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Static dipole polarizability of palladium from relativistic coupled-cluster theory
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Nonrelativistic and relativistic coupled-cluster calculations extrapolated to the complete basis set limit including
excitations up to the quintuple level were carried out to accurately determine the static electric dipole polarizability
of the closed-shell palladium atom. The resulting value ofα =26.14(10) a.u. implies that palladium has the smallest
dipole polarizability of all known elemental metal atoms due to its unique 4d105s0 configuration. Relativistic
effects are found to be already sizable (�Rα = +1.86 a.u.) compared to electron correlation (�Cα = +5.06 a.u.)
and need to be included for the accurate determination of the dipole polarizability. We also report a value of the
second hyperpolarizability to be γ ≈ 40 000 a.u., but here the coupled-cluster contributions are not yet converged
with respect to higher than quintuple excitations.
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I. INTRODUCTION

The electric dipole polarizability α is one of the most
fundamental atomic properties important for many atomic
and molecular properties and applications [1–7]. Whereas
we have some knowledge of static dipole polarizabilities
of all the known elements in the periodic table, its accu-
rate determination still remains a considerable challenge for
both experiment and theory [5,8–10]. This is especially the
case when open-shell atoms are considered where, beside
the scalar, the tensor component in the correct coupling
scheme needs to be taken into account [7,11,12]. On the
other hand, considerable progress has been made over the
past two decades in the accurate determination of closed-
shell static dipole polarizabilities of the neutral group 2, 12,
and 18 elements of the periodic table, both from theory and
experiment [7,13].

Palladium is a rare element that is used in many applica-
tions such as catalytic converters and fuel cell technologies.
The valence ground-state electron configuration of atomic
palladium is closed-shell 4d105s0, differing from all the other
group 10 members Ni (3d85s2), Pt (5d96s1), and Ds (6d87s2),
which are open shell [14,15]. In fact, Pd is the only known
atom in its ground electronic state not to have at least one
electron in an outer-shell ns or np orbital [16]. Given this
unique feature, it is particularly important to have reliable
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values of its fundamental properties, such as ionization energy,
electron affinity, and static electric dipole polarizability. While
accurate experimental values for both its ionization energy
[16] and electron affinity [17] are available, we are not aware
of any experimental determination of its dipole polarizability.
Recently published theoretical and empirical estimates differ
widely from about 13–62 a.u., see Table I. If the polarizability
is actually less than about 30 a.u., it would make palladium,
along with the superheavy elements copernicium (Z = 112,
α = 27.64 a.u. [18]) or nihonium (Z = 113, α = 29.9 a.u.
[19]), a contender for having the smallest polarizability of any
metal atom in the periodic table. Moreover, an accurate value
of the dipole polarizability helps to benchmark other methods
such as density-functional theory (DFT) [20].

For an accurate quantum theoretical treatment of the elec-
tronic response to an applied external electric field, both
relativistic and electron correlation have to be taken into
account [10,12,21,22]. For palladium, the main contribution
from the sum-over-states formula of the dipole polarizability
will come from 4d → 5p excitations, and we may therefore
expect relativistic effects to be rather small but not negligible
for an accurate electronic structure treatment. The present
calculations were undertaken in an attempt to establish an
accurate value for the dipole polarizability of the closed-shell
palladium atom using relativistic coupled-cluster theory. We
also provide a value of the fourth-order term with respect to
the applied electric field, the (second) hyperpolarizability γ ,
although higher-order derivatives with respect to the electric
field are known to be more problematic from a computational
point of view [23].
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TABLE I. Reported literature values for the static electric dipole
polarizability α of Pd (all values in atomic units). Abbreviations
used: NR: nonrelativistic, R: relativistic, DKH2: relativistic ef-
fects from second-order Douglas-Kroll-Hess, Dirac: Dirac-Coulomb
Hamiltonian, SR-ECP: scalar-relativistic effective-core potential, HF:
Hartree-Fock, MP2: second-order Møller-Plesset, CCSD: coupled
cluster with single and double excitations, RPA: random phase
approximation, TD-DFT: time-dependent density-functional theory,
LDA: local density approximation, CAMB3LYP: Coulomb atten-
uated B3LYP functional, PGG: Petersilka-Gossmann-Gross kernel
[24], IP: ionization potential, RXH: Radial Exchange-Hole.

