ 2m2+γ 2j 2 − 1

)
−
∑
m,j

√
σ 2m2 + γ 2j 2

2
(
e
√

σ 2m2+γ 2j 2 − 1
) + 1

θ

{
−8π3

γ

∑
m,k,n

k2K0

(
2πσn

γ

√
m2 + 4k2π2

σ 2

)
+
[
ζ (2)

4
− πζ (3)

2σ
− ζ (3)σ 2

32π2
+ 4π3

σ
X0

(
2π

σ

)]

+ 1

γ

[
− πζ (3)

2
+ 3πζ (4)

σ
+ ζ (4)σ 3

16π3
− 4π4

(
2

πσ

) 1
2 ∑

k,n

(
k5

n

) 1
2

K 1
2

(
4π2kn

σ

)]
+ γ

1
2 σ

3
2

4π
Y 3

2

(
σ

γ

)}
+ 1

2π
V1

(
1

θ
,

1

σ
,

1

γ

)
,

(28)

where variables θ, σ, γ > 0, and Y3/2(x), V1(x, y, z) are

Y 3
2
(x) =

∑
m,n

(
m

n

) 3
2

K 3
2
(2πmnx), V1(x, y, z) =

∑
k,m,n

√
m2/y2 + k2/z2

n
K1(2πnx

√
m2/y2 + k2/z2). (29)
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Furthermore, in Eq. (28) letting θ = α/a, σ = α/b, and γ = α/c, then dividing by α and indefinitely integrating both sides with
respect to α yields∑

n,m,j

ln
(
1 − e

−α

√
n2

a2 + m2

b2 + j2

c2
) = Z3

(
a, b, c,

α

2π

)
− 1

2
Z2

(
α

2π
, b, c

)
+ a

{
−V1

(
c, b,

α

2π

)

+
[−ζ (2)

4α
+ πζ (3)b

4α2
− ζ (3)α

32π2b2
+ π

α
Y1

(
2πb

α

)]
+ c

[
πζ (3)

4α2
− πζ (4)b

α3
+ ζ (4)α

16π3b3
− π

(
2π

bα3

)1/2

Y 3
2

(
2πb

α

)]

+ α

4πc1/2b3/2
Y 3

2

(
c

b

)}
+ α

2π
V1(a, b, c) + N (a, b, c), (30)

where Z2(x, y, z) was defined in Eq. (26), and function Z3(x, y, z, t ) and the integral constant N (a, b, c) are, respectively,

Z3(x, y, z, t ) =
∑
n,m,j

ln
(
1 − e−2πx

√
n2/y2+m2/z2+j 2/t2)

, (31)

N (a, b, c) = 1

2
Z2(a, b, c) + a[V1(c, a, b) − V1(a, b, c)] + ζ (2)

8π
− 1

2
Y1

(
b

a

)
+
[
ζ (3)a2

16πb2
− ζ (3)b

16πa
− ζ (3)c

16πa

]

+ c

[
ζ (4)b

8π2a2
− ζ (4)a2

8π2b3

]
+ c

2b1/2a1/2
Y 3

2

(
b

a

)
− a2

2c1/2b3/2
Y 3

2

(
c

b

)
. (32)

Equations (28) and (30) are the generalizations of Eqs. (1) and (2) to the triple series case. In addition, when the sign in the ln
function in Eq. (30) is changed from minus to plus, one can reach the formula∑

n,m,j

ln(1 + e
−α

√
n2

a2 + m2

b2 + j2

c2 ) = Z3

(
α

π
, a, b, c

)
− Z3

(
α

2π
, a, b, c

)

= 7πζ (4)abc

8α3
+ α

[
ζ (4)ac

16π3b3
+ a

4πb3/2c1/2
Y 3

2

(
c

b

)
+ 1

2π
V1(a, b, c)

]
+ Z3

(
a, b, c,

α

π

)
− Z3

(
a, b, c,

α

2π

)

+ aV1

(
c, b,

α

2π

)
− aV1

(
c, b,

α

π

)
+ acπ

(
2π

bα3

)1/2

Y 3
2

(
2πb

α

)
− acπ

2

(
π

bα3

)1/2

Y 3
2

(
πb

α

)

+ ζ (2)a

8α
− 3πζ (3)ab

16α2
− 3πζ (3)ac

16α2
− ζ (3)aα

32π2b2
+ 1

2
Z2

(
α

2π
, b, c

)
− 1

2
Z2

(
α

π
, b, c

)
+ aπ

2α
Y1

(
πb

α

)
− aπ

α
Y1

(
2πb

α

)
,

(33)

which will be useful for the calculation of fermionic field Casimir effect.

III. THERMAL CASIMIR EFFECT OF
ELECTROMAGNETIC FIELD IN A RECTANGULAR BOX

Geyer et al. [13] studied the Casimir effect of electromag-
netic field in ideal metal rectangular boxes at finite temperature.
They used the Abel-Plana formula to calculate the nonrenor-
malized thermal correction term �T F0 in the renormalized
free energy F phys of the electromagnetic field. In this sec-
tion, we calculate F phys using the generalized Schlömilch’s
formula developed in Eq. (30) for arbitrary edge sizes and
temperature.

The renormalized free energy of electromagnetic field
confined in a three-dimensional box is given by [13]

F phys(a, b, c, T ) = Eren
0 (a, b, c) + �T F0(a, b, c, T )

−Fbb(a, b, c, T ) − αel
1 T 3 − αel

2 T 2,

(34)

where a, b, c are the edge sizes of the box, T is the temperature,
and Eren

0 (a, b, c) is the renormalized free energy at zero
temperature. �T F0(a, b, c, T ) is the nonrenormalized thermal

correction

�T F0(a, b, c, T )

= T

⎡
⎣∑

n,m

ln
(
1 − e− ωnm0

T

)+
∑
n,j

ln(1 − e− ωn0j

T )

+
∑
m,j

ln
(
1 − e− ω0mj

T

)+ 2
∑
n,m,j

ln(1 − e− ωnmj

T )

⎤
⎦, (35)

where

ωnmj = π

√
n2

a2
+ m2

b2
+ j 2

c2
, n,m, j = 1, 2, . . . (36)

are frequencies, and

Fbb(a, b, c, T ) = −π2T 4abc

45
(37)

is the free energy of the black-body radiation. Note in Eq. (35)
and throughout this paper, the natural units h̄ = c = kB = 1
are used. Finally, αel

1 and αel
2 are coefficients of two renormal-

ization terms which should cancel the corresponding terms in
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�T F0(a, b, c, T ) to prevent possible high-temperature diver-
gence that can contribute to the Casimir force.

