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The apparent absence of meaningful assignments of electrons and indistinguishable nuclei to particular atoms in
a chemical aggregate would seem to preclude the quantum-mechanical definition of atomic Hamiltonian operators
within molecules and matter. The electronic energies of individual constituent atoms, as well as the interactions
between them, are accordingly widely perceived as objectively undefined in molecular quantum theory, requiring
additional auxiliary conditions to achieve quantitative specificity, giving rise to a plethora of individual preferences.
Here we address the issue of assignments of electrons to atoms within molecules at the Born-Oppenheimer classical
fixed-nuclei level of theory and provide thereby quantum-mechanical definitions of atomic operators and of the
interactions between them. In the spirit of early work of Longuet-Higgins, a van der Waals subgroup of the
full molecular electronic symmetric group is shown to facilitate assignments of electrons to particular atomic
nuclei in a molecule. The orthonormal (Eisenschitz-London) outer products of atomic eigenstates that provide
separable Hilbert space representations of this symmetric subgroup furthermore support totally antisymmetric
solutions of the molecular Schrödinger equation. Self-adjoint atomic and atomic-interaction operators within
a molecule defined in this way are seen to have universal Hermitian matrix representatives and physically
significant expectation values in totally antisymmetric molecular eigenstates. Adiabatic Born-Oppenheimer
molecular energies emerge naturally from the development in the form of sums of the energies of individual
atomic constituents and of their atomic-pairwise interactions, in the absence of additional auxiliary conditions.
A detailed and nuanced quantitative description of electronic structure and bonding is provided thereby which
includes the interplay between atomic promotion and interaction energies, common representations of atomic-state
hybridization and interatomic charge apportionment, potentially measurable multiatom entanglements upon
coherent dissociations of molecules, and other attributes of the development revealed by selected illustrative
calculations. These include applications to the ground and electronically excited states of diatomic and triatomic
hydrogen molecules, which exhibit significant accommodation among the atomic promotion and interaction
energies, as well as entanglements among atomic states, over the entire range of molecular geometries traversed
in the course of two- and three-atom dissociations.
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I. INTRODUCTION

While it is universally agreed upon that all things are made
of atoms [1], the notion of an atom in a molecule [2] has
been relegated by knowledgeable theorists to the status of a
conceptual construct or noumenon, observationally unknow-
able and without unique definition [3–5]. Quantum-mechanical
evaluations of the energies of individual atoms and of their
mutual interactions in molecules using molecular eigenfunc-
tions are correspondingly thought to require introduction of
subjective auxiliary conditions to achieve specificity in this
connection [6], giving rise to unlimited individual preferences
and rendering unique theoretical definition of atomic and
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bonding energies within molecules continuingly elusive, even
at the Born-Oppenheimer level of theory [7].

Such unresolved fundamental issues are seemingly conse-
quent of the apparent absence of unique quantum-mechanical
operator and matrix representatives of the atomic constituents
of molecules and matter, the required definitions apparently
not in simultaneous accordance with both the principles of
quantum theory [8] and Pauli’s exclusion principle [9]. In
this absence, disparate subjective physical interpretations of
calculated molecular wave functions, and corresponding quan-
titative partitions of total electronic energies into atomic and
bonding contributions, are a continuing focus of attention,
dating from the earliest applications of quantum mechanics
to predictions of molecular structure and properties [10–16].

Subjective qualitative opinions offered in this regard are
also plentiful [17,18], ranging from concurrence that atoms in
molecules and bonds between them are meaningless illusions
[19,20] to acceptance of the numerous perspectives offered
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as profitably enriching the subject [21]. Of course, these
circumstances have not prevented a plethora of variational and
other quantum-mechanical calculations of total energies and
other molecular properties employing familiar antisymmetric
orbital-product and other less-familiar representations of basis
states [22,23], as well as charge-density-related computational
approaches [24,25], all performed largely in the fixed-nuclei
Born-Oppenheimer approximation.

The ever-increasing abundance of molecular calculations
provides both impetus and opportunity to pursue physical
interpretations of atomic modifications and chemical bonding
in molecules in spite of the elusive nature of these quantities.
In addition to early considerations of atomic valence-state
definitions [10–16], unitary transformations of the molecular
orbitals obtained from calculated eigenfunctions have been
employed in attempts to identify the presence of physically
significant quasiatomic or bonding character therein, adopting
various ex post facto quantitative criteria for this purpose, such
as extreme values of overlap populations or of orbital repul-
sion energies [26–28]. Additionally, so-called natural bonding
orbitals have been employed in diagnostic transformations of
molecular eigenfunctions, providing plausible charge-density
images of atoms and of the bonds between them in molecules
[29]. Many other partitions of total and partial charge densities
can also be employed in assignments of spatial regions in
molecules to constituent atoms or chemical bonds and to
provide estimates of the degree to which individual atoms
retain their electronic structural integrity when incorporated in
molecules [30–34], including use of information theory [35]
and complexity concepts [36] in charge-density partitions, as
well as so-called orbital entanglements in complex electronic
systems [37], to mention only a few examples to illustrate
the absence of a quantum-mechanically unique or generally
agreed upon quantitative physical interpretation of molecular
electronic charge distributions.

Correspondingly, interest in molecular electronic energy
decompositions is already evident in Slater’s early virial-
theorem-based separation of total molecular electronic ener-
gies into kinetic and potential energy components [38] and
especially in the quantitative comparisons of valence-bond and
molecular-orbital methods of Van Vleck, who refers specifi-
cally to the interplay between atomic promotion and net bond-
ing energies in the methane molecule [11–14]. Well-known
Hellmann-Feynman considerations reveal the forces on indi-
vidual atomic nuclei in molecules [39,40] and also provide a
basis for their chemical rationalizations [41]. Spatial partitions
of molecular one- and two-electron reduced density matrices
[6,42] can also provide total electronic energies expressed as
sums of atomic and bonding contributions, whereas energy-
decomposition schemes more generally, in conjunction with
apportionment of spatial regions to define individual atoms and
the bonds between them [26–33], introduce intuitively sensible
but ultimately arbitrary fragment components or clusters to
obtain quantitative energy expansions [43–59], to cite some
representative examples. Recent reviews describe only a small
fraction of the many subjective preferences expressed for
interpretations of calculated molecular wave functions, charge
distributions, and energy partitions reported to date [60,61].

Attempts to define meaningful self-adjoint operator repre-
sentatives of atomic fragments in molecules, as required of

dynamical variables by the principles of quantum mechanics
[8], soon encounter restrictions consequent of electron in-
distinguishability [9], which seemingly preclude their unique
fixed assignments to particular nuclei in a molecule [2–5].
Specifically, atomic fragment operators do not commute with
arbitrary aggregate electron permutations and so are apparently
ill defined in a molecular context, with Coulomb interaction
terms, for example, changing from intra- to interatomic char-
acter upon electron transpositions. The absence of meaning-
ful partitions of molecular Hamiltonian operators into sums
of constituent atomic and interaction-energy operators, and
of corresponding representations of atomic and interaction
Hamiltonians as Hermitian matrices evaluated with proper
molecular wave functions [62], has largely confounded early
promising quantum-mechanical atoms-in-molecules formula-
tions [63–65].

The foregoing issues are addressed in the present paper
by adopting and extending methods introduced largely by
Longuet-Higgins [66]. Specifically, a subgroup of the full
symmetric group of electron permutations in a molecule is
employed to exclude explicit interatomic electron permuta-
tions [67–69], facilitating assignments of designated electrons
to particular nuclei. The representations of this subgroup are
constructed in terms of Eisenschitz-London spectral products
of atomic eigenstates, familiar from early combined studies of
covalent and van der Waals forces in molecules [70]. Quantum-
mechanical operators for atoms in molecules are obtained
in this representation with fixed electron-nuclei assignments
made in accordance with those assignments employed in the
atomic spectral functions. Totally antisymmetric eigenstates
supported in this way provide molecular electronic energies
which separate naturally into sums of atomic and pairwise-
atomic interaction-energy components upon removal of so-
called unphysical non-Pauli eigenstates from the development
[71–76].