α (a.u.) Comments Refs.

Ab initio
23.1 NR-HF [25]
75.6 NR-HF (3F state, d8s2) [26]
21.15 R-Dirac-HF [20]
21.17 R-RPA [27]
24.581 R-DKH2-MP2 [28]
26.612 SR-ECP-CCSD [20]
DFT
32 R-Dirac-LDA [29,30]
30.15 R-Dirac-LDA [20]
26.60 R-Dirac-CAMB3LYP [20]
20.94–31.61 R-Dirac, various DFT approx. [20]
61.7 TD-DFT(RXH) [31]
20.0 TD-DFT(PGG) [32]
Empirical
32 ± 6 Empirical, IP correlation [33]
58.8 Empirical, Slater rules [34]
12.84 Empirical, IP + radius correlations [35]
47 ± 24 NR-HF, scaled [36]

II. COMPUTATIONAL METHOD

The total energy in an homogeneous electric field for a
closed-shell atom E(F ) can be written as (electric field set
arbitrarily in z direction, F = Fz)

E(F ) = E(0) + 1
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with the static electric dipole polarizability α and (second)
hyperpolarizability γ defined as

α = −∂2E(F )
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We computed the electronic energies of Pd in external electric
fields (see section above) with field strengths in the range
F = [0.0, 0.002] a.u. and step size �F = 0.000 25 a.u. at
increasing levels of theory to get insight into how much the
inclusion of relativistic and correlation effects, and specifically,
higher electronic excitations, influence the static atomic
dipole polarizability. We used relativistic coupled-cluster
theory, which included excitations from singles, doubles, and
perturbative triples [CCSD(T)] as implemented in DIRAC-15
[37,38]. All 46 electrons and virtual orbitals up to 30 a.u. were
considered in the correlation treatment. Calculations were
performed with doubly augmented, uncontracted, all-electron,

triple- and quadruple-ζ (TZ and QZ) quality basis
sets dyall.ae3z [30s22p15d8f 5g] and dyall.ae4z
[35s27p19d12f 8g5h], respectively [39,40]. The energies
were then extrapolated to the complete basis set (CBS)
limit using two-point extrapolation schemes utilizing
exponential extrapolation for the Hartree-Fock energies
[41] and inverse cubic extrapolation for the correlation
energies [42], respectively. We used values of 5.79 and 3.05
for α34 and β34, respectively, as proposed by Neese and Valeev
[43].

The CCSD(T)/CBS calculations were performed nonrel-
ativistically, as well as with inclusion of scalar-relativistic
effects (X2C-Spinfree) [44] and two-component meth-
ods, which includes spin-orbit coupling, and are denoted
CCSD(T)NR, CCSD(T)SR, and CCSD(T)SO, respectively. The
two-component calculations were carried out using the exact
two-component X2C-mmf+Gaunt Hamiltonian of DIRAC-15,
obtained from a transformation to a two-spinor basis after solv-
ing the four-component Dirac-Hartree-Fock equations [45].

Higher-order excitations of the valence electrons were
calculated as correction terms to the atomic energies at
the scalar-relativistic level of theory, using the second-order
Douglas-Kroll-Hess (DKH2) Hamiltonian [46–51], and sub-
sequently added to the CBS limit CCSD(T)X2C energies.
Here we utilized MOLPRO 2015.1 [52–55] in conjunction
with the multireference coupled-cluster code MRCC [56–60].
An augmented, correlation-consistent, core-valence, Douglas-
Kroll-Hess basis set aug-cc-pwCVTZ-DK [61] was used for
these calculations. While we could correlate all electrons in
the coupled-cluster calculations with full triples (CCSDT), we
had to restrict the active occupied space to the 4d electrons at
the full quintuples level of theory (CCSDTQP).

