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Standard quantum tomography of a single qudit achieves an infidelity that scales in the worst case as O(1/
√

N )
for a sample of size N . Here, we propose a suitable generalization of the two-stage adaptive quantum tomography
for a qubit to the case of a single qudit. This achieves an infidelity of the order of O[1/

√
N0(N − N0)] for all

quantum states, where N0 and N − N0 are the ensemble sizes employed in the two stages of the method. This
result is based on a second-order Taylor series expansion of the infidelity that is obtained by means of the Fréchet
derivative and measurement outcomes modeled by a multinomial distribution. Numerical simulations indicate
that the choice N0 = N/2 leads to an infidelity that scales approximately as O(1/N ) for all quantum states in a
wide range of dimensions, that is, a quadratic improvement of the infidelity when compared to standard quantum
tomography in the case of low-rank states.
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I. INTRODUCTION

Study and applications of high-dimensional quantum sys-
tems are intensive research topics in quantum information
theory. This class of systems provides several advantages
over two-dimensional quantum systems. For instance, it has
been shown that the use of d-dimensional quantum systems
(qudits) in quantum communications leads to more efficient,
secure, and noise-resistant protocols [1–3]. Similarly, quantum
computing algorithms can be implemented through qudits
[4–6] more efficiently. Qudits also allow us to design noise-
tolerant Bell-like inequalities that lead to larger violations
[7,8].

In spite of the advantages provided by qudits, the assess-
ment of experimentally generated quantum states of higher
dimensional systems and quantum devices has proven to be a
remarkably difficult task [9]. To accomplish this goal, several
quantum tomographic methods to estimate unknown states
have been designed and experimentally demonstrated such
as, for instance, standard quantum tomography [10,11], mutu-
ally unbiased bases (MUBs)–based tomography [12–18], and
symmetric informationally complete (SIC) positive-operator
valued measure (POVM)–based quantum tomography [19–
25], among others [26,27]. In general, these methods are based
on the measurement of several POVMs on an ensemble of N

identically prepared copies of the state ρ to be estimated. The
experimentally acquired data is postprocessed by means of
statistical inference methods [28–31] to provide a physically
acceptable estimate ρ̃ of the unknown state.

In order to reduce the experimental complexity in the
determination of quantum states, quantum tomographic meth-
ods were initially designed to employ the smallest possible
number of measurement outcomes. Nevertheless, this number
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scales exponentially in the case of multipartite systems, which
makes quantum tomography unfeasible but in systems with
few components. This led to the search for new methods
[32–34] with a better scaling. Typically, these exploit a priori
information about the state to be estimated such as, for instance,
rank or purity.

Recently, quantum tomographic methods have been studied
from the point of view of the achievable accuracy as a function
of the ensemble size N . This is another costly resource in
experimental realizations. It has been noted that standard
quantum tomography of a single qubit has a rank-dependent
accuracy. The infidelity between a state and its estimate can
be used to quantify the accuracy of a tomographic method. In
this case, standard quantum tomography achieves an infidelity
that scales as O(1/

√
N ) and O(1/N ) for pure and mixed

states, respectively. The former resembles a classical behavior,
while the latter approaches the Gill-Massar [35] bound. This
establishes the highest possible accuracy achievable by means
of separable measurements on a given ensemble.