The renormalized free energy at zero temperature
Eren

0 (a, b, c) can be calculated using the Abel-Plana formula
[34,35] and Epstein zeta function [35]. Starting from the
definition of the nonrenormalized zero-temperature free energy
E0(a, b, c),

E0(a, b, c)

= 1

2

⎛
⎝2

∑
n,m,j

ωnmj +
∑
n,m

ωnm +
∑
n,j

ωnj +
∑
m,j

ωmj

⎞
⎠,

(38)

one can use the Abel-Plana formula [35]

∑
n=0

g(n) −
ˆ ∞

0
g(t )dt = g(0)

2
+ i

ˆ ∞

0

g(it ) − g(−it )

e2πt − 1
dt,

(39)

where g(z) is any analytic function in the right half-plane to
perform the summation in Eq. (38) in the order of n, j , and m.
This allows us to separate its infinite parts to obtain the finite

renormalized free energy at zero temperature Eren
0 (a, b, c) as

Eren
0 (a, b, c) = −a

[
ζ (4)c

8π2b3
+ ζ (3)

16πc2
+ 1

2b3/2c1/2
Y 3

2

(
c

b

)]

+ π

48

(
1

b
+ 1

c

)
−
[
V1(a, b, c) + 1

2b
Y1

(
a

b

)

+ 1

2c
Y1

(
a

c

)]
, (40)

where Y3/2(x) and V1(x, y, z) were defined in Eq. (29), and
Y1(x) was defined in Eq. (23).

For the computation of the nonrenormalized thermal cor-
rection �T F0(a, b, c, T ), our approach is different from the
Abel-Plana formula method used by Ref. [13]. Instead, in
this paper we calculate it using the generalized Schlömilch’s
formula obtained in Sec. II. Applying Eqs. (30), (25), and (2)
to Eq. (35), the analytical form of �T F0(a, b, c, T ) can be
obtained as

�T F0(a, b, c, T )

= −T ln T

2
+ T F1(a, b, c) + F2(a, b, c, T ) − Eren

0 (a, b, c)

− 2ζ (4)abc

π2
T 4 + π (a + b + c)

12
T 2, (41)

where

F1(a, b, c) = ζ (4)bc

4π2a2
− a2

[
ζ (4)c

4π2b3
+ ζ (3)

8πc2
+ 1

b3/2c1/2
Y 3

2

(
c

b

)]
+
[
Z2(a, b, c) + 1

2
Z1

(
a

b

)
+ 1

2
Z1

(
a

c

)
+ Y1

(
c

a

)]

−
[

2aV1(a, b, c) + a

b
Y1

(
a

b

)
+ a

c
Y1

(
a

c

)]
+ 2aV1(c, b, a) + c√

ab
Y 3

2

(
b

a

)
− ln(bc)

4
− ζ (2)

4π
− ln 2

2
, (42)

F2(a, b, c, T ) = T

{[
2Z3

(
a, b, c,

1

2T

)
+ Z2

(
a, b,

1

2T

)
+ Z2

(
a, c,

1

2T

)
− 1

2
Z1(2T b) − 1

2
Z1(2T c)

]

−a

[
2V1

(
c, b,

1

2T

)
+ 2c

(
2T 3

b

)1/2

Y 3
2
(2bT ) + 2T Y1(2cT )

]}
. (43)

Equation (41) implies that in Eq. (34)

αel
1 = 0, αel

2 = π (a + b + c)/12. (44)

Equation (44) agrees with Ref. [13] which computed the high-
temperature limit of the Casimir energy.

Substituting Eq. (41) into the renormalized free energy
(34), the final Casimir energy of electromagnetic field in
a three-dimensional rectangular box at finite temperature is
finally written as

F phys(a, b, c, T ) = − T ln T

2
+ T F1(a, b, c) + F2(a, b, c, T ).

(45)

In order to compare with previous works, we computed the
high- and low-temperature limits of (45). At high temperature,
we can show in Appendix B that the last term F2(a, b, c, T )
in Eq. (45) approaches zero. Therefore, the Casimir energy
becomes

F phys(a, b, c, T → ∞) = −(T ln T )/2 + T F1(a, b, c).

(46)

The first term here is geometry independent and therefore does
not contribute to the electromagnetic Casimir force. Moreover,
because it is negative and divergent at infinite temperature,
this term should be subtracted in order to get a physically
meaningful Casimir energy. Finally, we have

F phys(a, b, c, T → ∞) = T F1(a, b, c). (47)

This shows that at high temperature, the temperature depen-
dence of the Casimir energy is particularly simple, while the
edge-size dependence is solely through the term F1(a, b, c).

In the low-temperature limit, we can show that the en-
tire �T F0(a, b, c, T ) in Eq. (35) goes zero [see the steps
from Eq. (B2) to Eq. (B1)]. Therefore, using definition (34),
the renormalized free energy in low temperature becomes
Eren

0 (a, b, c) given in Eq. (40):

F phys(a, b, c, T → 0) = Eren
0 (a, b, c). (48)

If one is interested in the electromagnetic Casimir energy of a
cube at zero temperature, then setting a = b = c in Eq. (40)
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produces numerically

F phys(a, a, a, T → 0) = Eren
0 (a, a, a) = 0.0917

a
, (49)

and therefore an attractive force between opposite faces of the
cube. Equation (49) agrees well with the result obtained in
Eq. (72) of Ref. [13].

IV. THERMAL CASIMIR ENERGY AND FORCE OF
FERMIONIC FIELD IN A RECTANGULAR BOX

In this section, the Casimir effect at finite temperature for
a massless fermionic field confined in a three-dimensional
box will be calculated using the MIT bag model boundary
condition. This condition allows no flux through the boundary
and leads to the discrete momenta of the form [21]

pi =
(

1

2
+ ni

)
π

li
, l1 = a, l2 = b, l3 = c,

ni = 0, 1, 2, . . . . (50)

The nonrenormalized free energy for the field is defined as

F = Fb0 + FT = 4
∑

n,m,j=0

(
−1

2
ωnmj

)

− 4T
∑

n,m,j=0

ln
(
1 + e− ωnmj

T

)
, (51)

where the first term Fb0 is nonrenormalized energy at zero
temperature, the second term FT is the nonrenormalized
thermal correction, and

ωnmj =
√

p2
1 + p2

2 + p2
3

= π

√
(n + 1/2)2

a2
+ (m + 1/2)2

b2
+ (j + 1/2)2

c2
(52)

are frequencies. The factor 4 appears in Eq. (51) because of
the antiparticle and spin multiplicities [18]. In the following,
we will compute these two terms one by one using formulas
obtained in Sec. II.

The nonrenormalized energy at zero temperature had been
calculated by Seyedzahedi et al. [21] for a cube by using a
modified form of the Abel-Plana formula [35,36]∑
n=0

g

(
n + 1

2

)
=
ˆ ∞

0
g(t )dt − i

ˆ ∞

0

g(it ) − g(−it )

e2πt + 1
dt,

(53)

where g(z) is analytic in the right half-plane. For arbitrary
edge sizes, we can also use this formula to Eq. (51), by first
performing the summation for n, then for j , and eventually for
m. Eventually, one finds for the Fb0 term

Fb0 = F0(a, b, c) + Ff0(a, b, c), (54)

where

F0(a, b, c) = −
{

7ζ (4)ac

32π2b3
+ 2M1(a, b, c)

+ a

b3/2c1/2
M 3

2

(
c

b

)}
(55)

is the renormalized energy at zero temperature. Here, functions
M3/2(x) and M1(x, y, z) are defined as

M1(x, y, z) =
∑

m,k=0

∑
n=1

(−1)n+1

n

√
(m + 1/2)2

y2
+ (k + 1/2)2

z2

×K1

(
2πxn

√
(m + 1/2)2

y2
+ (k + 1/2)2

z2

)
,

(56)

M 3
2
(x) =

∑
m=0

∑
n=1

(−1)n+1

n3/2

(
m + 1

2

)3/2

K 3
2
[2π (m + 1/2)nx].