Molecular (Born-Oppenheimer) Hamiltonian matrices take
particularly simple forms in atomic spectral-product repre-
sentations as sums over universal atomic and pair-interaction
Hamiltonian matrices which can be calculated once and for
all and retained for repeated applications [71–76]. The corre-
sponding total molecular energies are seen to also take the
form of sums over atomic and pairwise-atomic interaction
energies, expressed in terms of products of the universal
atomic and interaction Hamiltonian matrices and the calculated
molecular eigenvectors. Atomic-state distributions obtained
in this way describe the extent to which individual atoms
are excited or deexcited and their electrons apportioned to
atomic bonding partners over the molecular volume, whereas
the pairwise-atomic terms provide corresponding interaction
energies between constituent atoms.

The theoretical development employing spectral-product
representations in definitions of atomic and pairwise-atomic
interaction energies is reported in Sec. II, methods for com-
putational implementation and applications are described in
Sec. III, and illustrative calculations on selected diatomic and
triatomic molecules are reported in Sec. IV. Prospects for
measurements of interaction-energy profiles and correspond-
ing promotion energies employing ultrafast two- and three-
atom dissociation techniques are indicated, and potentially
measurable multiatom entanglements in coherent dissociation

012506-2



QUANTUM-MECHANICAL DEFINITION OF ATOMS AND … PHYSICAL REVIEW A 98, 012506 (2018)

of excited electronic states in diatomic and triatomic hydrogen
molecules are described.

Concluding remarks in Sec. V provide additional phys-
ical interpretation of the atomic promotion and interaction
energies as derived from the spectral-product formalism, and
on possible measurements of the entangled atoms produced
upon coherent dissociations of diatomic and triatomic hydro-
gen molecules. Finally, Supplemental Material [77] provides
an analysis of the early aforementioned atoms-in-molecules
methods which identifies the origin of difficulties encountered
in their applications [63–65], includes a comprehensive list of
these publications as a convenience to the interested reader,
and distinguishes these approaches from the spectral theory
formalism employed here [71–76].

II. THEORETICAL DEVELOPMENT

Atomic spectral-product representations for molecules are
described in Sec. II A and the particular electron-nuclei as-
signments made in Sec. II B are employed in partitioning the
molecular Hamiltonian operator into corresponding atomic
and atomic-interaction terms. These terms are evaluated as ma-
trix representatives in Sec. II C and total molecular electronic
energies obtained from Hamiltonian matrix diagonalization
are expressed in terms of atomic and interaction energies in
Sec. II D. Additional technical aspects of the atomic spectral
theory are described elsewhere [71–76].

A. Spectral-product representations

Following Eisenschitz and London [70,71], the orthonormal
atomic spectral-product representations employed here are of
the van der Waals form [78]

�(r : R) ≡ {�(1)(1 : R1) ⊗ �(2)(2 : R2)

⊗ · · · �(N)(n : RN )}o, (1)

where the atomic row vectors �(α)(i : Rα) for the atoms α

(=1,2, . . . ,N ) located at positions Rα formally contain all
their totally antisymmetric electronic eigenstates, with all
electrons (nα) on atoms α designated by the vector i of space
and spin coordinates. The vectors r (=1,2, . . . ,n) and R
(=R1,R2, . . . ,Rn) refer collectively to the coordinates of the
entire set of molecular electrons (nt ) and to the positions of
the atomic nuclei (N ), respectively, whereas the subscript o
refers to the choice of an odometer ordering of the sequence
of N -atom product states obtained from the indicated tensor
products (⊗) of individual atomic-state row vectors [71–76].

The absence of explicit interatomic antisymmetrization
ensures that the molecular basis of Eq. (1) is orthonormal.
Moreover, the basis is complete as written in the limit of
closure for descriptions of totally antisymmetric solutions of
the Schrödinger equation, in spite of the absence of term-
by-term interatomic electron antisymmetry in the aggregate
spectral products [70]. Furthermore, the basis of Eq. (1) has
been shown to contain the totally antisymmetric representation
of molecular electrons only once, but to also span other irre-
ducible representations of the symmetric group Snt

[73]. Since
the spectral-product basis transforms under the atomic-product
subgroup (Sn1 ⊗ Sn2 ⊗ · · · SnN

) of Snt
[72], assignments of

particular electrons to specific nuclei, made in accordance

with the electron assignments of Eq. (1), can be regarded as
essentially fixed, as further demonstrated in the following.

B. Partitioned molecular Hamiltonian operator

The many-electron Coulomb Hamiltonian operator is writ-
ten in accordance with the electron assignments of Eq. (1) in
the partitioned form [71–76]

Ĥ (r : R) =
N∑

α=1

Ĥ (α)(i) +
N−1∑
α=1

N∑
β=α+1

× V̂ (α,β)(i ; j : Rαβ), (2)

where the atomic Hamiltonian operator for atom α [79],

Ĥ (α)(i) =
nα∑
i

{
− h̄2

2m
∇2

i − Zαe2

riα

+
nα∑

i ′=i+1

e2

rii ′

}
, (3)

is symmetric in electron coordinates i assigned to atom α and
the interaction term [79]

V̂ (α,β)(i ; j : Rαβ)

= ZαZβe2

Rαβ

−
nα∑
i

Zβe2

riβ

−
nβ∑
j

Zαe2

rjα

+
nα∑
i

nβ∑
j

e2

rij

≡ Ĥ (α,β)(i, j : Rαβ) − Ĥ (α,β)(i, j : Rαβ → ∞) (4)

is written and evaluated in the form of the difference of self-
adjoint atomic-pair operators [71–74]

Ĥ (α,β)(i, j : Rαβ)

≡ Ĥ (α)(i) + Ĥ (β)( j ) + V̂ (α,β)(i ; j : Rαβ), (5)

which are symmetric in electron coordinates i ⊕ j , with
Rαβ ≡ Rβ − Rα defining the atomic-position separation vec-
tors. Since all electron coordinates (1,2, . . . ,n) are assigned in
accordance with the spectral-product representation of Eq. (1),
the atomic Ĥ (α)(i) and atomic-pair Ĥ (α,β)(i, j : Rαβ) fragment
Hamiltonian operators of Eqs. (3)–(5) commute with all
permutations in the aforementioned atomic-product subgroup
of Snt

, proving quantum-mechanical definitions of essentially
self-adjoint atomic operators in the support of Eq. (1) [79].

C. Evaluating the molecular Hamiltonian matrix

The matrix representatives of the molecular Hamiltonian
operators of Eqs. (2)–(5) are obtained in the spectral-product
basis in the form [71–73]

H(R) ≡ 〈�(r : R)|Ĥ (r : R)|�(r : R)〉

=
N∑

α=1

H (α) +
N−1∑
α=1

N∑
β=α+1

V (α,β)(Rαβ), (6)

where the atomic Hamiltonian matrices are

H (α) = {I (1) ⊗ I (2) ⊗ · · · ε(α) ⊗ · · · I (N)}o (7)

and the pairwise-atomic interaction Hamiltonian matrices are

V (α,β)(Rαβ) = {I (1) ⊗ I (2) ⊗ · · · v(α,β)(Rαβ) ⊗ · · · I (N)}o.