This unwanted feature of standard quantum tomography
can be overcome with the help of two-stage adaptive quantum
tomography for a qubit [36–38]. In the first stage, standard
quantum tomography is carried out on an ensemble of size
N0 and an estimate ρ̃0 is obtained. The eigenstates of this
estimate are then used to construct three new mutually unbiased
bases, which are subsequently employed to perform a second
stage of standard quantum tomography on an ensemble of size
N − N0 followed by the generation of a maximum likelihood
estimate ρ̃. This tomographic method attains an infidelity
that scales as O(1/N ) for all states. Furthermore, two-stage
adaptive quantum tomography becomes very close to the
Gill-Massar bound for several figures of merit for the accuracy
[39] such as, for instance, mean square error or Bures distance.
Besides, it has been proven that an adaptive method improves
quadratically the accuracy in the estimation of the spectrum of
a density matrix [40].
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Here, we present a generalization of the two-stage adaptive
quantum tomographic method to the case of a single qudit
and analyze its properties by means of analytical calculations
and numerical simulations. This is mainly motivated by the
need to improve the accuracy in the assessment of states
and quantum devices of higher dimensional systems that find
application in quantum information theory. We employ the
infidelity [41] between the unknown state ρ and its estimate
ρ̃ as figure of merit for the accuracy. This choice is dictated
by the agreement between the infidelity and the Bures distance
in the infinitesimal case [42]. Furthermore, the inverse of the
infidelity can be identified with the ensamble size required to
achieve a prescribed accuracy [37]. First, we calculate a Taylor
series expansion for the infidelity up to second order in the error
ρ − ρ̃ by means of the Fréchet derivative [43], which does not
requires a parametrization of quantum states. This expansion
shows clearly that the behavior of the infidelity depends on
the rank of the state to be estimated. For instance, in the case
of rank-1 states dominates the first-order term while for full
rank states dominates the second-order term. The expansion
also allows us to show that the first-order term vanishes for
any finite, arbitrary dimension d when standard tomography
for a qudit is carried out representing the generators of the
group SU(d ) in the eigenbasis of ρ. Then, we show that the
second-order term scales as O(1/N ) for all states. However,
such a tomography on the eigenbasis of ρ is impossible since ρ

is unknown. This leads to the two-stage adaptive tomography.
In the first stage, standard quantum tomography is performed
on the unknown state employing an ensemble of size N0.
After a linear inversion process, an estimate ρ̃0 is obtained
and diagonalized. The difference between the eigenvalues of
ρ̃0 and ρ scales as O(1/N0). Thereafter, the eigenstates of ρ̃0

are employed to represent the generators of the group SU(d ).
These are then measured in a second stage of standard quantum
tomography. This tomographic method does not cancel the
first-order term in the Taylor series expansion of the infidelity.
This, however, scales now as O[1/

√
(N − N0)N0]. With the

choice N0 = N/2, the first-order term scales akin to the the
second-order term, that is, as O(1/N ). Thereby, the two-stage
adaptive quantum tomographic method attains an infidelity
which scales as O(1/N ) for all states of a single qudit. We also
perform numerical simulations in a wide range of dimensions
to study the accuracy in the determination of the infidelity, the
impact of the choice of N0, and the role played by the rank of
the states to be estimated.

This article is organized as follows: In Sec. I, we briefly
recall the expansion of a single-qudit state in terms of the
generators of SU(d ). In Sec. II, we deduce the Taylor series
expansion of the infidelity employing the notion of Fréchet
derivative. In Sec. III, we introduce the two-stage adaptive
quantum tomographic method for a single qudit and study
its main properties. In Sec. IV, we illustrate the properties
of the method by means of numerical simulations addressing
the relevant cases of pure states, pure states affected by white
noise, and full-rank states. In Sec. V, we summarize, comment
possible experimental implementations and extensions of the
two-stage adaptive tomography, and conclude.

II. STATES OF A SINGLE QUDIT

States of a d-dimensional quantum system are mathemat-
ically described by means of positive semidefinite operators
with unitary trace. A representation of quantum states can be
obtained by means of the generalized Gell-Mann representa-
tion of the d2 − 1 Hermitian, traceless generators of the special
unitary group SU(d ) together with the identity operator.

The generators of SU(d ) are given by a set of d − 1 diagonal
operators

σ z
k =

√
2√

k(k + 1)

⎛
⎝ k∑

j=1

|j 〉〈j | − k|k + 1〉〈k + 1|
⎞
⎠, (1)

with k = 1, . . . , d − 1 and d(d − 1) antidiagonal operators
given by

σx
ij = |i〉〈j | + |j 〉〈i| (2)

and

σ
y

ij = −i(|i〉〈j | − |j 〉〈i|), (3)

with 1 � i < j � d. The set {|i〉} of states with i = 1, . . . , d −
1 is an arbitrary orthonormal basis. For sake of simplicity, these
operators can be labeled with a single index as

σ(j−1)2+2(i−1) = σx
ij , (4)

σ(j−1)2+2i−1 = σ
y

ij , (5)

σj 2−1 = σ z
j−1, (6)

where operations involving subindexes are carried out mod(d ).
Any quantum state ρ can be uniquely represented as