To obtain the individual correction terms, we subtracted
the lower-level result from the higher-level one. The full
triple correction �[T–(T)]SR was obtained by subtracting the
perturbative triple CCSD(T)-DKH2(AE)/aug-cc-pwCVTZ-DK
contribution from full triple energy CCSDT-DKH2(AE)/aug-
cc-pwCVTZ-DK. For the full quadruple corrections
�[Q−T]SR we took the energy difference between
the CCSDTQ-DKH2(4d)/aug-cc-pwCVTZ-DK and
CCSDT-DKH2(4d)/aug-cc-pwCVTZ-DK calculations with
only the 4d electrons correlated. The same procedure
was applied for the quintuples correction. However, the
CCSDTQ(P) calculations with the TZ basis set were already
at the limit of our computational resources, and for the full
quintuples we had to restrict the basis set to double-ζ (DZ)
quality.

III. RESULTS AND DISCUSSION

The results of our calculations are shown in Table II.
Scalar-relativistic effects lead to a non-negligible increase in α

of 1.482 a.u. at the HF level and 1.836 a.u. at the CCSD(T) level
of theory, which originate from the relativistic 4d orbital ex-
pansion. Spin-orbit coupling increases the dipole polarizability
only by 0.032 and 0.026 a.u. at the HF and CCSD(T) level of
theory, respectively. Electron correlation contributes 5.056 a.u.
to α at the relativistic level. Out of this, 2.067 a.u. come from
perturbative triples, 0.101 a.u. from the variational contribution
to the triple correction [correcting the perturbative treatment
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TABLE II. Nonrelativistic (NR), scalar relativistic (SR), and
X2C/Gaunt relativistic (R) atomic polarizabilities α and hyperpo-
larizabilities γ (in atomic units) of Pd computed with the finite field
method at different levels of theory.a

α γ

NR SR R NR SR R

HF TZ 19.612 21.109 21.142 19252 13381 14203
HF QZ 19.575 21.060 21.092 19311 12527 14591
HF CBS 19.565 21.047 21.079 20149 12328 14669
CCSD TZ 22.898 24.560 24.587 27364 23855 22108
CCSD QZ 22.511 24.141 24.165 27339 21418 21002
CCSD CBS 22.252 23.864 23.888 26992 20135 19217
CCSD(T) TZ 24.718 26.606 26.635 33071 31640 27525
CCSD(T) QZ 24.344 26.198 26.225 34091 30245 27941
CCSD(T) CBS 24.093 25.929 25.955 34324 29734 28137
�[T−(T)]SR +0.101 +3013
�[Q−T]SR +0.161 +5088
�[P−Q]SR −0.082 +3499
Final value 26.135 39737

aTerminology is as follows: CCSD(T)NR = CCSD(T)(AE)/CBS;
CCSD(T)SR = CCSD(T)-X2C-Spinfree(AE)/CBS;
CCSD(T)X2C = CCSD(T)-X2C-Gaunt(AE)/CBS; �[T−(T)]SR =
CCSDT-DKH2(AE)/TZ−CCSD(T)-DKH2(AE)/TZ; �[Q−T]SR =
CCSDTQ-DKH2(4d)/TZ−CCSDT-DKH2(4d)/TZ; �[P−Q]SR =
CCSDTQ(P)-DKH2(4d)/TZ−CCSDTQ-DKH2(4d)/TZ +
CCSDTQP-DKH2(4d)/DZ−CCSDTQ(P)-DKH2(4d)/DZ.

of triples in CCSD(T)], while the quadruple and quintuple
corrections are responsible for raising the polarizability of Pd
by 0.079 a.u. Our final value of 26.135 a.u. for the atomic
polarizability of Pd is in good agreement with, for example,
the recently reported nonrelativistic, effective core potential
CCSD value of 26.612 a.u. [20], the DK-MP2 relativistic value
of 24.581 a.u. [28], and various DFT-calculated values (e.g.,
the value of 26.60 a.u. from CAMB3LYP DFT calculations
[20], see Table I).