(8)
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The unit matrices I (α) in Eqs. (7) and (8) arise from the
orthonormality of the bystander atomic eigenstates in the
integrals over the spectral-product representation in Eq. (6),
whereas the smaller-dimensioned atomic and atomic-pair ma-
trices in Eqs. (7) and (8),

ε(α) ≡ 〈�(α)(i : Rα)|Ĥ (α)(i)|�(α)(i : Rα)〉, (9)

v(α,β)(Rαβ) ≡ 〈�(α,β)(i, j : Rαβ)|V̂ (α,β)(i, j : Rαβ)|�(α,β)

× (i, j : Rαβ)〉, (10)

require for their evaluation only the atomic �(α)(i : Rα) and
atomic-pair product functions �(α,β)(i, j : Rαβ) ≡ {�(α)(i :
Rα) ⊗ �(β)( j : Rβ)}, respectively, and the self-adjoint oper-
ators of Eqs. (3)–(5) in these smaller atomic and diatomic
representations. Faithful matrix representatives [79], which
are universal computational invariants of the corresponding
atomic and interaction-energy operators of Sec. II B, are
obtained in this way, where the ordering symbol in Eqs. (7)
and (8) indicates that these larger matrices must be brought
into the canonical ordering of Eq. (1) prior to their summation
in Eq. (6) [71].

D. Partitioned molecular energy expression

The molecular energies and Schrödinger eigenstates corre-
sponding to the Hamiltonian matrix of Eq. (6) are obtained
from the expression [76]

E(R) ≡ U†
H (R) · H(R) · U H (R)

=
N∑

α=1

E(α)(R) +
N−1∑
α=1

N∑
β=α+1

E(α,β)(R), (11)

where the columns of U H (R) contain the eigenvectors which
provide the molecular eigenstates in the spectral-product basis;
�(r : R) ≡ �(r : R) · U H (R) [72] and the indicated decom-
position of the total energy follows employing Eq. (6). That is,
in Eq. (11),

E(α)(R) ≡ U†
H (R) · H (α) · U H (R) (12)

is the atomic energy matrix for an atom (α) within a molecule
and

E(α,β)(R) ≡ U †
H (R) · V (α,β)(Rαβ) · U H (R) (13)

is the pairwise-atomic interaction-energy matrix for atoms (α
and β) in a molecule.

In the limit of closure [79],

Ĥ (r : R)�(r : R) → �(r : R) · H(R), (14)

the molecular Hamiltonian matrix of Eq. (6) can be blocked
into separate noninteracting physical and unphysical contribu-
tions [73]. In this limit, Eq. (11) provides separate Hamiltonian
matrices and individual expressions for the physical and
unphysical energies, as well as corresponding Schrödinger
eigenstates in the basis of Eq. (1).

Since the molecular energy matrix of Eq. (11) is diagonal by
construction, the sums of the diagonal terms of the atomic and
atomic-pair interaction-energy matrices of Eqs. (12) and (13)
automatically provide a decomposition of the total energies

of the molecular states. The individual atomic and interaction
energies on the diagonals of these matrices are weighted aver-
ages of the universal atomic H (α) and atomic-pair V (α,β)(Rαβ)
Hamiltonian matrices over distributions of atomic-state and
atomic-pair-state virtual excitations, respectively, as deter-
mined by the eigenvector columns of the matrix U H (R).

Accordingly, the diagonal elements of the atomic- and
interaction-energy matrices of Eqs. (12) and (13) provide
candidates for quantum-mechanical definitions of atomic and
pairwise-atomic interaction energies in a molecule at arbitrary
molecular configurations R. The off-diagonal terms of the
matrices of Eqs. (12) and (13) refer to evaluations of individual
atomic and interaction-energy operators between different
molecular eigenstates. The sums of these off-diagonal terms
vanish identically, in accordance with Eq. (11), although the
individual off-diagonal atomic and interaction-energy terms
generally need not vanish at finite values of interatomic
separation [80].

III. COMPUTATIONAL IMPLEMENTATION

Methods are described in Sec. III A for the removal of
unphysical contributions to the formal development of Sec. II.
Expressions for practical calculations of molecular energies
and of atomic and interaction energies of atoms in molecules
in finite subspace spectral-product representations are reported
in Sec. III B and potentially divergent terms appearing in these
expressions are identified and removed analytically in defi-
nitions of convergent atomic and pairwise-atomic interaction
energies reported in Sec. III C.

A. Finite-subspace spectral-product representations

Computational implementation of the foregoing formal de-
velopment must overcome the presence of unphysical contribu-
tions to the spectrum of the Hamiltonian matrix in the spectral-
product representation and ensure the exact enforcement of
antisymmetry in finite-subspace versions of Eq. (1) [81]. Meth-
ods have been developed for such purposes in finite atomic
spectral-product representations [72–76,82–84], including a
factored exact pair version of the general development which
is particularly well suited for calculations of the fragment
molecular energies of focus here [74–76,84]. This approach
provides a Hamiltonian matrix identical in appearance to
Eq. (6), atomic Hamiltonian matrices in the form of those in
Eq. (7), and interaction Hamiltonian matrices that depend only
on the separation vectors of the individual atomic pairs, as in
Eq. (8).

The origins of the expressions reported here can be under-
stood by noting that the isolation of the totally antisymmetric
subspace of any spectral-product representation of the form of
Eq. (1) can be carried out in a numbers of ways, including,
in particular, unitary transformation of Hamiltonian matrices
proving factored subspace spectral-product representations,
or, equivalently, by the use of explicitly antisymmetrized
representations transformed to spectral-product forms [73].
The isolation of the totally antisymmetric subspace of Eq. (1)
in the factored exact pair development is performed in a two-
step fashion in which the individual diatomic representations
employed in Eq. (10) are first transformed to antisymmetric
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forms, followed by isolation of the totally antisymmetric
subspace of the aggregate basis of Eq. (1) [74–76,84]. When the
antisymmetrized form of the chosen finite subspace of Eq. (1) is
made linearly independent, the second or aggregate step of the
symmetric group symmetry isolation process takes the form of
an overall unitary transformation of the aggregate Hamiltonian
matrix constructed in the first step [84]. Consequently, calcu-
lations of total aggregate electronic energies in such cases are
obtained from aggregate Hamiltonian matrices in forms similar
to those of Eqs. (11)–(13), but employing different expressions
for the required Hamiltonian matrices of Eqs. (8) and (10).

Following the factored exact pair development [74–76,84],
the Hamiltonian matrix in the chosen finite subspace �̃(r : R)
of Eq. (1) takes the form [cf. Eqs. (6)–(10)]

H̃(R) ≡ 〈�̃(r : R)|Ĥ (r : R)|�̃(r : R)〉

=
N∑

α=1

H̃
(α) +

N−1∑
α=1

N∑
β=α+1

Ṽ
(α,β)

(Rαβ), (15)

where the atomic and interaction Hamiltonian matrices are
finite-dimensioned versions of Eqs. (7) and (8). Although
Eqs. (7) and (9) are otherwise unchanged, v(α,β)(Rαβ) in Eq. (8)
is given in the factored exact pair form by the finite-subspace
expression [cf. Eq. (4)]

ṽ(α,β)(Rαβ) ≡ ũ(α,β)
s (Rαβ) · h̃

(α,β)
s (Rαβ) · ũ(α,β)

s (Rαβ)†

− (ε(α) + ε(β)) (16)

in place of Eq. (10), where

h̃
(α,β)
s (Rαβ) ≡ 〈

�̃
(α,β)
s (i, j : Rαβ)

∣∣Ĥ (α,β)(i, j : Rαβ)

× ∣∣�̃(α,β)
s (i, j : Rαβ)

〉
(17)

is the (α,β) atomic-pair Hamiltonian matrix, evalu-
ated employing an explicitly antisymmetrized orthonor-
mal finite-subspace diatomic representation �̃

(α,β)
s (i, j : Rαβ)

[74–76,84]. The second term in Eq. (16) is as in Eq. (4),
whereas the unitary matrix ũ(α,β)

s (Rαβ) there is obtained
from the metric matrix s̃(α,β)(Rαβ) of the nonorthogonal an-
tisymmetrized pair representation [85]. This transformation
is employed both to construct the explicitly antisymmetrized
orthonormal finite-subspace diatomic representation and to re-
cover the corresponding orthonormal finite-subspace spectral-
product representation �̃(r : R) of the interaction-energy ma-
trix of Eq. (8) in closure [84].