ρ = 1

d
I + 1

2

⎡
⎣∑

ij

(
Sx

ijσ
x
ij + S

y

ijσ
y

ij

) +
∑

k

Sz
kσ

z
k

⎤
⎦, (7)

where the d2 − 1 real coefficients {Sx
ij , S

y

ij , S
z
k} entering in

Eq. (7) are the average of the observables {σx
ij , σ

y

ij , σ
z
k } on

the state ρ, respectively. In an experimental implementation
of standard quantum tomography, each average is obtained by
projecting onto the eigenstates of the observable to be mea-
sured. Considering the eigenvalue problem σk|i, k〉 = λk

i |i, k〉,
the projection probabilities are given by pk

i = Tr(ρ|i, k〉〈i, k|)
and the averages by Sk = ∑

i λ
k
i p

k
i . These quantities are

estimated as p̃k
i = nk

i /Nk and S̃k = ∑
i λ

k
i p̃

k
i , where nk

i is
the number of projections onto the eigenstate |i, k〉 when
employing an ensemble of size Nk .

Assuming an ideal experiment, that is, an experiment where
the only source of error is the size N of the ensemble of
identically prepared copies, the projection probabilities exhibit
multinomial noise with covariance matrix given by

Cov
(
p̃k

i , p̃
k
j

) = 1

Nk

pk
i

[
δij − pk

j

]
, (8)

for k = 1, . . . , d2 − 1. Thereby, the variance associated to the
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estimation of the average of each observable becomes

Var
(
S̃x

ij

) = 1

Nx
ij

[
pz

i + pz
j − (

Sx
ij

)2
]
, (9)

Var
(
S̃

y

ij

) = 1

N
y

ij

[
pz

i + pz
j − (

S
y

ij

)2
]
, (10)

Var
(
S̃z

k

) = 1

Nz
k

[
2

∑k
n=1 pz

n + 2k2pz
k+1

k(k + 1)
− (

Sz
k

)2

]
, (11)

where pz
i = Tr(ρ|i〉〈i|) are the probabilities of measuring the

eigenstates of the operators σ z
k and Nx

ij , N
y

ij , and Nz
k are the

ensemble sizes used to measure the operators σx
ij , σ

y

ij , and
σ z

k , respectively. In what follows, we choose to estimate the
statistics associated to the generators employing the same
ensemble size, that is, Nx

ij = N
y

ij = Nz
k = N/(d2 − 1). From

Eqs. (9), (10), and (11), we see that the uncertainty in the
estimation of the averages {Sx

ij , S
y

ij , S
z
k}, described by the

elements of the covariance matrix, also depends on these
parameters, that is, the uncertainty in the estimation of the
parameters defining ρ depends on ρ itself.

From the Bienaymé-Chebyshev inequality,

p(|S̃i − Si | � α

√
Var(S̃i )) � 1 − 1

α2
, (12)

where α � 1, it can be seen that the error of the estimated
parameters scale as the square root of the variance,

S̃i − Si ∼
√

Var(S̃i ). (13)

For instance, the error is bounded by 5
√

Var(Ŝi ) with a
probability at least of 24/25.

The set of estimates {S̃x
ij , S̃

y

ij , S̃
z
k} leads to an estimate ρ̃ that

differs from ρ by an error operator � = ρ̃ − ρ. This traceless,
Hermitian operator is given by

� = 1

2

d2−1∑
i=1

(S̃i − Si )σi. (14)

The norm of this operator ||�|| =
√

Tr(�2) is

||�|| =
⎡
⎣1

2

d2−1∑
i=1

(S̃i − Si )
2

⎤
⎦

1/2

. (15)

Thereby, considering Eq. (13), the norm ||�|| of the error
operator scales approximately as O(1/

√
N ).

III. INFIDELITY

In order to study the tomographic precision, we employ
the infidelity as figure of merit. This is a simple and well-
motivated metric [41,42,44,45]. The infidelity between two
arbitrary states ρ and ρ̃ is defined by

I (ρ, ρ̃ ) = 1 − Tr(
√√

ρρ̃
√

ρ )2. (16)

The infidelity has several properties that motivate its use to
quantify the accuracy of a tomographic process. The Bures
metric B(ρ, ρ̃ ), a distance defined by the expression

B(ρ, ρ̃ )2 = 2[1 − Tr(
√√

ρρ̃
√

ρ)], (17)

agrees with the infidelity for infinitesimally close states [42].
The trace distance T (ρ, ρ̃ ) [37,46,47], given by the expression

