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Spectral lines of radiating atoms are broadened by perturbations due to the surrounding plasma environment. In
line-broadening calculations, the statistical average of the perturbation is weighted by the density matrix, which,
in thermal equilibrium, contains correlations between the radiator and plasma. These correlations, however,
have been neglected by all line-broadening theories except for the kinetic theory. The relaxation theory of line
broadening is a mathematically exact derivation containing only one physical approximation: neglect of density-
matrix correlations. We revisit this derivation and improve it by including the correlations. The line-broadening
operator derived with the updated relaxation theory differs from that derived from the kinetic theory, though both
derivations are considered to be exact. The kinetic theory derivation predicts that density-matrix correlations
result a strong static shift of spectral lines. Our derivation, on the other hand, predicts that the correlations are
a frequency-dependent effect that affects the line wings, and there is no shift of the line due to correlations.
In addition, we predict that changes in the line shape due to correlations are only noticeable at extremely high
densities. To distinguish the more appropriate model, we compare the shifts calculated with the relaxation and
kinetic theory with data. The comparison shows support for the relaxation theory and casts into doubt the accuracy
of the derivation of the kinetic theory of line broadening.
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I. INTRODUCTION

The broadening of spectral lines is important for many
applications, including diagnostics of laboratory and astro-
physical plasmas [1,2] and modeling opacities [3—6]. Atomic
lines are broadened because the radiating atom is perturbed
by the charged particles (such as electrons and ions) in the
surrounding plasma.

There are three primary methods for calculating electron
broadening: the impact theory [7,8], the relaxation theory [9],
and the kinetic theory [10]; the different methods all give
slightly different functional forms for the electron-broadening
operator. We will not discuss the impact theory further since
it contains a number of simplifying assumptions. Since both
the relaxation and kinetic theories are more mathematically
rigorous, we will focus on the differences between them.
There are two fundamental differences between the kinetic
and relaxation theories: how the broadening is related to the
electron-collision amplitude and the treatment of the density
matrix. Here we will focus on the differences in the density-
matrix treatment.'

The electron-broadening operator is closely related to the
thermally-averaged collision amplitude, which is weighted by
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"The density matrix is an important tool in calculating kinetics of
quantum systems. Methods for solving for the time evolution of the
density matrix vary, which include, but are not limited to, projection-
operator techniques [11-15], solving the Bogoliubov-Born-Green-
Kirkwood-Yvon hierarchy of differential equations [16-19], and
Green’s function methods [20-24].
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the density matrix [25]. The time dependence of the density
matrix is governed by the time evolution of the total atom plus
plasma-electron system

p(t) = e pye' ", )
where py = p(t = 0) is the density matrix at a given initial
time [9,25] and H is the Hamiltonian of the total system,
consisting of radiator and plasma Hamiltonians (H{ and H/,
respectively) and the interaction (V') between the radiator
and plasma,

H=Hj+H} + V", 2

where the superscripts r and p denote the radiator of interest
and perturbing plasma, respectively. The expected form of py is
that it is a thermal distribution of the total atom-plasma system

po = e PH Tr(e M)

= o PHFHTHY™) Tyfe PHTHHTEVDY - (3)

where 8 = 1/kpT. The presence of V'? in the density matrix
creates correlations between the radiator and the plasma. The
kinetic theory is the only derivation that uses this form. The
relaxation theory neglects V7 in py and the density matrix
becomes the populations of the individual systems,

L0, relax ~ PruPp,us (4)

thus ignoring the correlations in py between the atom and
plasma; this is a common approximation when calculating the
time evolution of the density matrix [7,11-14].

This is not to say that omitting correlations in py neglects
correlations entirely. According to Eq. (1), correlations will
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build up in p(#) as the plasma and radiator evolve in time and
several collisions have taken place [7,9,11-15]. In other words,
the relaxation theory [9] only neglects correlations at the initial
time ¢t = 0 and the correlations for ¢ >> 0 will be dominated
by the collisions. In this picture, the correlations in py will
only be important for early-time evolution of p(¢), and for
the application of spectral line broadening, this should only
be important for the wings of the line (where Aw is large).
Both Baranger [7] and Fano [9] have predicted that the effect
of the correlations in py should only be important for plasma
conditions where the coupling is high.

The kinetic-theory-based formalism that accounts for
initial density-matrix correlations predicts a large frequency-
independent shift of spectral lines [26]. Frequency-
independent shifts imply that the correlations in p(¢) are always
influenced by py regardless of how much time has passed and
how many collisions have occurred. This seems to contradict
the above prediction of Fano [9] and Baranger [7] that the
correlations in pg affect only the initial time evolution of p(#).