(57)

Moreover,

Ff0(a, b, c) = −2π

ˆ ∞

0
dx

ˆ ∞

0
dy

ˆ ∞

0
dz

√
x2

a2
+ y2

b2
+ z2

c2

(58)

is the energy at zero temperature in the absence of the
boundaries, which should be subtracted later.

The second term FT in Eq. (51) is where our result in Sec. II,
i.e., Eq. (33) will be used. As will be shown later, it is through
the usage of this equation that the black-body radiation term
in the free energy can be subtracted from the nonrenormalized
energy to obtain a meaningful Casimir energy. Equation (33)
after some tedious algebra (see Appendix A) yields the final
result for FT :

FT = 4T A3(a, b, c, T ) + Ffb(a, b, c, T ) − F0(a, b, c), (59)

where F0 is the same as in Eq. (55) and

A3(a, b, c, T ) = −W3

(
a, b, c,

1

2T

)
− aM1

(
c, b,

1

2T

)

− ac

(
2T 3

b

)1/2

M 3
2
(2bT ). (60)

Here, M1(x, y, z) and M3/2(x) were defined in Eqs. (56) and
(57) and W3(x, y, z, t ) is

W3(x, y, z, t ) =
∑

m,n,k=0

ln
(
1 + e

−2πx

√
(m+1/2)2

y2 + (n+1/2)2

z2 + (k+1/2)2

t2
)
.

(61)

The second term Ffb on the right side of Eq. (59) is found to
be

Ffb(a, b, c, T ) = −7ζ (4)abc

2π2
T 4. (62)

It is easy to see that this term is indeed the free black-body
radiation energy, namely, the free energy at finite temperature
in the absence of boundaries

−4T

ˆ ∞

−∞

d3p

(2π )3
ln
(
1 + e− ωp

T

)
abc

= −7ζ (4)abc

2π2
T 4 = Ffb(a, b, c, T ). (63)
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Substituting Eqs. (54) and (59) into Eq. (51) yields the
nonrenormalized free energy

F = 4T A3(a, b, c, T ) + Ff0(a, b, c) + Ffb(a, b, c, T ). (64)

To obtain the Casimir energy, the free energy in the absence of
boundaries, namely, the last two terms in Eq. (64), should be
subtracted from F . Thus, the final renormalized free Casimir
energy is

FC = 4T A3(a, b, c, T ). (65)

As mentioned previously, it is seen here that the removal
of the thermal contribution Ffb(a, b, c, T ) to the nonrenor-
malized energy is done by computation using Eq. (33) and
correctly recognizes the continuous black-body radiation term
Ffb(a, b, c, T ).

It is also clear that the above Casimir free energy FC

will not depend on the order of edges a, b, c but only their
sizes because the same set of {a, b, c} always define a fixed
rectangular box. We can calculate the Casimir force between
any pair of opposite faces of the box. Here, we choose the
pair perpendicular to edges a and then taking derivative with
respect to a produces the Casimir force

fa = −∂FC

∂a
= 4T

⎧⎨
⎩−2π

∑
k,m,j=0

√
4T 2(k + 1/2)2 + (m+1/2)2

b2 + (j+1/2)2

c2

e
2πa

√
4T 2(k+1/2)2+ (m+1/2)2

b2 + (j+1/2)2

c2 + 1
+ M1

(
c, b,

1

2T

)
+ c

(
2T 3

b

)1/2

M 3
2
(2bT )

⎫⎬
⎭. (66)

Let us emphasize that these are general formulas, i.e., Eqs. (65)
and (66), valid for any values of lengths a, b, c and temperature
T is obtained for a massless fermionic field in a three-
dimensional rectangular box.

V. EFFECTS OF TEMPERATURE AND EDGE LENGTHS IN
FERMIONIC CASIMIR EFFECT

With the full result of the Casimir energy (65) and force (66)
for a fermionic field in a rectangular box with arbitrary sizes
(a, b, c) and temperature T , we can now do a full analysis of
these two quantities in the entire parameter space spanned by
these four parameters.

First of all, we can reduce the full parameter space
a ∈ (0,∞) × b ∈ (0,∞) × c ∈ (0,∞) × T ∈ (0,∞) into a
smaller one by taking advantage of the cyclic symmetry of
the sizes (a, b, c). That is, we will assume b � c � a without
losing any generality. This effectively reduces the parameter
space to one-eighth of the original one. Moreover, since
1/T has the same dimension as length in our convention of
units (h̄ = c = κB = 1), we can directly compare it with the
edge lengths. With these simplifications, we will be able to
do a full analysis of the Casimir energy and force in the
reduced parameter space. We will study in turn the low-
and high-temperature limits, and then the finite-temperature
case. In each case, we scan some ranges of the parameters
and look for interesting features of the Casimir energy and
force.

A. Low-temperature limit: 1/T → ∞
In this limit, because the only dimensional variable of the

inputs are a, b, and c, the Casimir energy will depend only
on one absolute scale, for which we chose b, and then the
ratios between the edges. This not only means that the effective
parameter space is further reduced, but also that the Casimir
energy will take the form

FC = 1

b
g
(a

b
,
c

b

)
, (67)

where g is some function depending on a/b and c/b only. This
indeed can be simply verified from Eq. (65). Therefore, without
losing any generality, we can set b = 1. There will exist three
subcases: (A1) all of the edge sizes b, c, a are finite, i.e., a
three-dimensional box; (A2) b, c are finite and a is infinite,
i.e., a waveguide; and (A3) b = 1 is finite and c, a are infinite,
i.e., two parallel plates.

We can simply compute the zero-temperature limit of the
Casimir energy and Casimir force for arbitrary edge sizes.
According to Eq. (51), FT approaches zero when T goes to
zero. Hence, at zero temperature the Casimir energy (65) turns
into the renormalized energy F0 in Eq. (55)

FC (a, b, c, T → 0)

= F0(a, b, c) = −
{

7ζ (4)ac

32π2b3
+ a

b3/2c1/2
M 3

2

(
c

b

)

+ 2M1(a, b, c)

}
(68)

which is the same as (55), and by using formula (24) the
Casimir force is given by

f0a(a, b, c) = − ∂

∂a
F0(a, b, c) = 7ζ (4)c

32π2b3

+ 1

b3/2c1/2
M 3

2

(
c

b

)

− 2

a
M1(a, b, c) − 4πM0(a, b, c), (69)

where M3/2(x) and M1(x, y, z) were defined in Eqs. (57) and
(56) and

M0(x, y, z) =
∑

m,k=0

∑
n=1

(−1)n+1

[(
m + 1

2

)2
y2

+
(
k + 1

2

)2
z2

]

×K0

⎛
⎝2πnx

√(
m + 1

2

)2
y2

+
(
k + 1

2

)2
z2

⎞
⎠.