T (ρ, ρ̃ ) = (1/2)Tr|ρ − ρ̃|, (18)

can be bounded by the infidelity as

1 −
√

1 − I (ρ, ρ̃ ) � 1
2 Tr|ρ − ρ̃| �

√
I (ρ, ρ̃ ), (19)

where |A| =
√

A†A. Furthermore, the inverse I (ρ, ρ̃ )−1 of the
infidelity can be related to the ensemble size required to reliably
distinguish two quantum states [37,48,49], allowing us to have
a notion of the ensemble size necessary to reach a prescribed
accuracy. Besides, the infidelity provides a simple analytical
picture. Nevertheless, the infidelity is not exempt of criticism
[46,47,50]. It has been shown that high-dimensional states
with very low infidelity might exhibit very different physical
properties, for instance, quantum discord.

Considering the infidelity between ρ and ρ̃ and assuming
that ρ is a rank-r density matrix, the infidelity becomes

I (ρ, ρ̃ ) = 1 − Tr
(√

ρ2
r + √

ρr�r

√
ρr

)2
, (20)

where ρr and �r are restrictions of ρ and � to the r-
dimensional eigenspace of ρ, respectively. Since the norm of
� decreases as O(1/

√
N ), we can develop the infidelity in a

Taylor series expansion. The Taylor series of a function f of
bounded operators is given by

f (A + B ) = f (A) +
∞∑

m=1

1

m!
Dmf (A)([B]m), (21)

where Dmf (A)([B]m) is the mth directional Fréchet deriva-
tive of f (A) along B [43]. Let us note that this expansion
does not depend on any parametrization of density matrices.
Considering that f (A) = √

A, the infidelity becomes

I (ρ, ρ̃ ) = 1 − Tr
[
f

(
ρ2

r + √
ρr�r

√
ρr

)]2
. (22)

Let {λi} be the nonvanishing eigenvalues of ρr with eigenvec-
tors {|λr

j 〉}. Thus, the first and second derivatives of f are (see
Appendix A)

[
Df

(
ρ2

r

)(√
ρr�r

√
ρr

)]
ij

=
√

λiλj

〈
λr

i

∣∣�r

∣∣λr
j

〉
λi + λj

(23)

and [
D2f

(
ρ2

r

)
([

√
ρr�r

√
ρr ]2)

]
ij

= −
√

λiλj

λi + λj

r∑
k=1

λk

〈
λr

i

∣∣�r

∣∣λr
k

〉〈
λr

k

∣∣�r

∣∣λr
j

〉
(λi + λk )(λk + λj )

. (24)

Let {|λi〉} the eigenvectors of ρ, where the states with index i =
1, . . . , r are the non-null eigenvectors of ρ and the states with
i = r + 1, . . . , d are orthonormal states acting onto the kernel
of ρ. Thereby, the Taylor series expansion of the infidelity up
to second order is

I (ρ, ρ̃ ) =
d∑

i=r+1

〈λi |�|λi〉 + 1

2

r∑
i,k=1

|〈λi |�|λk〉|2
λi + λk

− 1

4

[ d∑
i=r+1

〈λi |�|λi〉
]2

+ O
(||�||3). (25)
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Let us note that this series holds for quantum states of arbitrary
rank. In the next section, we use this approximated expression
for the infidelity to extend the two-stage adaptive quantum
tomographic method to the case of a single qudit.

IV. TWO-STAGE ADAPTIVE QUANTUM TOMOGRAPHY
OF A QUDIT

The previous expression for the Taylor series of the infi-
delity, Eq. (25), exhibits a behavior that depends on the rank
of the quantum state. For instance, for a rank-1 state, the
first-order term dominates and thus the infidelity scales as
O(1/

√
N ). For a full-rank quantum state, the first-order term

vanishes and the infidelity scales as O(1/N ).
This behavior of the infidelity can be corrected by elim-

inating the influence of the first-order term. This depends
on the diagonal coefficients of � in the kernel of ρ. This
suggests performing standard tomography in a basis that agrees
with the eigenstates of ρ, that is, replacing the set {|i〉} (with
i = 1, . . . , d) by {|λi〉} (with i = 1, . . . , d) in Eqs. (1), (2), and
(3). The first-order term can be cast as

d∑
i=r+1

〈λi |�|λi〉 = 1

2

d2−1∑
j=1

d∑
i=r+1

(S̃i − Si )〈λi |σj |λi〉. (26)