In this paper, we investigate the prediction of the kinetic
theory in two ways. First, we check it theoretically by includ-
ing density-matrix correlations in another line-shape theory.
Second, we check predictions of both the relaxation and kinetic
theories against measured line shifts. In order to accomplish
our first goal, we revisit the relaxation theory of line broad-
ening, which is mathematically exact and the only physical
approximation is Eq. (4). We do this with a straightforward
step involving a specific definition of the identity operator.
The corrections to the line shape in the formalism presented
here differ from what is predicted in the kinetic theory of line
broadening [10]. In the derivation here, the initial correlations
have a frequency-dependent effect on the line shape, with the
strongest changes in the wings and the smallest in the core; the
overall change in the line shape due to initial correlations is
a minor asymmetry. We then compare calculations using the
relaxation and kinetic theory formulas with experiment [27]
and show that the kinetic theory formulas overpredict the line
shifts by several hundred percent. The differences in derivation
and the comparison with experiment cast the kinetic theory
results [10,26,28-30] into question.

The paper is organized as follows. We first show the reader
Fano’s derivation of the relaxation theory. We update the
relaxation theory to include a more general density matrix.
Then we perform a second-order evaluation of the line-shape
operator and show terms that arise due to correlations. We then
provide a means of evaluating these correlation terms. Finally,
we compare our results with the kinetic theory and experiment.

II. FANO’S RELAXATION THEORY
The line shape is given by the real part of the Fourier
transform of the dipole-dipole autocorrelation function [15,31]

I(w) = %Re / dt e Tr(D - D(t)po}, 5)
0

where the trace is performed over all plasma and radiator
states; the time evolution of the dipole moment is given in
the Heisenberg picture

5(0 — ethﬁe’iH’,

where H is the Hamiltonian of total radiator-plasma system
[givenin Eq. (2)] and py is the density matrix. In the Heisenberg
picture py does not evolve in time; a cyclic permutation of the
operators can include py in the time evolution,

1 o , ‘ '
I(a)) = _Re/ dt eleTI.{D . [eletpODeth]}
7 0

oo
= Re / dt ' Te{D - e 'L (py D)}, (6)
0

where the only difference between this and Eq. (1) is that the
density matrix is multiplied by D. In Eq. (6) we have used the
Liouville notation as a shorthand,

L(poD) = [H,(poD)] = H(poD) — (poD)H

(see Ref. [9] or [15] for more details on the Liouville formal-
ism). The line-shape formalism can be written as a function
of frequency by moving the time integral inside the trace and
performing the integral

I(w) = ;ImTr{D (pOD)}. 7)

w—L
The total system can be separated into the radiator and the
perturbing plasma coordinates, where we can split the trace
accordingly,

1(a))=_?IImTr,[DTrp{wino}D] (8)

The Liouville operator can be separated into the unperturbed
and interaction Liouville operators, analogous to Eq. (2),

L=Ly+L{+Ly, )
where
Lypo = [H.po)- (9a)
L{po = [H{ .po]. (%9b)
Lipo=[V"",p0]. (9¢)

For simplicity in the derivation, we will contain all nonin-
teracting Liouville operators into one operator Lo = Lj + L}.
In order to evaluate the effect of the perturbers on the radiator’s
time evolution, it is convenient to isolate L ;. Fano rewrote the
quantity inside the curly brackets of Eq. (8) as

1 1
= 14+T s 10
CL)—L()—L[pO CU—L()[ + (w)w—LQ]pO ( )
where
T(w)=L; + Li(w— Lop)" ' T(w) (11a)
1
= L. 11b
I —Liw—Lo" " (11b)

Here T (w) is the Liouville-generalized scattering 7 matrix
(or collision amplitude) and contains the frequency-dependent
interaction between the radiator and the perturbers. This is a
particularly convenient form since the interaction between the
radiator and plasmais isolated in 7'(w) and is now linearized, so
adensity-matrix expansion can be performed, as Fano did in the
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original publication. The density expansion permits everything
to be written in terms of two- or three-particle interactions. Up
to this point, Fano has not introduced any approximation and
thus the expression is exact; Eq. (10) will be our starting point
when we include a more general density matrix.

Fano introduced the approximation that the density matrix
could be approximated as

Po ~ ;Or,upp,us (12)
pra = € P [ Te(e P}, (12a)
Ppu = € P Trfe PHY, (12b)

where p,., is the density matrix of the isolated radiator and p,, ,,
is the density matrix of the perturbers; the additional subscript
u denotes uncorrelated density matrices, which is to distinguish
these from the more general definition

or = Try{po}, (13)

which contains the correlations. This assumes that correlations
between the radiator and plasma are negligible. Equation
(12) has the property that it commutes with (w — Lo)~'.
The perturber density matrix was moved to the other side of
(w — Lg)~! so it is adjacent to the T matrix,

1

mpr,upp,u =

1
T -
o— Lo |:pp,u + (w)pp,u - L():|P;,u

Then the trace in Eq. (8) can be rewritten as

1
Try { —pr,upp} =

1
L [Lunmn;;a}w,

(14)

r
w— Lj
where

(T(w))p =Trp{T (@)pp.u}- 5)

The average T (w) contains all the effects of the interaction of
the radiator with the plasma.