In the more general variants of the two-step antisymmetriza-
tion development [74–76,84], the form of Eq. (15) is retained
but the atomic- and interaction-energy matrices there become
functions of the position coordinates (R) of all the atoms in the
molecule, consequent of the dressing of atomic pair matrices by
the aggregate antisymmetry enforcement. Since the condition
for validity of Eqs. (15)–(17) for calculations of aggregate
energies requires only the familiar linear independence of
the totally antisymmetrized form of the finite spectral-product
representation employed [74–76,84], the calculated energies
reported here are identical to those obtained from the afore-
mentioned more general computational approaches, but avoid
the additional complications entailed therein [76].

B. Partitioned molecular energies in finite subspaces

Energy expressions corresponding to those of Eqs. (11)–
(13) are obtained employing the finite-subspace matrices
of Eqs. (16) and (17) and the unitary matrix ŨH (R) that
diagonalizes the corresponding total Hamiltonian matrix of
Eq. (15). The total electronic energy Ẽi(R) of a particular
molecular eigenstate i obtained in this way takes the form
of a sum of atomic energies for the constituent atoms and an
atomic-pairwise sum of interaction energies [cf. Eq. (11)]

Ẽi(R) =
N∑

α=1

Ẽ
(α)
i (R) +

N−1∑
α=1

N∑
β=α+1

Ẽ
(α,β)
i (R). (18)

The individual energy term Ẽ
(α)
i (R) for atom α in a partic-

ular molecular eigenstate i is provided by the diagonal entry
of the finite-subspace versions Ẽ

(α)
(R) of the atomic energy

matrices of Eq. (12) in the form

Ẽ
(α)
i (R) ≡ {Ẽ

(α)
(R)}ii =

Nsp∑
k=1

{H̃
(α)}kk|{ŨH (R)}ki |2

=
N (α)∑
k=1

ε̃
(α)
k

∣∣{ũ(α)
H (R)

}
ki

∣∣2
, (19)

where Nsp is the dimension of the aggregate finite spectral-
product representation, N (α) is the dimension of the atomic
representation �̃

(α)
(i : Rα), and ũ(α)

H (R) is the reduced one-
atom density matrix derived from the unitary spectral-product
solution matrix ŨH (R) [71] for atom α, employing Eq. (7) in
the last line. Similarly, the diagonal term Ẽ

(α,β)
i (R) of the finite-

subspace version Ẽ
(α,β)

(R) of the interaction-energy matrix of
Eq. (13) for atoms α and β takes the form

Ẽ
(α,β)
i (R) ≡ {Ẽ

(α,β)
(R)}ii

=
Nsp∑
k=1

Nsp∑
l=1

{ŨH (R)†}ik{Ṽ
(α,β)

(Rαβ)}kl · {ŨH (R)}li

=
N (α)∑
k=1

N (β)∑
l=1

{
ũ(α,β)

H (R)†
}

ik
{ṽ(α,β)(Rαβ)}kl

·{ũ(α,β)
H (R)

}
li
, (20)

where ũ(α,β)
H (R) is the reduced two-atom density matrix for

the atoms α and β derived from the matrix ŨH (R) [71] and
the sums in the last line are over the individual product states
describing the atomic-pairwise interaction Hamiltonian matrix
of Eqs. (16) and (17).

Further reduction of the expression (20) can be made
by diagonalizing the atomic-pairwise Hamiltonian matrix

h̃
(α,β)
s (Rαβ) appearing in Eqs. (16) and (17) and redefining

the two-atom density matrix to include this additional unitary
matrix. In this way, an energy expression is obtained involving
a weighted sum of scalar atomic-pairwise interaction-energy
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curves in a form similar to the weighted sum of atomic energies
of Eq. (19).

C. Quantum-mechanical definition of atomic promotion
and atomic-pairwise interaction energies in molecules

Although the preceding analysis is satisfactory in its es-
sential features, the atomic energy terms of Eq. (19) and
the interaction-energy terms of Eq. (20) do not individually
converge to finite values, in spite of the fact that the total
molecular energies of Eq. (18) converge to variationally correct
values in a suitable closure limit [79]. It is easily established,
both computationally and analytically, that these divergences
arise from continuum atomic contributions to Eqs. (19) and
(20), such terms canceling exactly in the total energy sum
of Eq. (18) [86]. Moreover, it is clear on physical grounds
that only bound atomic states are sensibly included in the
definition of atomic promotion in any event, with continuum
contributions referring to ionized molecular states [10–16].

When these diverging terms are eliminated analytically
from the expression of Eq. (18), the finite promotion energies
for individual atoms are still given by the expression (19),
but the atomic Hamiltonian matrix therein is replaced by
its discrete-state portion only H̃

(α) → H̃d
(α)

[86]. Similarly,
the atomic-pairwise Hamiltonian matrix retains the form of
Eq. (20) but is now finite when the diverging terms in the
matrix Ṽ

(α,β)
(Rαβ) are canceled analytically by corresponding

atomic terms Ṽ
(α,β)

(Rαβ) → Ṽ
(α,β)
int (Rαβ) and ṽ(α,β)(Rαβ) →

ṽ
(α,β)
int (Rαβ) [86].

Accordingly, the total molecular Hamiltonian matrix retains
the form of Eq. (18), but the promotion energy of an atom α in
a molecular state i is [cf. Eq. (19)]

Ẽ
(α)
i (R) =

N
(α)
d∑

k=1

ε̃
(α)
k

∣∣{ũ(α)
H (R)

}
ki

∣∣2
, (21)

with N
(α)
d the number of bound atomic states for the atom α,

and the interaction energy is [cf. Eq. (20)]

Ẽ
(α,β)
i (R) ≡

N (α)∑
k=1

N (β)∑
l=1

{
ũ(α,β)

H (R)†
}

ik
· {

ṽ
(α,β)
int (Rαβ)

}
kl

·{ũ(α,β)
H (R)

}
li
, (22)

where ṽ
(α,β)
int (Rαβ) excludes divergent terms [86]. It should be

noted that extraction of the singular terms in Eqs. (19) and (20)
leave the total electronic energies given by Eq. (18) invariant
to this procedure.

IV. ILLUSTRATIVE APPLICATIONS

Calculations with the present formalism are reported of
total electronic energies and of the atomic promotion and
pairwise interaction energies in diatomic and triatomic hydro-
gen molecules. Accurate representations of selected electronic
states are obtained in providing quantitative illustrations of
the theoretical development in these prototypically important
cases.
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FIG. 1. Convergence of the total electronic energy of the X 1�g
+

ground state in molecular hydrogen, calculated employing increasing
numbers (196–7396) of products of k = 1–9 sets of (s,p,d)k exact
hydrogenic and eigenorbitals constructed in even-tempered Slater
basis sets [87,88].