The nondiagonal generators vanish from this expression since
it involves only diagonal parts. Thus,

d∑
i=r+1

〈λi |�|λi〉 = 1

2

d−1∑
j=1

d∑
i=r+1

(
S̃z

i − Sz
i

)〈λi |σ z
j |λi〉. (27)

This expression can be separated into two contributions:

d∑
i=r+1

〈λi |�|λi〉 = 1

2

r−1∑
j=1

d∑
i=r+1

(
S̃z

i − Sz
i

)〈λi |σ z
j |λi〉

+1

2

d−1∑
j=r

d∑
i=r+1

(
S̃z

i − Sz
i

)〈λi |σ z
j |λi〉. (28)

The first term at the right-hand side vanishes. The diagonal
generators entering in this term are lineal combinations of
projectors onto the eigenstates of ρ, that is, the set {|λi〉} with
i = 1, . . . , r . Thereby, the expectation values 〈λi |σ z

j |λi〉 with
j = 1, . . . , r − 1 and i = r + 1, . . . , d vanish. The second
term at the right-hand side contains the difference S̃z

i − Sz
i ,

which is of the order of magnitude of the square root of the
variance. Replacing pz

n by λn in Eq. (11), this becomes

Var(S̃z
i ) = 1

Ni

[
2

i(i + 1)
− (

Sz
i

)2
]

(29)

for i � r . In this particular case, we have that

(Sz
i )2 = 2

i(i + 1)

⎛
⎝ i∑

j=1

λj − iλi+1

⎞
⎠

2

, (30)

or equivalently

(
Sz

i

)2 = 2

i(i + 1)
, (31)

and thus the variance cancels. Consequently, the first-order
term entering in the Taylor series of the infidelity vanishes.

Standard tomography performed on the eigenbasis of ρ

eliminates the first-order term of the Taylor series expansion
of the infidelity. Consequently, the infidelity scales as O(1/N )
for all quantum states. However, since the quantum state
ρ is unknown, this tomographic method cannot be carried
out. Nevertheless, this result suggests a workaround. In a
first stage, standard quantum tomography is applied on an
ensemble of size N0. This provides an estimate ρ̃0 that can
be diagonalized to obtain its eigenbasis. In a second stage,
the generators of SU(d ) are adapted to the eigenbasis of ρ̃0,
that is, represented in the eigenbasis of ρ̃0, and employed to
perform standard quantum tomography on an ensemble of
size N − N0. Thereafter, a new estimate ρ̃ is obtained by
postprocessing all experimentally acquired data via Maximum
likelihood estimation [28]. This is the two-stage adaptive
quantum tomographic method for a single qudit.

Let us now analyze the scaling of the infidelity as function
of N0 and N provided by this method. In the two-stage
adaptive tomography, the first-order term of the Taylor series
for the infidelity, Eq. (25), does not vanish. This is because the
eigenvectors of ρ̃0 are estimates of the eigenvectors of ρ. The
eigenvectors {|λ̃0

i 〉} of ρ̃0 can be represented as a rotation of
those of ρ, that is, ∣∣λ̃0

i

〉 = e−i�0 |λi〉, (32)

where �0 is a Hermitian matrix. The error δi in the estimation
of the eigenvalue λi is given by λ̃0

i = λi + δi . Then, the spectral
decomposition of the estimate ρ̃0,

ρ̃0 =
d∑

i=1

λ̃0
i

∣∣λ̃0
i

〉〈
λ̃0

i

∣∣, (33)

becomes

ρ̃0 = ρ +
d∑

i=1

(δi |λi〉〈λi | + iλi[�0, |λi〉〈λi |])

+
d∑

i=1

iδi[�0, |λi〉〈λi |] + O(||�0||2), (34)

where the Baker-Campbell-Hausdorff formula has been ap-
plied to the unitary transformation entering in Eq. (32). Since
||�0|| = ||ρ̃0 − ρ|| scales in the worst case as O(1/

√
N0), we

have that δi ∼ O(1/
√

N0) or ||�0|| ∼ O(1/
√

N0). Since only
the eigenvectors will intervene in the protocol, we have that

||�0|| ∼ O(1/
√

N0). (35)

Thereby, the inner product between the eigenvectors of ρ and
their estimates obtained from ρ̃0 is∣∣〈λ̃0

i

∣∣λj

〉∣∣2 = δij

(
1 − 〈λi |�2

0|λi〉
)