(70)
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When b = c = a, these equations yield the Casimir energy and
Casimir force of a cube

F0(a, a, a) = −1

a

(
7π2

2880
+ 0.0142 + 0.0108

)

= −0.0489
1

a
, (71)

f0a(a, a, a) = 1

a2

(
7π2

2880
+ 0.0142 − 0.0108 − 0.0437

)

= −0.0163
1

a2
. (72)

Our results in this special case agree perfectly with previous
calculation in Eqs. (A16) of Ref. [21] done for this geometry.

For case (A1), we studied numerically the Casimir energy
and force for a range of parameters using the above formulas.
We plotted in Fig. 2 the Casimir energy for b = 1 and c from
1 to 3 and a from c to 3 and the corresponding Casimir forces
along a and c directions, respectively.

It is seen that the Casimir energy is always negative while the
sign of the forces in neither the a nor the c direction is fixed. The
magnitude of the force in the a direction is in general smaller
than that in the c direction, which is understandable because
a > c in this part of the parameter space. Also, because of this,
the forces in both the a and c directions change much slower
as a varies than they change as c varies. For the force in the
a direction, as one can see from Fig. 2(b), it will change from
repulsive to attractive as a decreases to almost one while c was
kept a small constant c ∼ 1. For the force in the c direction,
Fig. 2(c) shows that the force also transforms from repulsive to
attractive, but mainly with the decrease of c from much larger
than 1 to about 1. These changes of sign of the force were
also reported in Ref. [20] for parallel plates and in Ref. [37]
for three-dimensional box. Lastly, the force in the b direction
is independent from the forces along the a and c directions,
although b itself was set to constant 1. From Fig. 2(d) it is
clear that this force is always attractive in the entire range of
parameters. Projecting the zero force boundary in Figs. 2(b)
and 2(c) onto the parameter space spanned by (a, c), one
can clearly see where the force along a, b, c directions are
attractive or repulsive. One can also conclude that the force for
all three pairs of opposite faces cannot be made simultaneously
repulsive [37]. In region I (or IV), the force along a (or c)
is repulsive while the other two directions are attractive. In
region II, the force along both a, c are repulsive and that along
b direction is attractive. While in region III, the force along all
directions is attractive.

Equations (68) and (69) can also be used to obtain the limits
in waveguide case (A2) and parallel plates case (A3). For the
Casimir energy density and force density along c direction per
unit length of the waveguide, we obtain

Fw0(b, c) = lim
a→∞

F0(a, b, c)

a

= −
[

7ζ (4)c

32π2b3
+ 1

b3/2c1/2
M 3

2

(
c

b

)]
, (73)

fw0b(b, c) = − ∂

∂b
Fw0(b, c) = −21ζ (4)c

32π2b4
+ 2πc1/2

b7/2
N 1

2

(
c

b

)
,

(74)

(a) (b)

3
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2

11
c
2

3

-0.1

-0.2

0

F
0

3

a

2

11
c
2

3

0

0.05

0.1

f 0
a

(c) (d)

3

a

2

11
c
2

3

-0.1

0

0.1

f 0
c

3

a

2

11
c
2

3

-0.6

-0.4

-0.2

0

f 0
b

(e)

a
1 1.5 2 2.5 3

c

1

1.5

2

2.5

3
a direction
c direction

FIG. 2. (a) Casimir energy for a fermionic field in a rectangular
box at zero temperature. (b)–(d) The corresponding Casimir force
along b, c, and a directions, respectively. (e) The force transition
boundaries. Choice of parameters are b = 1, c from 1 to 3, and a

from c to 3. The edge sizes have a unit of an arbitrary length scale L,
and consequently the Casimir energy has unit h̄c/L.

where Eq. (24) has been used and

N 1
2
(x) =

∑
k=0

∑
n=1

(−1)n+1

n1/2

(
k + 1

2

)5/2

K 1
2

[
2π

(
k + 1

2

)
nx

]
.

(75)

The force density along c direction takes the same form as
Eq. (74) with b and c exchanged. In particular, for a waveguide
with square cross section, the Casimir energy and force along
the two edges are

Fw0(b, b) = − 1

b2

(
7π2

2880
+ 0.0142

)
= −0.0382

1

b2
, (76)
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(a) (b)

c
1 1.5 2 2.5 3

F
w

0

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

c
1 1.5 2 2.5 3

f w
0 b

-0.4

-0.2

0

f w
0c

-0.05

0

0.05
b direction
c direction

FIG. 3. (a) Casimir energy density per unit length for a fermionic field in a waveguide as the aspect ratio changes. (b) Corresponding Casimir
force density along b and c directions. The edge sizes have a unit of an arbitrary length scale L, and consequently the Casimir energy has unit
h̄c/L.

fw0b(b, b) = 1

b3

(
−7π2

960
+ 0.0338

)
= −0.0382

1

b3
. (77)

For the Casimir energy and force densities per unit area of the
parallel plate, we have

Fp0(b) = lim
c→∞

Fw0(b, c)

c
= − 7π2

2880b3
, (78)

fp0b(b) = − ∂

∂b
Fp0(b) = − 7π2

960b4
. (79)

To study in the (A2) case the effect of the aspect ratio of
the waveguide cross section, we plotted in Fig. 3 the Casimir
energy (73) and force (74) along b and c directions by varying
the only variable c from 1 to 3 (note that b = 1 and a → ∞
already). It is seen from Fig. 3(b) that as c increases, the force in
the b direction fw0b is always attractive. However, in Fig. 3(a)
there exists a maximal point of the Casimir energy when the
ratio r0cr = c/b 	 1.21 which corresponds to a turning point
of the force along c direction [fw0c in the Fig. 3(b)]: when c is
below this value, fw0c was attractive and above it, fw0c becomes
repulsive. It is notable that Ref. [37] used the Bogoliubov
transformation method and found a similar transformation but
with different critical aspect ratio r0cr.

For the parallel plate case (A3), the results (78) and (79)
are particularly simple. It is seen that the Casimir energy is
always negative and monotonically increasing, while the force
is always attractive, as anticipated from previous studies. These
results are agree exactly with Refs. [18–20,37–40].

B. High-temperature limit: 1/T → 0

This is another case for which the effective parameter space
is further reduced and therefore easier to analyze. Similar to the
low-temperature limit in Sec. V A, the Casimir energy in this
limit should also depend on one length scale, e.g., b, and the
ratios of other edges to b. Without losing generality, therefore,
we also set b = 1.

In high temperature, however, as will be shown in
Appendix B, both the Casimir energy and Casimir force

approach zero:

lim
T →∞

FC = 0, (80)

lim
T →∞

fa = 0. (81)

These are in alignment with the effect of high temperature,
whose thermal fluctuation will suppress the quantum fluctua-
tion that is responsible for a finite Casimir energy and force.