It is desirable to connect Eq. (14) to a more commonly used
expression for the line-shape function [7,31,32]

1

-1
I(w) = —ImTr, [D—
T o — L — H(w)

Pr.u D] (16)
where JH(w) is the line-broadening operator and governs the
time evolution of the radiator due to the average perturbation
from the plasma. In other words, we need to find a functional
form for H(w) that satisfies

1
w—Ly—Hw) o-Lj

[Hwnwnw_y}
0

where the expression for JH{(w) that satisfies this equation is
_ 1
1+ (T () (@ — L)

H(w) (T (@),. (17

This is Fano’s final expression for the electron-broadening
operator and is valid for conditions when density-matrix
correlations are not important.

II1. INCLUDING OFF-DIAGONAL
DENSITY-MATRIX TERMS

We now want to derive a line-broadening function that
contains a density matrix thatincludes correlations; our starting
point is Eq. (10). We need to manipulate Eq. (10) so that when
we perform the trace, it becomes a form similar to Eq. (14),

1 1
Trp{a)—Lo |:1 4+ T(a))w_ Lo]po}

1

.
w =Ly

w_LJm, (18)
where the unknown function ¥ (w) contains all of the radiator-
perturber interactions (including the density matrix) and would
replace T (w) in evaluating the electron-broadening operator in
Eq. (17); here p, is defined according to Eq. (13).

When the trace is performed on the first term on the left-hand
side of Eq. (18), it is similar in form to Eq. (14),

Tr,{(@ — Lo) ' po} = (0 — Lg)fl,o,..

To put the second term [on the left-hand side of Eq. (18)] in
the desired form, we multiply on the right by the unit operator

I=p Y (w—L)——p, 19
o7 (@ O)w—Lg’O (19)
so that
T(w) :
a)—LO (l)a)_LO,OO
1 o 1 o 1) 1
= w w — E—— O
w—Lo o—1," 1L’
— ol gt (20)
T w—1Lg wa)—Lgpr’
1
Tw)=T “Nw—L"). 21
(w) (w)w_LOpop, (w—Lf) (21

When we perform the trace over the plasma coordinates, this
becomes the right-hand side of Eq. (18). Now the electron-
broadening operator is defined as

Hw) = — (%)), (22)
1+ (‘I(a)))(a) — L6)
1

11—(60—LQ)_1L160—L0

r

Tw)=1L popfl(w — LY).

(23)

Use of Eq. (19) is required because pg no longer commutes
with Ly. One property of Eq. (23) is that if py is defined as in
Ref. [9], then T(w) reduces back to T (w). We note that we have
made no approximations about the structure of pg, therefore
this formula can be applied to a system with arbitrary initial
conditions.

IV. SECOND-ORDER DENSITY-MATRIX
CORRELATION CORRECTION

Calculations of the full N-body line-broadening problem
are extremely difficult and would require a large amount
of computing time; computer simulations can do this
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numerically [33-36], but these line-broadening simulations
are currently limited to classical particles. Some simplifying
approximations for semianalytic evaluation include Taylor
expanding the electron-broadening operator [and T(w)] to
second order and collecting all terms that are second order
in L;. In addition, the line-broadening problem is often
reduced to abinary-collision result [7,8], where the interactions
between plasma particles are approximated with a screening
factor [37-39]; these approximations are used by every semi-
analytic calculation. The second-order result for the electron
broadening is [9,40]

1
Hw) ~ HY + HP(w) — ﬂ-(“)(a))—Lr HO(w), (249
@=Ly

HPD (@) = Trp{L;G(@)po}p; ' (@ — Ly),
H?(w) = Try{L;G@)L1G(@)po}p; ' (@ — Lp),

(24a)
(24b)

where G(w) is a Green’s function, defined to be

1

G(w) = .
(@) = —— I

J

In order to properly evaluate the density matrix, we need
to define the Hamiltonian as explicit sums over the N plasma
particles,

N N
H} =ZH3+ZZV”,
i i j<i

N

VP — Z Yo

i

and insert this into Eq. (2) to get a total Hamiltonian
N N N
H=Hj+Y Hy+Y Y Vit vio (25
i ij<i i

We can write the density matrix in a slightly simplified form

N N
Po X eXp {—ﬁ(Hg +Y Hi+ Y v”) } (26)
i=1 i=1

by assuming that we can account for the V¥ terms by screening
V7i[10,28,41]. Trying to solve for this density matrix explicitly
is impractical, and a simpler method is required.