+ |〈λj |�0|λi〉|2 + O(||�0||3). (36)

Then, the probability p0
i = 〈λ̃0

i |ρ|λ̃0
i 〉 of projecting the

unknown state ρ onto the eigenstate |λ̃0
i 〉 of ρ̃0 is
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given by

p0
i = λi − 1

2 〈λi |[�0, [�0, ρ]]|λj 〉 + O(||�0||3). (37)

Therefore, in the second stage of the tomographic method, both
terms entering at the right-hand side of Eq. (28) do not vanish.
In this step, the variance is of the order of O[1/(N − N0)]
since the measurements are performed on a ensemble of size
N − N0. The expected values of the generators {σ z

j }, with j =
1, . . . , r − 1 onto states {|λi〉}, with i = r + 1, . . . , d , do not
vanish; instead

〈
λ̃0

i

∣∣σ z
j

∣∣λ̃0
i

〉 =
√

2√
j (j + 1)

j∑
k=1

∣∣〈λ̃0
i

∣∣λk

〉∣∣2

− j
√

2√
j (j + 1)

∣∣〈λ̃0
i

∣∣λj+1
〉∣∣2

. (38)

This expression is a linear combination of the inner products
in Eq. (36) and therefore we have that〈

λ̃0
i

∣∣σ z
j

∣∣λ̃0
i

〉 ∼ O(1/N0). (39)

Thereby, the first term at the right-hand side of Eq. (28) scales
as O(1/N0

√
N − N0), since this term is the multiplication of

Eq. (38) and S̃z
i − Sz

i ∼ O(1/
√

N − N0). The parameters Sz
i

of ρ, with i = r + 1, . . . , d, on the basis of eigenstates of ρ̃0

are

(
Sz

i

)2 = 2

i(i + 1)

⎛
⎝ i∑

j=1

p0
j − ip0

i+1

⎞
⎠

2

, (40)

which employing Eq. (37) become

(
Sz

i

)2 = 2

i(i + 1)
+ O(1/N0). (41)

Replacing this result in Eq. (29), it can be seen that the variance
Var(S̃z

i ) scale as O[1/(N − N0)N0], for i = r + 1, . . . , d.
Thereby, the second term of Eq. (28) is of the order of
O[1/

√
N0(N − N0)]. Therefore, the first-order term of the

Taylor series expansion of the infidelity scales as

d∑
i=r+1

〈λi |�|λi〉 ∼ O[1/
√

N0(N − N0)], (42)

which is similar to the scaling of the second-order term
in the Taylor series. Thereby, the two-stage adaptive quan-
tum tomographic method attains an infidelity that scales as
O[1/

√
(N − N0)N0] for any quantum state. In spite of the

increase in accuracy, the estimates provided by two-stage adap-
tive quantum tomography might not be physically acceptable.
Thus, the method must be complemented with a postprocessing
stage by means of an statistical inference method, such as, for
instance, maximum likelihood estimation [28].

The choice of N0 plays a key role in the performance of
the two-stage adaptive quantum tomography. In the case of a
qubit, it has been proposed to choose the preliminary ensemble
as a fraction [37] or a power [36] of the total sample size N ,
that is, N0 = aN or N0 = Nb with b � 2/3. The first choice
leads to an infidelity that scales as O[1/

√
a(1 − a)N ], while

with the second choice the infidelity scales as O(1/N (1+b)/2).

FIG. 1. Mean infidelity Ī as a function of ensemble sizeN for two-
stage adaptive tomography with N0 = N/2 (blue squares), N0 = N 2/3

(green triangles), and standard quantum tomography (orange circles),
for several dimensions d . Average considers uniformly distributed
pure states. For d = 2, 3 and d = 4 average infidelity was obtained
from a sample of 5 × 103 states. For d = 6, 8 and d = 10 average
infidelity was obtained from a sample of 103 states.

In the next section, we study the impact of the choices N0 =
aN and N0 = Nb in the performance of the method by means
of numerical simulations.

V. NUMERICAL SIMULATIONS

In order to study the properties of the two-stage adaptive
quantum tomography, we have carried out numerical simula-
tions. In a given dimension d, we have uniformly generated
(Haar measure) quantum states. Estimates of these states
are obtained by means of the two-stage adaptive quantum
tomography considering a multinomial distribution for the
measurement results and an ensemble size N . Thereafter, we
calculate the average Ī of the infidelity Eq. (16) as a function
of d and N .