C. Finite-temperature case

In this case, we will use 1/T as the scale against which
all edge sizes will be compared. For the purpose of studying
Casimir energy and force, without losing any generality we
can simply set T = 1 while allowing b, c, a to vary freely
in the reduced parameter space (b � c � a). It is also clear
that we do not need to study the case that all three edges are
much larger than one, which is equivalent to high-temperature
case (Sec. V A), or the case that all three edges are much
smaller than one, which is equivalent to the low-temperature
case (Sec. V B). Taking all these into account, there are only
four subcases that we need to study here: (C1) two edgesa and c

are much larger than 1/T while b is comparable or smaller than
1/T ; (C2) one edge a is much larger than 1/T while c and b are
comparable or much smaller than 1/T ; (C3) a and c are compa-
rable to 1/T while b is comparable or much smaller; and finally
(C4) a is comparable to 1/T while c and b are much smaller.

1. Case C1

Case (C1) is equivalent, in the limit that a and c are large,
to a parallel plate geometry at finite temperature. The Casimir
energy and force densities per unit area in these limits are

Fp(b, T ) = lim
c→∞

Fw(b, c, T )

c
= −

(2T )5/2M 3
2
(2bT )

b1/2
, (82)

fpb(b, T ) = − ∂

∂b
Fp(b, T )

= −2(2T )5/2

b1/2

[
1

b
M 3

2
(2bT ) + 2πT N 1

2
(2T b)

]
,

(83)
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FIG. 4. (a) The Casimir energy density per unit area. (b) Casimir force density per unit area. (c) The edge-size dependence of the normalized
energy density. (d) The edge-size dependence of the normalized force density. All temperatures have a unit of an arbitrary temperature scale
TA, and consequently all Casimir energies have unit kBTA and length a, b, c have unit h̄c/(kBTA).

where Fw(b, c, T ) is given in Eq. (84) and N 1
2
(x) is given

in Eq. (75). We also compared these results with available
literature and found that our Casimir energy density (82) agrees
with Eq. (3.17) of Ref. [20] (see Appendix C) after subtracting
the black-body radiation term and changing its variables ξ →
bT . To see more clearly the dependence of the energy and
force on the plate distance and temperature, we plot in Fig. 4
in logarithmic scale the Casimir energy and force per unit area
for two choices of edges a = c = 5 and a = c = ∞ and three
choices of temperature T = 1, π , and 2π .

From Figs. 4(a) and 4(b), one sees that both the Casimir
energy and force density are always negative and increase to
asymptotically zero as b increases, which is expected because
the plate distance increases. Note that in order to separate
curves in the plots, a logarithmic scale was used in the y axis.
In the linear scale, both the Casimir energy and force densities
are almost a constant zero as b approaches 1. For the effect
of temperature, it is seen that the higher the temperature, the
faster the Casimir energy and force densities approach zero
as b increases. This is in agreement with the general effect
of temperature increase, which always competes with that of
the quantum fluctuations responsible for Casimir energy and
force and therefore suppresses them. What is remarkable here
is the effect of edge sizes to the Casimir energy and force
density. As can be seen from Figs. 4(a) and 4(b), the densities
of both the Casimir energy and force completely coincide for
a = c = 5 and a = c = ∞. Indeed, in Figs. 4(c) and 4(d) we

show how the energy and force densities normalized by their
asymptotic magnitudes depend on the edge sizes. It is seen from
the flat tails of these plots that a box with height 1 and square
top and bottom faces with edge larger than 2 has the same
Casimir energy and force densities as a pair of infinitely large
parallel plates with same plate distance. Moreover, the higher
the temperature, the smaller the a and c need to be to resemble
the asymptotic values of the Casimir force and densities. This
is not surprising given that the higher temperature tends to
demolish both the Casimir energy and force, as shown in the
high-temperature limits in Sec. V B. This temperature effect to
the Casimir energy and force densities is also observed here,
although not shown in the normalized plot.

2. Case C2

Case (C2) corresponds to a waveguide geometry at high
temperature compared to the waveguide’s longest edge in
the limit that a is large. The Casimir energy and force
density along b direction per unit length in this limit are
given by

Fw(b, c, T ) = lim
a→∞

FC

a
= −4T

[
M1

(
c, b,

1

2T

)

+ c

(
2T 3

b

)1/2

M 3
2
(2bT )

]
, (84)
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FIG. 5. (a) Casimir energy density per unit length at temperatures T = 1, π, 2π . (b) Casimir force density along b direction at temperatures
T = 1, π, 2π . (c) Casimir force density along c direction at temperatures T = 1. (d) The critical ccr at which the force along c direction flips
sign at temperature changes. (e) The long-side edge dependence of the normalized energy. (f) The long-side edge dependence of the normalized
force. We set a = 5. All temperatures have a unit of an arbitrary temperature scale TA, and consequently all Casimir energies have unit kBTA

and length a, b, c have unit h̄c/(kBTA).

fwb(b, c, T ) = − ∂

∂b
Fw(b, c, T )

= 8T c

{
π

b3
N0

(
c, b,

1

2T

)
− (2T 3)

1
2

×
[

1

b3/2
M 3

2
(2T b) + 2πT

b1/2
N 1

2
(2T b)

]}
. (85)

Equation (84) is derived in Appendix C. Note that the force
along c direction takes the same form as Eq. (85) but with b

and c exchanged. To see clearly the edge size and temperature
dependence of these quantities, we plot them in Fig. 5 for some
c from smaller than 1 to comparable to 1, and b from b 
 1
to c while fixing a at 5. The increase of b from b 
 1 to c is
equivalent to the change in the waveguide cross section from
a narrow rectangular to a square.
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Figure 5(a) shows that all Casimir energy densities are
negative for all temperature and edge sizes. It increases mono-
tonically as b increases in all ranges of b � c and therefore
the force along the b direction is always attractive, as shown
in the force plot, Fig. 5(b). As c increases while keeping b

fixed, however, a careful inspection shows that when b is small,
b � cmin ≈ 0.5, the Casimir energy monotonically decreases.
This leads to a repulsive force along the c direction. However,
for larger fixed b, there exists a small interval of c ∈ [b, ccr]
in which the Casimir energy increases as c increases and after
passing the critical ccr the Casimir energy decreases again. This
feature cannot be seen very clearly in Fig. 5(a) because of the
finite element limit in it, but it is clearly shown in the c direction
force density plotted in Fig. 5(c). This means that by changing
the length of one side of the waveguide cross section, the nature
of the Casimir force can be changed. As b increases, the critical
ccr forms a curve in this plot. Therefore, this curve is a boundary
in the parameter space spanned by b and c, separating the
attractive (right side of the line) and repulsive (left side of the
line) forces along the c direction. We also studied how this
critical boundary depends on the temperature in Fig. 5(d). It
is seen that the higher the temperature, the smaller the ccr is
required for the force to flip sign.

Finally, as for the long edge-size effect, similar to the
previous case of parallel plate, we found that both the Casimir
energy and force densities practically gain their asymptotic
value when a is as small as 2 [see Figs. 5(e) and 5(f) which show
the normalized energy and force, respectively]. Besides, the

value of a at which the energy and force reach their asymptotic
value also decreases as temperature increases, which is the
same feature as in the C1 case and understandable given high
temperature suppresses the quantum fluctuation responsible
for the Casimir energy and force.