One of the goals of this section is to clearly show how the density-matrix correlations affect the line shape. We therefore use

an integral expansion [7,15,26,29,42] of Eq. (26),

exp [—,3 (Hg + Z Hi + Z V"i>:|

. . ) B .
— ¢ P exp (—ﬂ Z Hé) — e PHi exp (—ﬁ Z Hé) f drexp | t| Hj + Z HJ
i i 0 j

J

X Z Vihexp | —t| H) + Z H({/ + Z v, (27)
k j’ K

so that the first term is the same uncorrelated density matrix that Fano [9] used. We define the uncorrelated and correlated density

matrices as

pPo = [ﬁr,uﬁp,u + ﬁc]/Tr{;ar.u:ap,u + lac}a

A _BH"
Pru = € b o,

ﬁp,u eXp (_IB Z Hé) )

S
Il

\ r* 4
b = —e PHi exp (—ﬂ Z Hé) / drexp | t| Hj + Z HJ
i 0 j

J

(28)
(28a)

(28b)

Z V% exp | —t| H] + Z Hojl + Z VL (28¢)
k J’ K

where the density matrix with circumflexes denote unnormalized density matrices.

Since our goal is to calculate J{(w) to second order in the interaction potential, we do not consider any density-matrix
correlations for terms in Eq. (24) that are already second order in L;; for these we will simply replace py with o, , 0, , and
they will become the original Fano [9] results. Therefore, the only second-order contribution from correlations will come from
HD(w). Using Eq. (28) to create uncorrelated and correlated terms, HV(w) becomes

HD (@) = Trp{Li(@ — Lo) ' polp; ' (@ — Lj)
-1 -1

= [Trp{Lippubru}(@ = Lo) ™ p; (@ = L) + Trp{Li(@ — Lo) ' Bedo; (@ = L) |/ Trlprubpu + Be)s (29)
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where commutation of [Lg, 0., 0p,.] = 0 has been used for the first term on the right-hand side; no further simplifications can be
made to this equation without approximation. We desire to connect this first term to the original derivation of Fano; we therefore
will approximate (though not entirely accurate) the inverse radiator density matrix as uncorrelated [10,26]

.

Pr ™ Pry -
This simplification allows us to take advantage of commutation relationships and remove the frequency dependence of this term;
we will use this approximation for the rest of the paper. The uncorrelated line-broadening term approximately becomes the static
shift as originally derived by Fano,

A A -1y _ A A R N A oA A
Trp{LIpp,upr,u (w - L(r)) }pr l(a) - L(r))/Tr{pr,upp,u + D}~ Trp{Llpp}/Tr{pr,upp,u + Pc}. (30)
The second term then becomes the lowest-order correction for the density-matrix correlations
Trp{Li(@ = Lo~ pe}oy ' (0 = Lo)/Tr{Prubpu + Ae}- 3D

V. EVALUATION OF THE CORRELATION CORRECTION

To properly evaluate the correction, we first need to find the proper normalization factor for py, which requires evaluating the
trace of the total density matrix [9,25]. The largest contribution to Tr{po} is 0,4 0,4 (see Appendix A); we therefore approximate
the trace as

/\7 N
wiem<[z (3’
D

r

which will be accurate for the neutral hydrogen cases we explore here. The lowest-order correlated broadening term (31) becomes

Trp{Li(@ — Lo)™' pc}p; (@ — L)

T A\ S g N , ot X
~ —Tr L;l (C() _ L0)71 (VD> exp _ﬂ Hd e*/sH() f dt eT(H(] +H(’;)Vrk€7T(Ho JFH(])‘) eﬁHo (w — L(r))
X . 0

i k j

(33)

The resulting interaction will have single-perturber (i = k) and two-perturber interactions (i # k), with the former of order N

and the latter of order N2. In addition, exp(—8 Y j Hoj ) will give a factor of V/ )% for every term where j # k or j # i. Using u
and k to denote radiator and free-perturber states, the lowest-order density-matrix-correlation correction to the line broadening
is (upper-state broadening only)

Try(Li(@ — Lo) ™' pe}p; ' (0 — L)
_ o~ BES-E)

o R R 00 N N -1
~ —n2i, / Ple ™ ke |V )@ — B + B! / Ehoe P W |V ' R) (@~ Eu + E)
0 0 w—Ey

—noi / 'k, / R ks |V B (0 — B+ By — kE 4+ h7) RV e 3
0 0

1 — e PES—Ey+3ki—3kD)

X
172 172
Eu” - Euf + Ekl — ikl

(w—Ey + E), (34)

(

where the superscripts on V denote on which particle the
operator is acting. This formula can be reduced to radial
integrals by performing a partial wave expansion and using
Wigner 3j and 6 symbols [29,43-46], which is done in detail
in Appendix B.