A. Total electronic, atomic promotion, and interaction energies
in diatomic hydrogen molecules

Calculations are reported in the classic cases of the homopo-
lar bond in the ground singlet X 1�g

+ electronic state and of
the antibond in the triplet a 3�u

+ state of molecular hydrogen
H2. Monotonic convergence is obtained to values of the total
electronic energies (Figs. 1 and 2), atomic promotion energies
(Figs. 3 and 4), and chemical-interaction energies (Figs. 5 and
6) in these familiar attractive and repulsive states employing
large numbers of atomic-product molecular basis functions.
These are chosen in the form of atomic hydrogen eigenorbitals
constructed in unrestricted products of k = 1–9 sets of (s,p,d)k
atomic basis orbitals on the two nuclear centers. The first set
(k = 1) of orbitals are the 14 lowest-lying exact hydrogen atom
orbitals (1s,2s,2p,3s,3p,3d), providing 196 orbital-product
states, whereas the additional (s,p,d)k basis orbital sets each
contain nine [one 1s, three 3p, and five 3d] even-tempered
Slater orbitals having exponents αk = α0β

(k−2), for k = 2–9,
where β = 1.7 and α = 0.001 [87,88]. This combined set of
Slater orbitals spans 86 individual hydrogen eigenorbitals on
each center, providing up to 7396 atomic-product molecular
hydrogen basis states.
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FIG. 2. Convergence of the total electronic energy of the a 3�u
+

first excited state in molecular hydrogen, calculated employing in-
creasing numbers (196–7396) of products of k = 1–9 sets of (s,p,d)k
exact hydrogenic and eigenorbitals constructed in even-tempered
Slater basis sets [87,88].

Figures 1 and 2 show calculated total electronic energy
curves, including the 1/R nuclear repulsion term, of the
X 1�g

+ and a 3�u
+ states in H2 as functions of nuclear

separation. These curves converge monotonically from above
with increasing basis set (k = 1–9) to values in exact agree-
ment with results obtained from conventional valence-bond
variational calculations in the same basis sets [89]. In the
present development the electronic energy curves of Eq. (18)
in Figs. 1 and 2 are further partitioned in the calculations into
atomic promotion energies for the two atoms [Eq. (21)] and
chemical interaction energies between the atoms [Eq. (22)] in
the absence of additional auxiliary conditions.

Figures 3 and 4 show atomic promotion energy curves
of hydrogen atoms within diatomic hydrogen in the X 1�g

+

and a 3�u
+ states as functions of nuclear separation, obtained

from Eq. (21). These curves are seen to converge from below
with increasing basis set to limiting values which provide
quantitative representations of the contributions of the two
atoms to the total molecular electronic energy. It is easily
understood from Eq. (21) that the lower limit of the promotion
energy of an atom in a molecule from its ground electronic
state is zero, whereas an upper limit is provided by the first
ionization potential of the atom.

Evidently, the hydrogen atom promotion energy in the
ground electronic state of Fig. 3 is a small fraction (�17%)
of the maximum allowed value (13.6 eV) and decreases at
both larger- and smaller-R values, whereas in the repulsive
state of Fig. 4 the promotion energy rises to a larger fraction
(�45%) of the maximum allowed and also decreases at larger
and smaller separations (not shown). The R → 0 behaviors
are related to the electronic energies of the two molecular
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FIG. 3. Convergence of the atomic promotion energy of hydrogen
atoms within the X 1�g

+ state in molecular hydrogen, calculated
employing increasing numbers (196–7396) of products of k = 1–9
sets of (s,p,d)k exact hydrogenic and eigenorbitals constructed in
even-tempered Slater basis sets [87,88].

states in the united-atom (He) limits, with the ground (1s2) 1S

atomic He state limit of the X 1�g
+ molecular curve at

−79.0 eV lying significantly below the excited (1s2p) 3P state
−55.5 eV united-atom limit of the a 3�u

+ curve, both states
lying well below the energy of two ground-state hydrogen
atoms (−27.2 eV) [90]. The atomic basis sets employed here
do not provide optimal representations of the atomic orbitals in
He. Nevertheless, the total electronic energies of Figs. 1 and 2
and the atomic energies of Figs. 3 and 4 obtained in the R → 0
limit show energy decreases in accord with these well-known
atomic values [90].

Figures 5 and 6 show interaction energies between the two
atoms in the X 1�g

+ ground state and the first excited a 3�u
+

state of molecular hydrogen as functions of atomic separa-
tion, calculated employing Eq. (22) and the atomic-product
molecular basis states described above. These curves evidently
exhibit monotonic convergence from above to results that differ
quantitatively and qualitatively from the corresponding total
electronic energy curves of Figs. 1 and 2.

The converged minimum interaction energy in the ground
molecular state of Fig. 5 is seen to be significantly lower than
the adiabatic bond energy of the potential curve of Fig. 1
(−8.2 eV vs −4.7 eV), compensating for the positive atomic
promotion energy of Fig. 3 for this state in providing the correct
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FIG. 4. Convergence of atomic promotion energy of hydrogen
atoms within the a 3�u

+ state in molecular hydrogen, calculated
employing increasing numbers (196–7396) of products of k = 1–9
sets of (s,p,d)k exact hydrogenic and eigenorbitals constructed in
even-tempered Slater basis sets [87,88].

total energy curve in accordance with Eq. (18). Additionally,
the interaction-energy curve is significantly broader than the
total energy curve, in accordance with the atomic promotion
energy curve extending over a similarly broad spatial extent.

In contrast to the adiabatic total energy curve of Fig. 2,
the interaction-energy curve of Fig. 6 for the repulsive triplet
state shows a surprisingly deep and broad well. This behavior
compensates for the large promotion energies of the two
atoms shown in Fig. 4 in providing the total electronic energy
of Fig. 2. This interaction-energy curve also extends over a
significant range of R values, in accord with the corresponding
range of the atomic promotion energies in Fig. 4. These
accommodating behaviors for both singlet and triplet states
verify the numerical accuracy of the calculations, ensuring
that the separate contributions from promotion and interaction
energies sum correctly to the total energy curves.

The interaction-energy curves of Figs. 5 and 6 provide
information complementary to that of the total energy curves
of Figs. 1 and 2, which refer to the familiar adiabatic work
required to dissociate H2 from a separation R into two ground-
state (1s) hydrogen atoms. By contrast, in spite of being
calculated under adiabatic quantum-mechanical conditions,
the curves of Figs. 5 and 6 provide approximations to the
work required or released upon the sudden dissociation of
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FIG. 5. Convergence of mutual interaction energy between hy-
drogen atoms in the X 1�g

+ state of molecular hydrogen, calculated
employing increasing numbers (196–7396) of products of k = 1–9
sets of (s,p,d)k exact hydrogenic and eigenorbitals constructed in
even-tempered Slater basis sets [87,88].

H2 into the promoted atomic states associated with Figs. 3
and 4, in the absence of atomic electronic relaxation. The
curves of Figs. 5 and 6 include in the dissociation process
the additional work associated with atomic promotion over
and above that depicted in Figs. 1 and 2. That is, while the
adiabatic curves refer to a range of atomic valence states
traversed in the course of adiabatic dissociation, the curves of
Figs. 5 and 6 refer to specific atomic valence states frozen in the
course of sudden dissociations. In principle, suitably designed
very-short-timescale photodissociation measurements could
be performed to reveal such sudden dissociation energies.

B. Atomic entanglements in the excited
states of molecular hydrogen

In the limit of large R, the dissociation products of the
two molecular hydrogen states considered above ultimately ap-
proach pairs of 1s atomic hydrogen atoms in singlet and triplet
spin coupling, as seen in Figs. 1 and 2. In contrast, excited
states of diatomic molecules can dissociate to mixed ground
and excited atomic states or pairs of possibly degenerate
atomic states. These can exhibit aspects of entanglements upon
coherent dissociation [91–96], issues discussed previously
in various connections, including dissociations of diatomic
hydrogen molecules [97–102].
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FIG. 6. Convergence of mutual interaction energy between hy-
drogen atoms in the a 3�u

+ state of molecular hydrogen, calculated
employing increasing numbers (196–7396) of products of k = 1–9
sets of (s,p,d)k exact hydrogenic and eigenorbitals constructed in
even-tempered Slater basis sets [87,88].