3. Case C3

For case (C3), when b is much smaller than a and c, this
is also equivalent to a parallel plate geometry, although the
temperature here is kept low so that its inverse is comparable
to the plate edge sizes. In limits that a, c are large, the Casimir
energy and force have been given by Eqs. (82) and (83). As b

increases, then the geometry becomes a typical rectangular
box with all three edges comparable. We plotted in Fig. 6
the Casimir energy and force density per unit area for a few
temperatures while keeping a = c = 1 and let b vary from 0.1
to 2.

It is found from Fig. 6(b) that similar to case (C1), for all
temperature as long as b was smaller than a and c, the Casimir
force along the b direction will always be attractive. While as
b approaches a and c from below, the attractive force becomes
weaker and approaches zero. After b passing a = c = 1, the
geometry approaches a waveguide, which becomes similar to
case (C2). It is also found that the force along the b direction,
which is now the longer direction of the waveguide, can also
change from attractive to repulsive after passing a critical bcr.
We also plotted the temperature dependence of this critical
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FIG. 6. (a) Casimir energy density and (b) normalized Casimir force densities using Eqs. (82) and (83) for a = c = 1 and b from 0.1 to
2. (c) Temperature dependence of the critical length. All temperatures have a unit of an arbitrary temperature scale TA, and consequently all
Casimir energies have unit kBTA and length a, b, c have unit h̄c/(kBTA).
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FIG. 7. (a) Casimir energy density per unit length along a direction. (b) The corresponding force density. We set T = 1, π, 2π and
b = c = 0.1. All temperatures have a unit of an arbitrary temperature scale TA, and consequently all Casimir energies have unit kBTA and length
a, b, c have unit h̄c/(kBTA).

edge size in Fig. 6(c) and found that when temperature is
higher than about T = 1.1, then similar to the critical bcr in
case (C2), the critical bcr also decreases as the temperature
increases. While for temperature below T = 1.1, the critical
bcr increases with the increase of temperature.

4. Case C4

For case (C4), the geometry is similar to a waveguide case
but the temperature is comparable to 1/a which is in contrast to
case (C2), and much smaller than 1/b or 1/c. This also requires
us to not take the a → ∞ limit. We plotted in Fig. 7 the Casimir
energy and force density per unit length along the a direction
by setting T = 1, π, 2π and b = c = 0.1 and varying a from
1/2 to 2. This force density is along the longitudinal direction
and analogous to the spring factor in Hooke’s law. Therefore,
it describes how the force factor changes with respect to the
waveguide length.

It is seen from the plots that under such large length-to-width
ratio, the Casimir energy exhibits an expected behavior that its
density is a constant, meaning the total Casimir energy is pro-
portional to the length. This is similar to a pair of large parallel
plates in that both are proportional to the large dimension of
the geometry. The foundation of this proportionality of course
is that the shortest edge(s) of the rectangular box determines
the density of Casimir energy, be it per unit area or per unit
length. This constant energy density then means that the force
density along the a direction, i.e., the force factor, decreases
as 1/a1. This is seen in Fig. 7(b) and also easily understood
from the Hooke’s law.

Summarizing cases (C1)–(C4) and to get a better under-
standing of the transition of the Casimir force from attractive
or repulsive, we combine the analysis done in the above four
cases, and plot in Fig. 8 the transition surface in the parameter
space spanned by all three edge sizes a, b, and c from 0.1 to
2 for temperatures T = 1 for the force along the a direction.
It is seen that for a fixed and small a, there exists an L-shaped
boundary composed mainly by two straight lines at small b

and small c, respectively. In one side of the boundary where
b and c are simultaneously large, the force is attractive; while
on the other side of the boundary, the force is repulsive. As

a increases, this L-shaped boundary also shrinks towards the
larger b and c directions and eventually approaches b, c � 1.7
when a reaches 2.

VI. DISCUSSIONS

The thermal Casimir energy and force for massless
fermionic field confined in rectangular box are calculated in
this paper. The analytic expressions are given in Eqs. (65)
and (66). Their various limiting values agree with previously
known results in simpler geometries. Using these results, low-
and high-temperature limits and effects of finite temperature
and box edge sides on the Casimir energy and force were
studied. Generally, it is found that at zero temperature, there
exist two boundaries (see Fig. 2) dividing the effective two-
dimensional parameter space into four regions. In one of the
regions, all forces along three edges are attractive, while in
two other regions the force along the longest edge becomes
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FIG. 8. Transition boundary for the force fa from attractive to
repulsive at T = 1. All temperatures have a unit of an arbitrary
temperature scale TA, and consequently all Casimir energies have
unit kBTA and length a, b, c have unit h̄c/(kBTA).
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repulsive, and in the last region forces along two longest
edges become positive. For the finite-temperature case, the
parameter space is divided into four subcases. For a box
with geometry similar to parallel plate and high temperature,
the force between the plate is always attractive and becomes
weaker as the plate distance or temperature increases. For the
waveguide geometry at high temperature, depending on the
aspect ratio of the waveguide cross section, the forces along
the wider side of the cross section can transform from attractive
to repulsive. The transition value of the longer cross-section
edge decreases as temperature increases. For geometry of
parallel plate with low temperature or geometry of box with
three comparable sizes, there also exists a critical value for
the longest edge length beyond which the force along this
direction changes from attractive to repulsive. This critical
value changes with temperature nonmonotonically. For the
waveguide geometry at low temperature, as the length of the
waveguide increases, the Casimir energy density per length is
kept at a constant and the force density per length along the
longitudinal direction decreases as length inverse. It is found
that at general temperature, the parameter space of three edges
can always be split by a surface into two regions according to
the nature of the Casimir force along any particular direction.
In the high-temperature limit, it is found that both the Casimir
energy and force approaches zero.

As for the extension of this work, two possible choices
might be attempted. The first is to consider other boundary
conditions. Although bag model boundary conditions make the
solution of the frequency modes simple, there do exist other
boundary conditions [41,42], which might be more suitable
for the system one wants to study. The second is to consider a
massive fermionic field, which will introduce another energy
scale against which the effect of temperature and edge sizes
can be compared. Moreover, fermions with nonzero mass are
more realistic given that the Casimir effect experiments are
always carried out in condensed matter systems, in which
the fermionic excitation (quasiparticles) usually has a nonzero
(although sometimes small) mass. For these two directions, we
expect the latter shall be easier because the former will alter
the modes of the allowed quantum fluctuation and therefore
affect computation in a more fundamental way.

A more dramatic turn of the future direction would
be studying thermal Casimir effect of Dirac, Majorana, or
Weyl fermions in a three-dimensional box. With the rise of
these kinds of fermionic quasiparticles in condensed mat-
ter systems in the past years, there have also been studies
of fermionic Casimir effects of them [43–45]. However,
there are still a lack of studies for more complex geome-
try such as a three-dimensional box using these fermions
with arbitrary temperature. We are currently working in this
direction.

Finally, in this work we extended the Schlömilch’s formula
to the cases of double series and triple series. These generalized
formulas can be applied to the calculation of the thermal
Casimir effect for scalar field confined in rectangular boxes
[13]. From this perspective, it would be appropriate to discuss
relations between Schlömilch’s formula and some other similar
formulas, e.g., Poisson’s resummation formula and Chowla-
Selberg’s formula [46], and their potential applications in the
area of Casimir effect.