The inverse, (w — L)™', can be solved in the same way as
in previous calculations where it is separated into its real and
imaginary parts [9,43]

P.V.
(@—Lp)™ ' = ——— —ind(w — L),
w — L()

where P.V. is the principal value and § is the Dirac delta
function. There are multiple ways of evaluating these terms,

such as the method in Ref. [43], and we will not discuss them
further. Unfortunately, there is no simplification for the real
part in Eq. (34), but there is considerable simplification for the
imaginary part. The imaginary part of Eq. (34) can be evaluated
in the same way as in [29,43,45], but with a correction factor
(showing only upper-state broadening),

ImTr, {Li(w — Lo) ' pep; ' (0 — L)}
~ —Im T, e P24 (uky |V (0 — Lo) "' V]u'ky)

x[1 — e_ﬂ(w_Eu’+El)]. (35)
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FIG. 1. Comparison of line profile with and without inclusion of
the correlated density-matrix correction [the second term in Eq. (29)].
The example here is the Ly, transition of neutral hydrogen at 7, =
leVand n, = 3.2 x 10'® ¢/cm?. The effect of the correlations is to
slightly skew the wings of the profile.

This term does nothing to the center of the line, since the
correction factor is zero when Aw,; = w — E, + E; = 0. If
Aw,; becomes appreciable compared to §, the blue part of the
wings of the line will become depressed due to the reduction in
the broadening and the red wing, on the other hand, will become
enhanced due to the increase of the broadening. In addition, the
real part will also be zero at the line center due to the presence
of (w — Ly), but as the detuning becomes large, both the red
and the blue sides of the profile exhibit a redshift, meaning that
the depression of the blue wing and the enhancement of the red
wing will become stronger. The overall effect, therefore, is to
skew the wings of the profile toward the red, rather than being
symmetric about the line center.

The effects of the density matrix are going to be most
pronounced when the temperatures are small and the line
shapes are wide. For typical laboratory conditions, such as
those found in the Wiese et al. [27] experiment, the changes are
not noticeable. Therefore, to illustrate how the density-matrix
correlations change the line shape, we chose to compare line
shapes at extremely high density. Figure 1 shows the line shape
of Ly neutral hydrogen with and without the density-matrix
correlations (the details of the electron broadening are in
[47] and repeated in Appendix B). As discussed above, the
correlations skew the wings so that the red wing is enhanced
and the blue wing is depressed. We can therefore conclude

that, except for highly coupled plasmas, the correlations in the
initial density matrix are not important.

VI. COMPARISON WITH KINETIC THEORY

First and foremost, we want to say that our derivation does
not match the results of Hussey er al. [10]. The easiest way to
see this is to write both results in the Lippmann-Schwinger [48]
expansion. Hussey’s electron broadening operator [Eq. (4.3) in
[10]] is

Hyin(@) = Trp {Fin(@) 00} 0", (36)

where

Fin(@)po = L1po + Fiin(@)00Gin(@)L 1, 37

1

, 38
w—Ly—L{ —C, ,(») 38)

Gyin(w) =

where L is a screened interaction and C, , () contains mean-
field operators. The generalized relaxation theory results,
which were derived in Appendix C, are

Hierax (@) = Trp{Fretax(@)oo} oy (@ = Lg). (39)
where
Ft@)p = Li(w— Ly — L§) ' po
+Li (0 — Ly — LE)"'[1 = P1F(@)po, (40)
where P is a projection operator [11],
PApo = pop;  Trp{Apo}:

this form is fundamentally different from the kinetic theory
in two principle ways: how the density matrix affects the
broadening and the presence of the projection operator.

The presence of the projection operator is unique to the
relaxation theory of line broadening.”? Hussey et al. [10]
showed that [after using C,,(w) to screen L; in frequency-
dependent terms of J{(w)] that their derivation is formally
identical to the unified theory of Smith ef al. [38]. We point
out that even though the final form of the unified theory does
not contain a projection operator, it is formally present in the
derivation and is thrown out, a point of criticism by Lee [49].
Therefore, because a projection operator is formally present in
both the relaxation and unified theories of line broadening, the
lack of one in the kinetic theory raises concerns. However, this
is not the proper place to discuss or justify the presence of the
projection operator in JH{(w). The rest of this section is devoted
to comparing how the density-matrix correlations change
the line broadening according to each prediction (kinetic or
relaxation theory).

Both our work and the Hussey et al. [10] derivation estab-
lished that the lowest-order corrections due to density-matrix
correlations are in the first term of H(w), which we denote by
HD(w). Splitting the density matrix into its uncorrelated and
correlated terms pg = p, 0, + p, the HD(w) for the relaxation

ZProjection operators have never been included to calculate a line
shape; they have always been ignored.
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and kinetic theories are
Hr@) = Trp{Lrppa) + Trp{Lipdprl, (D)
H (@) = Trp{L1pp.)
+Trp{L(@ — Lo) ' pc}pr (@ — Lp). (42)

Both theories have the same uncorrelated shift term, but
the correlated-density-matrix correction is different: Kinetic
theory is static (i.e., frequency independent), relaxation theory
is frequency dependent.