Detailed calculations of atomic entanglement phenomena
are reported here in the cases of electronically excited states
of diatomic hydrogen molecules having singlet gerade and
ungerade symmetries, including in particular the EF 1�g

+,
GK 1�g

+, HH̄ 1�g
+, and P 1�g

+ gerade states and the
B 1�u

+, B ′ 1�u
+, B ′′B̄ 1�u

+, and 4f 1�u
+ ungerade states

[103–107]. The EF 1�g
+, HH̄ 1�g

+, B ′ 1�u
+, and B ′′B̄ 1�u

+

states are commonly termed ionic consequent of the corre-
sponding wide potential wells and the contribution of H+ + H−
charge-transfer configurations in model quantum chemical
calculations. By contrast, representations of the form of Eq. (1)
include only products of neutral atomic states in provid-
ing support for accurate quantum mechanical calculations,
which, however, also describe charge-transfer phenomena
[71–76,78,84]. Explicit charge-transfer configurations, when
employed with atomic product representations which already
include such terms [70,71], lead to linear dependence, con-
firming thereby the well-known physical equivalence of the
two apparently disparate forms of representation [70–75,84].

Figure 7 shows the total energy curves of these gerade
and ungerade excited diatomic hydrogen states, calculated em-
ploying the atomic hydrogen orbital representations described
in the ground-state calculations reported in Figs. 1–6 above.
The atomic spectral-product representations employed in the
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FIG. 7. (a) Total electronic energy curves for the EF 1�g
+,

GK 1�g
+, HH̄ 1�g

+, and P 1�g
+ electronic states in diatomic molec-

ular hydrogen. (b) Total energy curves for the B 1�u
+, B ′ 1�u

+,
B ′′B̄ 1�u

+, and 4f 1�u
+ electronic states of diatomic molecular

hydrogen, all calculated as described in the text.

calculations of Fig. 7 comprise totals of 4624 eigenorbital
products in each symmetry, ensuring convergence of the curves
shown to values in good agreement with previously reported
highly accurate results [105–107].

Figures 8 and 9 show the atomic promotion and atomic-pair
interaction energies corresponding to the two sets of total
energy curves of Fig. 7. The former figures are aligned to
emphasize the interplay between promotion and interaction-
energy terms in Eq. (18). Specifically, it can be seen from
Figs. 8 and 9 that variations in the atomic promotion energies
of the gerade and ungerade states considered are accompanied
by corresponding variations in the interaction energies in
determining the forms of the total electronic energy curves
of Fig. 7.

Of particular interest in Fig. 8 are the rather large variations
in the atomic promotion energies, which are comparable to
those of the interaction energies, particularly in the EF and
GK states, indicating that the double-well structures of the
corresponding total energy curves are consequences of both
atomic promotions and bonding interactions. Similar remarks
also apply to the atomic promotion and interaction-energy
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FIG. 8. (a) Atomic promotion energy curves for excited diatomic
hydrogen molecule states of gerade symmetry. (b) Atomic-pair
interaction-energy curves for excited diatomic hydrogen molecule
states of gerade symmetry, all calculated as described in the text.

curves of Fig. 9, particularly for the lowest-lying ungerade
state, having a deep well.

The effects of the avoided curve crossing between the two
highest-lying ungerade electronic energy curves of Fig. 7 are
quite apparent in the corresponding atomic promotion and
interaction-energy curves of Fig. 9. Although the total energy
curves appear to actually cross in Fig. 7, detailed examination
of the R ≈ 6.0 bohr region of Fig. 7(b) shows an avoidance of
approximately 0.04 eV between the two curves. The curves of
Fig. 9 clearly indicate the effects of the avoidance present at
approximately 6 bohrs in the total energy curves, confirming
the diagnostic power of the energy partitioning of Eq. (18) in
this case. The features evident in the calculated total, atomic
promotion, and interaction-energy curves of Figs. 7–9 for the
excited H2 states considered are in contrast to those of Figs. 1–6
for the lowest-lying singlet and triplet states in H2, which depict
largely smooth unstructured variations with bond separation.

C. Atomic-state promotion probabilities
in diatomic hydrogen molecules

Reduced one-atom and two-atom density matrices [71], em-
ployed in Sec. III B [Eqs. (19) and (20)], provide quantitative
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FIG. 9. (a) Atomic promotion energy curves for excited diatomic
hydrogen molecule states of ungerade symmetry. (b) Atomic-pair
interaction-energy curves for excited diatomic hydrogen molecule
states of ungerade symmetry, all calculated as described in the text.

measures of the contributions of the various basis states of
a given atom to its atomic and atomic-pair populations in a
particular molecular eigenstate and of the extent of consequent
overall charge reapportionment within the molecule. The for-
mer attribute is provided by the extent of atomic excitation into
bound hydrogen orbitals contributing to the atomic promotion
energy, whereas the latter is provided by the aggregate of these
and of contributions from bound Rydberg orbitals and unbound
continuum atomic states. This information provides objective
quantitative diagnostic descriptions of the effects of chemical
interactions on the distributions of states of individual atoms
in a molecule and on the nature of the chemical bonds between
them.

Figure 10 shows atomic hydrogen state populations in the
X 1�g

+ ground state and in the first excited a 3�u
+ state of

molecular hydrogen as functions of atomic separation, calcu-
lated employing the one-atom density matrices and the even-
tempered atomic-product molecular basis states described in
Sec. IV A. The curves for the excited atomic populations
in Fig. 10(a) are enhanced by the scaling factor 10× for
better visualization, whereas the excited atomic populations
in Fig. 10(b) are enhanced by the scaling factor 5×, with the
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FIG. 10. (a) Atomic hydrogen orbital populations in the ground
X 1�g

+ state of molecular H2. A scale change (10×) has been
employed for the excited orbital populations. (b) Atomic hydrogen
orbital populations in the a 3�u

+ excited state of molecular H2. A
scale change (5×) has been employed for excited orbital populations
except for the 2p state, which is scaled by the factor (2×).

exception of the 2p contribution, which is scaled by 2×. A
color coding is employed in Figs. 10(a) and 10(b) to identify
the symmetries of orbital promotions present (s orbitals are
black, p orbitals are red, and d orbitals are green)

There are evident similarities and differences in the curves
reported in Figs. 10(a) and 10(b) for the two molecular states.
In the case of the singlet ground state the 1s orbital is seen to
be at least 80% occupied at all atomic separations, whereas the
1s population drops to approximately 45% in the triplet state
at smaller interatomic separations, accommodating relatively
large 2p promotions in both cases. These behaviors are in
accordance with the corresponding atomic promotion energies
of Figs. 3 and 4. Of course, the variations in atomic populations
depicted in Fig. 10 ultimately underlie the different behaviors
of the atomic promotion energies and interaction-energy curves
of Figs. 3–6.

The significant 2p atomic hydrogen orbital populations
exhibited in Figs. 10(a) and 10(b), second only to that of the
dominant 1s orbital, largely determine the nature of bonding
in each case. In the singlet state, this 2p contribution becomes

smaller at smaller interatomic separation, whereas in the triplet
state the 2p orbital population is still increasing at smaller
R values. These behaviors are clearly in accord with the
united-atom limits of the singlet and triplet states discussed
in Sec. IV A, with the triplet state attaining an energy well
above that of the singlet state in this limit [90].

A number of the atomic population curves for bound excited
atomic hydrogen p and d states in Fig. 10 are seen to exhibit
maxima in the general vicinity of the extended bonding region
in the X 1�g

+ state, as well as small recurrences at larger-R
values, with excited atomic s states apparently contributing
a lesser amount. In contrast, the bonding in the triplet state
shown in Fig. 10(b) is seen to be dominated by a 1s-2p

admixture of atomic hydrogen orbitals, with significantly
smaller admixtures of other excited hydrogen orbitals.