The Poisson’s resummation formula describes how a gen-
eral function can be expanded in a particular way. For function
f (x) = f (−x) and f (x) ∈ L1, this formula is

∞∑
n=1

f (n) = −1

2
f (0) +

ˆ ∞

0
dxf (x)

+ 2
∞∑

n=1

ˆ ∞

0
dx f (x) cos(2πnx). (86)

We now show that this formula can be directly used to prove the
Schlömilch’s formula (1). Indeed, using Eq. (86) to function

|x|
e2α|x|−1 (α > 0), one obtains

∞∑
n=1

n

e2αn − 1

= − 1

4α
+
ˆ ∞

0
dx

x

e2αx − 1

+ 2
∞∑

n=1

ˆ ∞

0
dx

x

e2αx − 1
cos(2πnx) (87)

= − 1

4α
+ π2

24α2
+

∞∑
n=1

[
1

4π2n2
− π2

α2(e
2π2n

α + e− 2π2n
α − 2)

]

= − 1

4α
+ π2

24α2
+ 1

24
− π2

α2

∞∑
n=1

n

e
2π2n

α − 1
, (88)

where formula (17) and the Abel-Plana formula (39) after
setting g(t ) = t exp(−2π2nt/α) are used, respectively, to the
first and second integrals on the right-hand side of (87). The
Schlömilch’s formula (1) immediately follows from Eq. (88).
Because it was known that Schlömilch’s formula can be
used in one-dimensional Casimir effect, its derivation from
Poisson’s resummation formula guarantees the application of
the latter in one-dimensional Casimir effect too. Using two- and
three-dimensional Poisson’s resummation formulas to two-
and three-dimensional summations to find results similar to
Eqs. (22) and (28), and analysis of the corresponding Casimir
effects, however, requires a separate and large amount of work,
and will not be pursued here.

The Chowla-Selberg formula was originally considered by
Chowla and Selberg in Ref. [47] and then extended by Elizalde
in Ref. [46, Eq. (4.32)] to carry out summation of the following
form: ∑

m,n

′
(am2 + bmn + cn2 + q2)−s . (89)

This is formally similar to the double summations appearing
in Eq. (38):

∑
n,m

ωn,m =
∑
n,m

π

√
n2

l2
a

+ m2

l2
b

, (90)

where the ωn,m is the energy spectrum of the electromagnetic
wave confined in a two-dimensional box with sides la and
lb. One sees that Eq. (89) after setting a = 1/l2

b , b = 0, c =
1/l2

a , q = 0, and s = −1/2 will match Eq. (90) and, conse-
quently, this allows us to use the extended Chowla-Selberg
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formula for this double summation. This suggests that similar
to the situation in Ref. [46], the extended Chowla-Selberg
formula can also be applied in the calculation of Casimir effect
in our case.
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APPENDIX A: DERIVING THE EXPRESSION OF FT

In this appendix, we show how Eq. (59) can be derived
using Eq. (33) with the help of an operator Ŝ defined below.
According to the definition of FT in Eq. (51), we have

FT = −4T
∑

n,m,j=0

ln
(
1 + e− π

T

√
( 2n+1

2a
)2+( 2m+1

2b
)2+( 2j+1

2c
)2)

. (A1)

The summations can be recast into the form

FT = 4T ŜU (a, b, c, T ), (A2)

where the operator Ŝ is defined by its action on any function
u(a, b, c) as

Ŝu(a, b, c) = u(2a, 2b, 2c) + u(a, b, 2c)

+u(a, 2b, c) + u(2a, b, c)

−u(a, 2b, 2c) − u(2a, b, 2c)

−u(2a, 2b, c) − u(a, b, c), (A3)

and U (a, b, c, T ) in Eq. (A2) is defined as

U (a, b, c, T ) =
∑

n,m,j=1

ln
(
1 + e− π

T

√
( n

a
)2+( m

b
)2+( j

c
)2)

. (A4)

The quantity U (a, b, c, T ) can be calculated by using Eq. (33)
and the result is

U (a, b, c, T ) = U1(a, b, c, T ) −
[

7ζ (4)abcT 3

8π2
+ ζ (4)ac

16π2b3T

]
− π

T

[
a

4πb3/2c1/2
Y 3

2

(
c

b

)
+ 1

2π
V1(a, b, c)

]

+Z3

(
a, b, c,

1

2T

)
− Z3

(
a, b, c,

1

T

)
− aV1

(
c, b,

1

2T

)
+ aV1

(
c, b,

1

T

)

− ac

(
2T 3

b

)1/2

Y 3
2
(2T b) + ac

2

(
T 3

b

)1/2

Y 3
2
(T b). (A5)

Here,

U1(a, b, c, T ) = 3ζ (3)abT 2

16π
+ 3ζ (3)acT 2

16π
− πaT

48
+ ζ (3)a

32πb2T
+ 1

2

[
Z2

(
1

T
, b, c

)
− Z2

(
1

2T
, b, c

)]

−aT Y1(bT )

2
+ aT Y1(2bT ), (A6)

Y3/2(x) and V1(x, y, z) were defined in Eq. (29), and Z3(x, y, z) were defined in Eq. (31).
The operator Ŝ is linear, and has the following properties when applied onto functions with one, two, or three variables with

special form:

Ŝu(a) = Ŝu(b) = Ŝu(c) = Ŝu(a, b) = Ŝu(a, c) = Ŝu(b, c) = 0,

Ŝ[aU (b, c)] = a[u(2b, 2c) + u(b, c) − u(b, 2c) − u(2b, c)],

Ŝ[acu(b)] = ac[u(2b) − u(b)]. (A7)

Therefore, when it is applied to each term in U (a, b, c, T ) in Eq. (A5), we have

ŜU1(a, b, c, T ) = 0, (A8)

Ŝ

[
−7ζ (4)abcT 3

8π2
− ζ (4)ac

16π2b3T

]
= −7ζ (4)abcT 3

8π2
+ 7ζ (4)ac

128π2b3T
, (A9)

Ŝ

[
aY3/2(c/b)

b3/2c1/2

]
= − a

b3/2c1/2
M 3

2

(
c

b

)
, (A10)

ŜV1(a, b, c) = −M1(a, b, c), (A11)

Ŝ

[
Z3

(
a, b, c,

1

2T

)
− Z3

(
a, b, c,

1

T

)]
= −W3

(
a, b, c,

1

2T

)
, (A12)

Ŝ

[
−aV1

(
c, b,

1

2T

)
+ aV1

(
c, b,

1

T

)]
= −aM1

(
c, b,

1

2T

)
, (A13)
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Ŝ

[
−ac

(
2T 3

b

)1/2

Y 3
2
(2T b) + ac

2

(
T 3

b

)1/2

Y 3
2
(T b)

]
= −ac

(
2T 3

b

)1/2

M 3
2
(2bT ), (A14)

where M 3
2
(x), M1(x, y, z), and W3(x, y, z, t ) were defined in Eqs. (57), (56), and (61), respectively.