Hussey et al. [10] predicts a static shift (meaning the whole
line is shifted by this amount) that is second order in V (since
both L; and p. contain a factor of V'), which makes this term
dipole allowed. For near-neutral one-electron atoms, dipole-
allowed interactions are typically the strongest interactions,
which means that this shift term can be quite large and similar
in magnitude to the electron broadening. Interestingly, the
first implementation of the Hussey et al. [10] results do not
include the static shift [28], though it is implemented in later
calculations [26,29,30].

In our derivation, the density-matrix correlations are a
frequency-dependent effect. The far wings of the line are
shifted by the amount predicted by Refs. [10,26], which is
achieved by evaluating Eq. (42) at the limit where w — o0.
The line core, on the other hand, does not have this shift; the
presence of (w — L{) in Eq. (42) results in zero shift at the
line core and a slight asymmetry of the spectral lines. This
asymmetry will enhance the red wing of the profile and depress
the blue wing of the profile (as shown in the preceding section).

There is experimental evidence that questions the accuracy
of the kinetic-theory shift (41). The experiment by Wiese
et al. [27] measured high-density hydrogen at temperatures of
~1 eV and electron densities between 10'¢ and 10'7 e/cm?;
the scatter of the measured shifts for Hg are less than 0.1 A.
We computed H(w) according to the relaxation and kinetic
theory formulas forHg, then = 4ton = 2 transition; we use an
expanded basis? to ensure the accuracy of our calculation. The
shifts are compared in Fig. 2. At the highest-density conditions
(n. = 10'7 e/cm?), the shift from Eq. (41) overpredicts the
measured value by 675%, while the relaxation theory under-
predicts by 35%.

VII. CONCLUSION

Most line-broadening calculations assume that the density
matrix which describes the radiator-plasma system is uncor-
related, meaning off-diagonal terms are neglected. Only the
kinetic theory [10] of spectral line broadening has included
these off-diagonal terms of the density matrix in its derivation.
We have updated the mathematically rigorous relaxation theory
of Fano [9] to include the off-diagonal terms of the density
matrix. However, the line-broadening formulas we derive are
different from that of the Hussey et al. [10] kinetic theory. The
largest difference between our work and the kinetic theory
is the appearance of a line shift in the latter. Comparison
with experiment shows that the kinetic theory formalism

3We include the n = 5 states in addition to the n =2 and n = 4
states; see [50], [36], or [51] for a discussion of basis set accuracy.

’ o T
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FIG. 2. Predictions of shifts for the relaxation theory and the
kinetic theory compared to the measured shifts by Wiese et al. [27].
The shifts from the relaxation theory, while not perfect, agree fairly
well with the measured values. The shifts from the kinetic theory, on
the other hand, are several times larger than the measured values.

overpredicts the shifts. This work questions the accuracy of
the kinetic theory line-broadening derivation of [ 10], and closer
inspection of the derivation is needed.
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APPENDIX A: NORMALIZING THE CORRELATED
DENSITY MATRIX

The density matrix, by definition, needs to be normalized
to unity [25],

Tr{po} = 1.

Thus, whatever form the density matrix takes needs to be
divided by the trace. In the discussion above, we have separated

(AD)
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the density matrix into its correlated and uncorrelated parts In the expansion of the density matrix given in Eq. (27), we
obtain a first-order correction
= Pr, u Tt P g
PO = PruPpu T Pc Tr{p.} ~ Tr{e BE; exp <_IB Z Hé)
I

and the trace is evaluated as the sum of both the uncorrelated
and correlated parts of the density matrix. The trace of the p .

: - : : x | drexp|t H’—I—ZH’
uncorrelated density matrix was previously evaluated by Smith o 0 0
and Hooper [40] and O’Brien and Hooper [43], Y

X Z V'iexp [—z(ﬂg - Xk: Hé‘)} } (A4)

N Because of the trace, and the properties of the single-particle
Tr (pp) = < A% ) 7 (A3) operators in the matrix exponentials, the exponentials in the

Trrlpru) = ) e ¥, (A2)

i

E integral will vanish, so the trace reduces to
N-1 1
where V is the volume, Ap is the thermal de Broglie wave- Tr{p.} ~ (A_3> Tr{e PEie PHo NV B). (A5)
D

length, and N is the number of particles inside the volume. We
use this section to evaluate the trace of the density matrix that ~ We can factor volume and de Broglie wavelength terms out of
includes correlations. Tr{p.} to make it proportional to Tr{o;, 0, p},

Tr{po} = Tr{pruppu} + Tr{p:}

PN VAN N - 1
ey e () ey o
i D i D i

l

so that we can write the trace of the total density matrix as

-1
N , ,
Trlpo) & Trloruppaud | 1= i Trle P e P yrip) (Ze—“f> : (A7)

In most cases, the density is small compared to unity, meaning that the term in square brackets can almost always be approximated
as unity,

Tr{p} = Tr{:or,upp,u} + Tr{p}
~ Tr{prubp.uts (A8)

which is what we use as the normalization in Sec. V.