Figure 1 shows log-log graphs for the mean infidelity Ī

obtained in the determination of pure states for dimensions
d = 2, 3, 4, 6, 8 and d = 10 as a function of N . Squares and
triangles indicate the mean infidelity obtained by means of two-
stage adaptive quantum tomography with N0 = N/2 and N0 =
N2/3, respectively. Circles indicate the mean infidelity obtained
by standard quantum tomography. Dashed lines correspond
to the best linear fit. Figure 1 shows that the slope of the
mean infidelity Ī provided by two-stage adaptive tomography
with N0 = N/2 is approximately twice the slope of the mean
infidelity achieved by standard quantum tomography. This in-
dicates that two-stage adaptive quantum tomography provides
a quadratic reduction in the mean infidelity when compared to
standard quantum tomography. This result is in agreement with
our previous estimate for the scaling of the infidelity for two-
stage adaptive quantum tomography. Thus, two-stage adaptive
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FIG. 2. Mean infidelity Ī as a function of ensemble sizeN for two-
stage adaptive tomography with N0 = N/2 (blue squares), N0 = N 2/3

(green triangles), and standard quantum tomography (orange circles),
for several dimensions d . Average considers uniformly distributed
states of rank r = [d/2]. For d = 2, 3 and d = 4 average infidelity
was obtained from a sample of 5 × 103 states. Ford = 6, 8 andd = 10
average infidelity was obtained from a sample of 103 states.

tomography with N0 = N/2 achieves a higher accuracy in
the determination of rank-1 quantum states when compared
to standard tomography. The case N0 = N2/3 also leads to an
improvement with respect to standard tomography. However,
for this particular choice the improvement becomes marginal as
the dimension increases in the inspected interval of ensamble
size N .

Figure 2 illustrates the behavior of the average infidelity
Ī as a function of N in the case of quantum states with rank
r = [d/2]. Two-stage adaptive tomography with N0 = N/2
provides the best accuracy, as in the case of pure states, albeit
the gain in accuracy is lower than the obtained in the case
of pure states. Furthermore, as the dimension d increases the
gain in accuracy diminishes and the three tomographic methods
tend to provide a similar accuracy.

Figure 3 displays the behavior of the mean infidelity for
the case of full-rank states. Here, the dominant feature is
that standard tomography and two-stage adaptive tomography
provide a similar accuracy for all dimensions and ensemble
sizes. In particular, the mean infidelity scales approximately
as O(1/N ) for both tomographic methods. The choices N0 =
N2/3 and N0 = N/2 seems to perform marginally better than
standard tomography in the inspected interval of ensemble
sizes. Nevertheless, the linear fits indicate that for larger
ensemble sizes the choice N0 = N/2 might provide a non-
negligible improvement over standard tomography.

Finally, in Fig. 4 we have studied the case of full-rank,
highly pure states of the form

ρd = λ|ψ〉〈ψ | + 1 − λ

d
I (43)

FIG. 3. Mean infidelity Ī as a function of ensemble size N for
two-stage adaptive tomography with N0 = N/2 (blue squares), N0 =
N 2/3 (green triangles), and standard quantum tomography (orange
circles), for several dimensions d . Average considers uniformly
distributed full-rank states. For d = 2, 3 and d = 4 average infidelity
was obtained from a sample of 5 × 103 states. Ford = 6, 8 andd = 10
average infidelity was obtained from a sample of 103 states.

for λ = 0.99. This class of states is important due to the fact that
it is usually employed to model errors in certain experiments.
As Fig. 4 illustrates, for lower dimensions the choices N0 =
N/2 andN0 = N2/3 achieve a similar accuracy, which is higher
than the accuracy achieved by standard quantum tomography.
As the dimension increases and several eigenvalues decrease
in magnitude, two-stage adaptive tomography with N0 = N/2
leads to better results than standard tomography. However, as
the dimension increases, the improvement becomes marginal
within the interval of inspected sample sizes.