Finally, substituting them back into Eqs. (A5) and (A2) yields Eq. (59) in Sec. IV.

APPENDIX B: HIGH-TEMPERATURE LIMITS

In this appendix we first prove Eq. (46) in Sec. III. In order to do so, we only need to show that the F2(a, b, c, T ) term in
Eq. (43) approaches zero. Let us prove term by term that this will be zero in the high-temperature limit. When T is high enough,
according to definition (31), we have

0 < −T Z3

(
a, b, c,

1

2T

)
< T

∑
k,m,j

e
−πa

√
m2

b2 + j2

c2 +4T 2k2
< T

∑
k,m,j

e−πa 1
π

( m
b
+ j

c
+2T k). (B1)

Since the right side of Eq. (B1) approaches zero at high temperatures, we have

lim
T →∞

T Z3

(
a, b, c,

1

2T

)
= 0−. (B2)

Similarly, using definition (26) we can prove

lim
T →∞

T Z2

(
x, y,

1

2T

)
= 0−, lim

T →∞
T Z1(2T x) = 0−. (B3)

The asymptotic expression of the Bessel functions of an imaginary argument at limit x → ∞ is [48]

Kν (x) = e−x

√
π

2x
[1 + O(x−1)], x → ∞. (B4)

According to Eqs. (29) and (B4) then, when T → ∞,

T V1

(
c, b,

1

2T

)
∼ T

∑
k,m,n

√
4T 2k2 + m2

b2

n

√
1

/(
4nc

√
4T 2k2 + m2

b2

)
e
−2πcn

√
4T 2k2+ m2

b2

< T
∑
k,m,n

(
2T k + m

b

)
e−2πcn· 1

2π
(2T k+ m

b
) = T

∑
k,m

2T k + m
b

ec(2T k+ m
b

) − 1
< T

∑
k,m

2T k + m
b

ec(2T k+ m
b

) − 1
2ec(2T k+ m

b
)
. (B5)

It is clear then

lim
T →∞

T V1

(
c, b,

1

2T

)
= 0+. (B6)

According to Eqs. (23) and (B4), when T → ∞,

T 2Y1(2cT ) ∼
√

T 3

8c

∑
k,n

√
k

n3
e−4πT ckn <

√
T 3

8c

∑
k,n

ke−4πT ckn =
√

T 3

8c

∑
n

e4πT cn

(e4πT cn − 1)2
. (B7)

Thus, it is also clear that the exponential term in the denominator will win over and therefore

lim
T →∞

T 2Y1(2cT ) = 0+. (B8)

According to Eq. (29) and the formula [33]

Ki+1/2(z) =
√

π

2z
e−z

i∑
k

(i + k)!

k!(i − k)!(2z)k
, (B9)

when integer i equals 3, one can derive

T 5/2Y 3
2
(2bT ) = T

27/2πb3/2

[
4πT b

∑
n

e4πT bn

n2(e4πT bn − 1)2
+
∑

n

1

n3(e4πT bn − 1)

]
. (B10)

Similar to the situation in Eq. (B7), hence,

lim
T →∞

T 5/2Y 3
2
(2bT ) = 0+. (B11)
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Finally, combining Eqs. (B2), (B3), (B6), (B8), and (B11), it follows then

lim
T →∞

F2(a, b, c, T ) = 0. (B12)

From this, Eq. (46) can be immediately obtained.
Now, let us prove Eqs. (80) and (81) in Sec. IV. For the Casimir energy, according to Eqs. (65), (60), (A10), (A11), (A12),

and taking into account definition (A3), Eqs. (B2), (B6), and (B11), we can obtain very simply

lim
T →∞

FC = lim
T →∞

T A3(a, b, c, T ) = lim
T →∞

T Ŝ

{
Z3

(
a, b, c,

1

2T

)
− Z3

(
a, b, c,

1

T

)
− aV1

(
c, b,

1

2T

)

+ aV1

(
c, b,

1

T

)
− ac

(
2T 3

b

)1/2

Y 3
2
(2T b) + ac

2

(
T 3

b

)1/2

Y 3
2
(T b)

}
= 0, (B13)

which is Eq. (80).
For the Casimir force, denoting the first term of Eq. (66) by f1, it is clear that in the first term the exponential term in the

denominator dominates the numerators

lim
T →∞

f1 = 0−. (B14)

According to Eqs. (A13) and (B6), (A14) and (B11), and the definition of Ŝ in Eq. (A3), one finds

lim
T →∞

T M1

(
c, b,

1

2T

)
= lim

T →∞
T

5
2 M 3

2
(2T b) = 0. (B15)

Combination of Eqs. (B14) and (B15) proves Eq. (81) in Sec. IV.

APPENDIX C: WAVEGUIDE AND PARALLEL PLATE LIMITS

In this appendix we derive the formula for the Casimir energy per unit length in the case of waveguide and per unit area in the
case of parallel plate, i.e., Eqs. (84) and (82). For the waveguide case, from definitions (65), (60), and (61), it is seen that in order
to prove Eq. (84), we need to study the limits lima→∞ W3(a, b, c, x)/a. Similar to the argument from Eq. (B1) to Eq. (B2), one
can obtain

lim
a→∞

1

a
W3

(
a, b, c,

1

2T

)
= 0. (C1)

Using this, Eq. (84) immediately follows.
In order to further prove Eq. (82), we need to study the limit of limc→∞ M1(c, x, y)/c. Similar to the argument from Eq. (B4)

to Eq. (B6), one can obtain

lim
a→∞

1

a
V1(a, b, c) = 0, (C2)

Then, according to Eq. (A11) and definition of Ŝ in Eq. (A3), Eq. (C2) further implies

lim
a→∞

1

a
M1(a, b, c) = 0. (C3)

Using this equation and Eq. (84), Eq. (82) follows.
Lastly, let us show that after subtracting from Eq. (3.17) of Ref. [20] a free black-body radiation energy term, the free Casimir

energy will agree with our result (C3). We will do the proof backward. First, letting ξ = bT and defining

g(ξ ) = b3Fp(b, T ), (C4)

then according to Eqs. (82), (57), and (B9) this Casimir energy becomes

g(ξ ) = −(2ξ )5/2M 3
2
(2ξ ) = ξ

4π

∑
n

(−1)n[sinh(2πξn) + 2πξn cosh(2πξn)]

n3 sinh2(2πξn)

= ξ

4π

{∑
n

2[sinh(4πξn) + 4πξn cosh(4πξn)]

(2n)3 sinh2(4πξn)
−
∑

n

sinh(2πξn) + 2πξn cosh(2πξn)

n3 sinh2(2πξn)

}

= − ξ 3

16π

∂

∂ξ

1

ξ

∑
n

1

n3

(
1

sinh(4πnξ )
− 4

sinh(2πnξ )

)
. (C5)
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Clearly, this is different from the dimensionless free energy f (ξ ) in Eq. (3.17) of Ref. [20] by just the black-body radiation term
given in the square brackets below:

g(ξ ) = f (ξ ) −
[
−7π2ξ 4

180

]
. (C6)
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