APPENDIX B: LINE-BROADENING DETAILS

This is an outline of the electron-broadening treatment that we use for calculation of the profiles in Fig. 1 and the shifts in Fig. 2.
This was a code developed by Gomez [47] and we repeat the details here for the reader’s convenience. Our electron-broadening
calculation treats both the atomic and plasma electrons quantum mechanically. This was modeled after the quantum-mechanical
treatments of Junkel et al. [29] and Woltz and Hooper [45], but differ in that we include exchange effects in our calculation. Since
calculations of electron exchange in line broadening are not documented for a second-order line-broadening theory (in the same
way that direct-only calculations are documented in [29,45]), we show the work here. The point here is not to open a discussion
about exchange, but rather to inform the reader of our electron-broadening calculation.

For our electron-broadening treatment, we evaluate J{(w) to second order in L, repeated from Appendix C,

H(w) = (L;G(@)po)p, (@ — Lj) + (L;G(@)L;G(w)po)p; ' (0 — LG) — (L1 G(@)po)p; (L1 G(w)po)p; ' (0 — Ly).

In the main text, we reduce this to a binary-collision approximation and we keep everything second order in the interaction,
including terms with the density-matrix correlations. The resulting approximation for H(w) is

H(w) = N(L;pp) + N({L;G(@)pc)p, (0 — Ly) + N(L;G(@)L;G(@)p,); (B1)

we are not currently evaluating the third term. The reason for this is that N(L;p,) for neutral hydrogen is so small that the third
term is negligible compared to N (L;G(w)L;G(w)pp)-
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To calculate line shapes with the above, we use the same full-Coulomb treatment as Junkel et al. [29], where the individual
terms are (showing only the upper-state broadening term)

o0 o0 o0
Hyw(@) = 1,3, f e PR (ke |V k) ) d K, + 1oA3, / e Pk f (ki |V u"k2) G (@) (" ka| pe k1 Yd> Ky
0 0 0

+ne)\i)/e—ﬂ%"?/(ul?l|V|u”1}'2>G(w)<u”1?2|V|u’1€1)d3121, (B2)

where u denotes a set of atomic states and k denotes a set of free-electron states. Here we have neglected the two-electron term in
Eq. (34), and all k subscripts denote the different states of only one electron (in the main text, the different subscripts were used
to distinguish between electrons, but that is unnecessary here and the distinction between states becomes clearer).

As in Refs. [29,45], our interaction potential V is a Coulomb interaction and contains nuclear potential terms

Vi = - 1|, =35 T A e i) (B3)
ry,rp) = S = ) > = = r 2),
R N B T R

where the electron-electron repulsion is Taylor expanded for easy evaluation and r. and . are the minimum and maximum
of r and r;, respectively. To more simply evaluate the Coulomb matrix elements, we perform a partial-wave expansion of the
free-electron states and assume that the atomic wave function can also be separable in radial and angular components [29,44,45,52]

- 2 1 . a . 1 .
(rlki) = - Zz’kl—rF/, (ki)Y (KDY, (), (rlu) = ;Rqum(r)v (B4)

Lymy

where the radial wave functions Fj(k,r) are Coulomb waves (or plane waves for the case of neutral atoms). To evaluate the
Coulomb matrix elements, it becomes convenient to couple the angular momentum together to a total angular momentum L with
magnetic quantum number M. Coulomb matrix elements are independent of M and depend on m only through a Clebsch-Gordan
coupling coefficient [44]. We can evaluate the M and m; averaged interaction via a 3 j-symbol sum rule,

2
. . L, 1 L
(k| F ()| 'k 1) = XL:(uzllew{(w)m’z/clL)(zL +1) XA; (m mll _M>
my,

QL+ 1)

— 11k L|FC Ty Ly ———=.
;wll [F@lu'tl L) S

After inserting this into Eq. (B2), coupling the angular momentum of the atom and plasma electron, and then performing the sum
over the magnetic quantum numbers, the electron-broadening operator becomes

QL+12S+1) A3 /°° e /00 e [
Hyw@)y=y — " “p, =2 B Ay w(k))dk f‘z’ﬂ/ dkydki By (ki k
(o) ;(21u+1)(2s+1)n 2 1, e (k1) 1+0 e | 2dky By yr (k1 k)