The atomic properties of all known group-10 elements are
summarized in Table III. We estimated the uncertainty in our

TABLE III. Atomic data (ionization potential, IP, electron affinity,
EA, and dipole polarizability, α) for the group-10 elements Ni, Pd,
Pt, and Ds.

IP/eVa EA/eVb α/a.u.

Ni 7.639877 1.15716 49 ± 3c

Pd 8.33686 0.56214 26.14(10)d

Pt 8.95883 2.12510 48 ± 4e

Ds 11.2(1)f – 32(3)f

aReference [16].
bReferences [17] and [64].
cAverage of recent theoretical values for scalar α [65–67]. The
uncertainty shows the range of reported values.
dThis work.
eAverage of empirical and theoretical values for scalar α [29,31,35].
The uncertainty shows the range of reported values.
fFrom Dirac-Hartree-Fock +RPA calculations with use of fractional
occupation numbers [14].

calculations from the size of the quadruples plus quintuples
corrections (0.079 a.u.) and the error estimated from the finite
field and CBS limit extrapolation (−0.018 a.u.) using different
numbers of finite field values. Thus, we estimate the total
uncertainty to be 0.10 a.u. We note that the Gaunt term of
the Breit operator included in our calculations decreases the
polarizability by only 0.05 a.u. at the CCSD(T) level of theory
using the augmented quadruple-ζ basis set. Furthermore, we
estimated QED contributions using Pyykkö and Zhao’s local
approximation for the self-energy contribution [62]. As one
expects from polarizing a fully occupied 4d shell by an external
electric field [63], the change in the polarizability is very small
(–0.007 eV at the Hartree-Fock level using Dyall’s augmented
QZ basis set) and well within our given uncertainty.

It is apparent from Table III that the trend in polarizability
values for the four group-10 elements alternates in magnitude
from top (Ni) to bottom (Ds) in group 10 of the periodic table.
This trend is not consistent with the steady increase in the
values of the ionization energy for these four elements, casting
doubt on the practice of using ionization energies to predict
polarizabilities. For Pd, the small polarizability value clearly
results from the different electron occupation compared to the
other elements. On the other hand, the small value of the Ds
(6d87s2) polarizability originates from the strong relativistic
7s shell contraction.

We also provide information for the second hyperpolar-
izability of Pd, see Table II. Here we see extremely large
relativistic effects due to the indirect coupling between the
4d and the relativistically contracted 5s orbitals (note that
from the sum-over-states formula for the hyperpolarizabilities
[68] we couple states of angular momentum l with states
ranging from l − 2 to l + 2 with l � 0). Electron correlation
effects are therefore extremely large, which is well known
for hyperpolarizabilities in general [23]. For Pd, the triple,
quadruple and quintuple contributions are so large that an
accurate prediction of the hyperpolarizability cannot be made
at this stage. Indeed, for such properties sum-over-states Monte
Carlo configuration interaction (CI) equivalent to full CI
have recently been used to obtain close to exact values [69].
However, for transition elements this would be a formidable
task. Future experimental measurements would therefore be
welcome.

IV. SUMMARY

Our calculated value for the palladium atomic polarizability
of 26.14(10) a.u. is exceptionally small compared to all other d-
block and f -block atoms. This is a result of its unique 4d105s0

valence electron configuration with a rather compact closed
4d shell. The hyperpolarizability is extremely sensitive to both
relativistic and electron correlation effects and requires further
detailed investigation at even higher correlated level.
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Thomas (Elsevier, New York, 1999), pp. 129–146.