The individual hydrogen state populations in Figs. 10(a)
and 10(b) also indicate rather small continuum contributions
in molecular hydrogen, reflecting only modest charge-transfer
contributions to the two lowest-lying molecular states in
this homopolar compound [84]. The relatively larger discrete
atomic-state contributions are quite different for the two
molecular states in the 1–6 bohr region, associated with the
different bonding characteristics of the states, whereas the
population curves exhibit considerable qualitative similarity
in the larger-R region associated with weak van der Waals
attraction [108–110].

Figure 11 shows examples of atomic hydrogen orbital pop-
ulations in the electronically excited EF 1�g

+ and GK 1�g
+

states, which are both seen from Fig. 7 to exhibit double-well
structures. The origins of these features have been discuss
qualitatively for some while [103,104], issues which are here
made more quantitative. Specifically, the double-well structure
in the EF 1�g

+ total energy curve shown in Fig. 7(a) can be
attributed to the 2s to 2p population interchange in the 2–4 bohr
interval depicted in Fig. 11(a), whereas the abrupt decay in
the 3d orbital population in the 2–3 bohr interval depicted in
Fig. 11(b) seemingly accounts for the double-well structure
in the GK 1�g

+ total energy curve also shown in Fig. 11(a).
These quantitative results provide further clarification of the
more qualitative earlier discussions of the nature of the double-
well excited electronic states of diatomic hydrogen molecules
[103,104].

Finally, it can be seen from Fig. 8(a), 11(a), and 11(b) that
the EF 1�g

+ and GK 1�g
+ states both approach admixtures of

1s (50%), 2s (25%), and 2p (25%) atomic hydrogen orbitals
at large values of atomic separation. Accordingly, coherent
dissociations of these two states can provide entangled atoms in
the original Schrödinger meaning of the word (verschränkung,
translated as entanglement), largely consequent of the exact
principle quantum number Coulombic degeneracy in this
case. That is, upon dissociation the two hydrogen atoms
are regarded as separated noninteracting subsystems which
are nevertheless still in communication through the coherent
nature of the quantum-mechanical description of initially
combined subsystems which undergo coherent dissociation. Of
course, results reported here in Figs. 7–11 on basis of atomic
spectral representations also provide quantitative descriptions
of the atomic subsystems of diatomic hydrogen molecules
at all geometries examined, not just in coherent dissociation
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FIG. 11. (a) Atomic hydrogen orbital populations in the EF 1�g
+

excited state in diatomic molecular hydrogen. (b) Atomic hydrogen
orbital populations in the GK 1�g

+ excited state in diatomic molec-
ular hydrogen. The color coding employed in identifying the atomic
hydrogen eigenorbitals is as in Fig. 10.

or verschränkung limits. In particular, the preparation of the
atomic subsystems is made fully quantitative over the entire
course of dissociation on basis of the atomic spectral-product
methodology reported here.

D. Total electronic, atomic promotion, and interaction energies
in triatomic hydrogen molecules

Calculations are reported of total electronic energies,
atomic promotion energies, and interaction energies for se-
lected low-lying states of the H3 molecule in symmetric
collinear arrangements (Ha-Hb-Hc). The calculations employ
a (1s,2s,3s,2p,3p,3d) basis of 14 exact hydrogen orbitals on
each atom, supplemented with up to 72 of the even-tempered
Slater orbitals employed in the H2 calculations of Figs. 1–11
to achieve convergence of all quantities for H3 reported. The
particular focus of this illustration is on the complex behaviors
of the atomic promotion and interaction energies of the central
and two outer atoms as functions of adjacent atom separation
(R = Rab = Rbc) in the H3 eigenstates considered. These
include multiple entanglements among different atoms
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FIG. 12. Electronic energies in symmetric collinear H3

(Ha-Hb-Hc) (solid lines), in comparison with valence-bond results
(circles), calculated employing spectral products of hydrogen spin
orbitals on each center, as described in the text.

predicted in the limit of coherent three-body molecular dis-
sociation.

Figure 12 shows calculated low-lying total electronic en-
ergy curves in comparison with conventional valence-bond
values in this basis [89]. The present curves are seen to be in
excellent agreement with the valence-bond results and are also
in good accord with other accurate conventional calculations
of selected doublet and quartet states [111,112]. The curves
dissociating to three ground-state hydrogen atoms include the
X 2�u

+, A 2�g
+, and a 4�u

+ states, whereas the three higher-
lying states of B 2�g

+, b 4�u
+, and C 2�u

+ symmetry disso-
ciate to a limit that includes the promotion energy (10.2 eV)
of a singly excited hydrogen atom (1s → 2s or 2p). These
curves are judged to be converged at all R values shown and
reproduce exactly the correct atomic dissociation limits.

The atomic-pairwise interaction-energy curves for adjacent
atoms (a-b and b-c) shown in Fig. 13 display clearly the
consequences of the avoidance between theA 2�g

+ andB 2�g
+

states evident in Fig. 12, as well as the consequences of a weak
avoidance between the a 4�u

+ and b 4�u
+ states, which is not

particularly apparent in the total energy curves. Specifically,
the electronic interaction-energy curves between the adjacent
atoms in the A 2�g

+ and B 2�g
+ states depicted in Fig. 13

include abrupt changes as the avoidance region between the
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FIG. 13. Interaction energies between adjacent atoms (a-b and
b-c) in symmetric collinear H3 (Ha-Hb-Hc), calculated in the basis
sets employed for the total electronic energy calculations shown in
Fig. 12.

two states is traversed in Fig. 12 (R = 1.5–2.0 bohrs), with sim-
ilar but less pronounced behaviors evident also for the weakly
avoiding a 4�u

+ and b 4�u
+ states (R = 1.0–1.5 bohrs).

The interaction-energy curves for the adjacent atoms in
the X 2�u

+ and C 2�u
+ states evidently are less structured,

although the latter curve shows a noticeable deflection and
structure in the 3–4 bohr interval, consequent of interaction
with a higher-lying 2�u

+ curve not shown [84]. The much
weaker interaction-energy curves between the two outer atoms
(Ha-Hc) in collinear H3 exhibit related weak structures at
smaller-R values (not shown).

Figures 14(a) and 14(b) show the variations of the atomic
promotion energies of the outer (a and c) and central (b) atoms,
respectively, which complement the interaction-energy curves
of Fig. 13. Their depiction on a wide range of separations shows
both the extent of structures present in the curves over a 25 bohr
interval as well as the asymptotic energy values approached in
the limit of three-body molecular dissociation. The many struc-
tures shown, particularly for the excited states of Fig. 12, are
consequent of a sharing of the total promotion energy (10.2 eV)
among the three interacting atoms, as well as interactions
between states of identical symmetries.

The shapes of the promotion energy curves of all three
atoms in the ground X 2�u

+ state are seen from Figs. 14(a)
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FIG. 14. (a) Atomic promotion energies for the equivalent outer
atoms (a and c) in symmetric collinear H3 calculated in the basis set
employed for the total energy curves of Fig. 12. (b) Atomic promotion
energies for the central atom (b) in symmetric collinear H3 (Ha-Hb-Hc)
calculated in the basis set employed for the total energy curves of
Fig. 12.

and 14(b) to be in general accord with the smooth variation
for diatomic H2 depicted in Fig. 3. By contrast, the central and
two outer atoms in the avoiding A 2�g

+ and B 2�g
+ states in

Fig. 14 show abrupt energy variations as the avoided crossing
region (1.5–2.0 bohrs) in Fig. 12 is traversed adiabatically.
Also evident over the entire range of separations depicted are
compensating complementary variations between the central
and outer atomic energies in the three curves, B 2�g

+, C 2�u
+,

and b 4�u
+, dissociating to excited atomic states.