[1 _emelm—Eu/%k%f%k%)( Eo Byt 1] PV . 3( T T 1k2>
X W — Ly — 7T w — Ly —_ = — s
Ey — Eo+ 52— 112 ! ®— Eg + E — 32 + 112 EEPACE

where the additional factor of 1/2 is from the density matrix now including plasma-electron spin and s is the spin of the atomic
electron. In addition, we have used, for shorthand [46],

2 ! /
Auwlk)) = Z8, > [Z(ullleSHDkHu LikiLS) + (ulyky LS| EX||u llleS):|, (B5)
I k

4 1
Buuwr ki ko) = =581,1, = Y | D (uliki LS| D*|lu" ko LS) + (ulyky LS| E* |u Lk, L S)
T 2 I, k

x |:Z(u”12k2LS||Dk||u’llk1LS) + (u”lzkzLSHEk||u’llk1LS):|, (B6)
k

Lk Ly L kK L) l L
ky, /" _ (1Ll A+Ly u u 1 2 u 1

3k.0
r

00 0O }"k
Xf / drzdrlFz(kl,rz)Ru(Vl)[rkL i|Ru’("1)Fl(k1,r2),
0 0 <
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FIG. 3. Comparison of line profile calculated with the electron-broadening model here vs the XENOMORPH code [36]. For this comparison,
the ion dynamics have been turned off in XENOMORPH [36]. The two calculations use the same ion microfields so the only difference between
the codes is the electron broadening.

Lk L\(L kK L\ Iy, L
ki, — (1\SHu ALy [ tu 2 1 u u 1
(uliki LS| E*|u"lks LS) = (—1) (0 0 o) (0 0 0){11‘” L k}

o) 00 rk k)
x f / drzdrlmkl,rz)Ru(m[ > %}Fz(kl,n)leu/(rz),
0 0 1

r<

where we have labeled D for direct interaction and E for exchange interaction and we have used the 3 and 6 symbols [44] to
perform the angular integrals. The factor of 1/2 in B is due to the antisymmetrization operator and the structure of the scattering
T matrix for hydrogenlike systems [53-56].

We want to present some level of validation of the electron-broadening model presented here. This code has compared well
with other validated codes in Alexiou et al. [57]. In addition, we compare this calculation with that of Gomez et al. [36] (which
has compared well with the Wiese et al. [27] experiment), which we show in Fig. 3 for typical laboratory conditions. To do
a proper comparison, the two methods have the same static-ion broadening so that the only difference between this work and
XENOMORPH [36] is the electron broadening. Also, as shown, in Fig. 3, the two calculations give near identical results.

APPENDIX C: DERIVATION OF THE LIPPMANN-SCHWINGER RECURSION RELATIONSHIP FOR THE
ELECTRON-BROADENING OPERATOR

For purposes of comparison with the kinetic theory and to link this work back to the Lippmann-Schwinger [48] T-matrix form,
we want to write the electron-broadening operator in a recursion-relationship form. The electron-broadening operator H(w) is
given as a function of T(w) and both can be Taylor expanded,

1
H(w) = —(T())
1+ (T()) (o — L)
= (T@) Y [ (- L) (Z)],
k=0

1 1

Tw)=L
(U)) 11—(60—L0)_1L]C()—L()

pop; (@ = Lj)

=L; Y [(@— L) LT

k=0

-1 _qr
e 0]

If we insert the Taylor-expanded definition for ¥(w) into the Taylor-expanded definition for H{(w) and collect all of the terms
of the same L, the resulting equation for line-broadening is (out to third order)

H(@)=(L1G(@)po)p; " (@ — L)
HLIG@)LiG@)po)p; " (@ = Ly) = (L1 G(@)po) p; (L1 G(@)po) oy (@ — L)
HLIG@LIG@L1G@)po)p; " (0 = L) = (LiG@)po)p; (LiG@)LiG@hpoho; ' (w = L)
—(LiG@)L1G(@)po) p; (L1 G(@)po)p; ' (0—Ly)+ (L1 G(@)po)p;  (L1G(@)po) o (L1G(@)po) oy (0= L), (C1)
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where G(w) = (w — Lg)~'. There is a common factor of oy Yw — o) on the right-hand side of all the terms; this can be factored

out and we can seek a function H(w) where

H(w) = Trp{F(@)} o, (@ — L). (C2)

Based on Eq. (C1), we can write

F(w) = Li(@— Lo) " po + Li(w — Lo)~'[1 — P1H(w), (C3)

where P is a projection operator that performs a trace over the perturber coordinates

PApy = pop, ' Try{Apo}. (C4)

This projection operator has slightly different properties than the one presented in Ref. [9] or [40]. Because of the lack of
correlations, the projection operators there commuted with (w — Lo)~!; ours does not.
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