[3] G. Maroulis, Computational Aspects of Electric Polarizabil-
ity Calculations: Atoms, Molecules and Clusters (IOS Press,
Amsterdam, 2004).

[4] M. George, Atoms, Molecules and Clusters in Electric Fields:
Theoretical Approaches to the Calculation of Electric Polariz-
ability, Vol. 1 (World Scientific, Singapore, 2006).

[5] J. Mitroy, M. S. Safronova, and C. W. Clark, J. Phys. B 43,
202001 (2010).

[6] B. Champagne, in Chemical Modelling, edited by M. Springborg
(RSC Publishing, Cambridge, UK, 2010), pp. 43–88.

[7] M. S. Safronova, J. Mitroy, C. W. Clark, and M. G. Kozlov,
AIP Conf. Proc. 1642, 81 (2015).

[8] U. Hohm, Vacuum 58, 117 (2000).
[9] P. Schwerdtfeger, in Atoms, Molecules and Clusters in Electric

Fields: Theoretical Approaches to the Calculation of Electric
Polarizability (World Scientific, Singapore, 2006), pp. 1–32.

[10] C. Thierfelder and P. Schwerdtfeger, Phys. Rev. A 79, 032512
(2009).

[11] T. Fleig, Phys. Rev. A 72, 052506 (2005).
[12] C. Thierfelder, B. Assadollahzadeh, P. Schwerdtfeger, S.

Schäfer, and R. Schäfer, Phys. Rev. A 78, 052506
(2008).

[13] P. Schwerdtfeger, Table of experimental and cal-
culated static dipole polarizabilities for the elec-
tronic ground states of the neutral elements (2017),
http://ctcp.massey.ac.nz/index.php?group=&page=dipole&
menu=dipole.

[14] V. A. Dzuba, Phys. Rev. A 93, 032519 (2016).
[15] T. B. Demissie and K. Ruud, Int. J. Quantum Chem. 118, e25393

(2018).
[16] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD

Team, NIST Atomic Spectra Database (version 5.5.3),
https://physics.nist.gov/asd (2009).

[17] M. Scheer, C. A. Brodie, R. C. Bilodeau, and H. K. Haugen,
Phys. Rev. A 58, 2051 (1998).

[18] V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, J. Chem.
Phys. 128, 024707 (2008).

[19] V. Pershina, A. Borschevsky, E. Eliav, and U. Kaldor, J. Phys.
Chem. A 112, 13712 (2008).

[20] R. Bast, A. Heßelmann, P. Sałek, T. Helgaker, and T. Saue,
ChemPhysChem 9, 445 (2008).

[21] P. Schwerdtfeger and G. A. Bowmaker, J. Chem. Phys. 100, 4487
(1994).

[22] I. S. Lim, M. Pernpointner, M. Seth, J. K. Laerdahl,
P. Schwerdtfeger, P. Neogrady, and M. Urban, Phys. Rev. A 60,
2822 (1999).

[23] N. E.-B. Kassimi and A. J. Thakkar, Phys. Rev. A 50, 2948
(1994).

[24] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev.
Lett. 76, 1212 (1996).

[25] S. Fraga, J. Karwowski, and K. M. S. Saxena, At. Data Nucl.
Data Tables 12, 467 (1973).

[26] J. Thorhallsson, C. Fisk, and S. Fraga, J. Chem. Phys. 49, 1987
(1968).

[27] W. R. Johnson, D. Kolb, and K.-N. Huang, At. Data Nucl. Data
Tables 28, 333 (1983).

[28] J. Granatier, P. Lazar, M. Otyepka, and P. Hobza, J. Chem.
Theory Comput. 7, 3743 (2011).

[29] T. M. Miller, CRC Handbook of Chemistry and Physics, edited
by D. R. Lide (CRC Press, New York, 2002), Vol. 83.

[30] G. Doolen and D. A. Liberman, Phys. Scr. 36, 77 (1987).
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