The central atom promotion energies of the B 2�g
+ and

C 2�u
+ states depicted in Fig. 14 are seen to approach unphys-

ical approximately 5.0 eV values associated with entangled
ground and excited atomic states in the limit of coherent
molecular dissociation, whereas the outer atoms in these
molecular states approach unphysical approximately 2.7 eV
values in Fig. 14. These results indicate that repeated ensemble
measurements of internal atomic energies in the dissocia-
tion limits of these two molecular states will give absolute
ground-state (n = 1 and −13.6 eV) or excited-state (n = 2
and −3.40 eV) hydrogen atom energies with probabilities
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proportional to the atomic-state populations in the dissociated
B 2�g

+ and C 2�u
+ molecular states.

The origins of these interesting large-R behaviors are found
ultimately in the atomic compositions of the molecular states
involved. Specifically, all three atoms in the B 2�g

+ and
the C 2�u

+ states are found to exhibit mixed populations of
ground 1s and excited 2s or 2p atomic hydrogen orbitals
in large-R limits, a consequence relating to the necessity of
having any two of the three atoms remaining in their ground
states along these singly excited molecular energy curves. In
contrast, the outer and central atoms in the X 2�u

+, A 2�g
+,

and a 4�u
+ molecular curves are all seen from Fig. 14 to

approach absolute ground-state (−13.6 eV) energies, whereas
the b 4�u

+ molecular state approaches an excited (−3.40 eV)
atomic energy at large R, in the absence of entanglements in
the dissociation processes in these four states.

Although the ground state of triatomic molecular hydrogen
is not a chemically stable compound, its three-body photodis-
sociation has been well studied employing stable H3

+ ions in
conjunction with electron pickup methodologies [112–116].
Accordingly, the present predictions, reporting atomic-state
entanglements having potentially measurable consequences in
a simple well-studied triatomic molecule, would seem to pro-
vide an opportunity for corresponding experimental studies.

Additional calculation of atomic promotion and interaction
energies in low-lying triatomic hydrogen states not reported
here, which include three-body dissociation pathways relevant
to Dalitz plot geometries conveniently accessible to exper-
imental observations [112–116], have been reported sepa-
rately elsewhere [110]. These calculations include in particular
symmetric C3v triatomic dissociations particularly well suited
for experimental observation in view of the corresponding
equilibrium structure of the precursor H3

+ ion.

V. DISCUSSION AND CONCLUDING REMARKS

Conventional quantum-chemical calculations of the elec-
tronic structures and other attributes of molecules and
atomic clusters, performed primarily in the fixed-nuclei Born-
Oppenheimer approximation, have evolved to a remarkable
degree of sophistication and abundance [22–25], enabled
largely but not entirely by continuing improvements in the
computational hardware and software available for this pur-
pose. Considerable attention has also been directed at plausible
but arguably subjective physical interpretations of the many
molecular electronic wave functions, charge-density distribu-
tions, total electronic energies, and other properties calculated
employing such methods [60,61].

Conceptual advances in these particular connections have
seemingly been much less in evidence, with the continuing
absence of satisfactory and generally agreed upon a priori
quantum-mechanical definitions of the properties of atoms in
molecules and of the chemical bonds between them, even in the
Born-Oppenheimer approximation, resulting in their relega-
tion by knowledgeable theorists to the status of observationally
unknowable constructions [3–7]. That is, it has apparently long
been assumed that the laws of quantum theory [8,9], by them-
selves, do not provide unique definitions of such “fragment”

molecular properties in the absence of other considerations [6],
in spite of early indications to the contrary [117].

In an extension of early work of Eisenschitz and London
[70] and of Longuet-Higgen [66], a previously described
universal atomic-eigenstate-based methodology for molecular
calculations [70–76,82–84] has been adopted here to ad-
dress these fundamental conceptual issues. So-called atomic
spectral-product representations of a van der Waals subgroup
of the molecular symmetric group provide universal Hermitian
matrix representatives of the commonly accepted forms of
atomic and atomic-interaction operators and also span totally
antisymmetric Schrödinger eigenstates in the absence of term-
by-term basis antisymmetry.

In this way, a natural partitioning of the total electronic
Hamiltonian matrix of a molecule is obtained in terms of
universal one-atom atomic and two-atom interaction-energy
matrices. Correspondingly, these atomic and pairwise-atomic
fragment Hamiltonian matrices, in combination with calcu-
lated molecular eigenstates and identification and removal of
spurious canceling divergences, provide a total molecular en-
ergy expression in the form of sums of well-defined atomic and
atomic-pairwise bonding contributions, providing an attractive
universal a priori energy partitioning that follows from the laws
of quantum mechanics alone. A conceptual basis is provided
thereby for quantitative estimates of atomic promotion energies
and net bonding energies, long made on the basis of simple
wave-function expressions in the absence of more general
specific quantum-mechanical prescriptions or definitions of
the underlying operators and matrix representatives required
for these purposes [10–21].

The widespread adoption of many-electron basis sets in
term-by-term antisymmetric or essentially equivalent forms
commonly employed in the evaluation of molecular Hamil-
tonian matrices has arguably complicated physical under-
standing and definitions of atomic operators, their matrix
representatives, and their expectation values within molecules.
Moreover, such representations apparently do not lead in
a simple way to the energy partitioning obtained from an
atomic spectral-product representation. It is the case, how-
ever, that totally antisymmetric wave functions, no matter
how represented, can provide Hermitian fragment atomic and
interaction matrices and energies identical to those constructed
explicitly in equivalent spectral-product representations [118],
emphasizing that the present definitions follow from only
the laws of quantum theory and proper representations of
self-adjoint atomic operators and their spectral and matrix
representatives.

Calculations of the familiar electron-pair bonding and anti-
bonding states in diatomic hydrogen demonstrate the bounded
convergence of the total, atomic, and atomic-interaction elec-
tronic energies obtained from the formalism, as well as the
seamless partitioning of the total energy into its components
in this case. Atomic-state hybridization is accommodated
automatically, apportionment of electronic charge among the
atoms similarly takes place over the molecular volume via
virtual atomic excitations, and the atomic-pairwise interaction
energy is balanced against the atomic promotion energy in
determining the total molecular electronic energy. Addition-
ally, charge-transfer effects important in selected excited states
of H2 have been shown previously to be represented by the
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diffuse neutral atomic-state products automatically included
in spectral-product representations, in the absence of explicit
H− + H+ charge-transfer configurations [84].

The significant variations of atomic promotion and interac-
tion energies with molecular geometry reported here for the
ground and selected excited electronic states of the symmetric
collinear H3 molecule reveal a more nuanced picture of
chemical bonding than conventional electronic energy surfaces
alone provide. Entangled atomic eigenstates are predicted
by the expectation values of individual atomic Hamiltonian
operators in the coherent adiabatic dissociation limits of
molecular eigenstates. Such results, even in the absence of
curve crossings in the simple case of symmetric collinear
triatomic hydrogen reported here, are seen to be significantly
more complex than the better-known cases of the entangled
limits of homonuclear diatomic systems [91–102]. Since such
three-body dissociations can be achieved experimentally in
various ways under appropriate conditions [112–116], an en-
semble of measurements of the internal electronic energies of
entangled atomic fragments produced by coherent dissociation
of polyatomic molecules can potentially report such atomic-
state distributions for comparisons with theoretical predictions
made on basis of the present or other valid computational
approaches.

Finally, it should be noted that the atomic spectral-product
basis employed here, when regarded as a function of both

electron and nuclear coordinates, provides a representa-
tion suitable for addressing the so-called chemical structure
dilemma and its possible resolution [7].
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