We have also estimated the variance of the mean infidelity.
This is characterized by a very small value, which makes
difficult its depiction. Instead, we have also studied median
infidelity and interquartile range (see Appendix B). Mean and
median have a similar behavior while interquartile range is
of the same order of magnitude as mean or median infidelity.
With the exception of dimension d = 2 and full-rank states
in all dimensions, the choice N0 = N/2 achieves a median
infidelity whose interquartile range does not overlap with
the interquartile range of the median infidelity provided by
standard quantum tomography. Thus, 75% of all reconstructed
states are much better estimated by two-stage standard quan-
tum tomography than standard quantum tomography.

Thus, numerical simulations indicate that the choice N0 =
N/2 provides the best results in two-stage adaptive tomog-
raphy. Furthermore, this tomographic methods provides a
quadratic improvement in the accuracy when compared to
standard tomography. This result seems to hold for states of
rank smaller than or equal to [d/2]. Thereby, in the absence
of a priori information about the rank, the choice N0 = N/2
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FIG. 4. Mean infidelity Ī as a function of ensemble sizeN for two-
stage adaptive tomography with N0 = N/2 (blue squares), N0 = N 2/3

(green triangles), and standard quantum tomography (orange circles),
for several dimensions d . Average considers pure states uniformly
distributed affected by white noise Eq. (43) with λ = 0.99. For d =
2, 3 and d = 4 average infidelity was obtained from a sample of 5 ×
103 states. For d = 6, 8 and d = 10 average infidelity was obtained
from a sample of 103 states.

should be employed in the determination of the states of a
single qudit by means of two-stage adaptive tomography.

VI. CONCLUSIONS

In this article, we have extended the validity of two-stage
quantum tomography to the case of a single qudit. In a
first stage, standard quantum tomography is carried out on a
ensemble of size N0. After linear inversion, an estimate ρ̃0

is obtained and diagonalized. The eigenbasis of ρ̃0 is then
employed to represent the generators of SU(d ), which are
then subsequently used in a second stage of standard quantum
tomography on an ensemble of size N − N0. We have shown
that the estimate ρ̃ provided by this latter stage leads to an
infidelity that scales as O[1/

√
N0(N − N0)] for all quantum

states. Numerical simulations indicate that the choice N0 =
N/2 attains an accuracy of the order of O(1/N ) that is higher
than the accuracy achieved by standard quantum tomography.
Largest performance gain is obtained for low-rank states,
where a quadratic improvement of the infidelity is observed.
According to the lineal fits for the mean infidelity, for a large
enough ensemble size N two-stage adaptive tomography leads
to a higher accuracy than standard tomography. Nevertheless,
our numerical experiments indicate that for a small ensemble
size N two-stage adaptive tomography and standard quantum
tomography exhibit a similar performance. Here a word of
caution is necessary. Our calculations are based on the Taylor
series expansion of the infidelity, which requires a large
ensemble size. For a small ensemble size, a different approach
is required.

The choice N0 = N/2 seems to perform well in the nu-
merical simulations. It is, however, not necessarily optimal. It
has been shown that in the case of a single qubit, the choice
N0 = N/3 allows two-stage quantum tomography to saturate
the Gill-Massar bound for several figures of merit for the
accuracy, such as, for instance, mean square error, mean square
Bures distance, and weighted mean square error. Therefore, it
is plausible that the performance gain attained by two-stage
adaptive quantum tomography can be further increased by
optimizing N0 for every dimension.

The dimension of quantum systems can be conceived as
a valuable resource for information processing since higher
dimensional systems exhibit several advantages in protocols
of quantum computation and quantum communications. This
drives the need to design accurate tomographic methods for
higher dimensional quantum systems. In this scenario, our
results find direct application. In recent years, higher dimen-
sional systems have been experimentally generated, for in-
stance, 1024-dimensional photonic states [51], 16-dimensional
photonic states [52], entangled photons with high angular
momenta [53], eight-photon entanglement [54], and 14-qubit
entanglement [55]. In the case of photonic systems, higher
dimensional quantum systems are generated by means of
single photons manipulated with the help of optical diffractive
elements such as physical slits [56] or spatial light modulators
(SLM). A sequence of SLMs allows us to implement projective
measurements on a d-dimensional photonic qudit [18,57],
which can be electronically controlled in real time. This makes
feasible an experimental implementation of two-stage adaptive
quantum tomography in higher dimensions.

We have employed the infidelity as a measure of the
accuracy of the tomographic scheme. It is possible, however,
to extend our analysis to other figures of merits, for instance,
the family of functionals defined by the Weighted mean square
error [39].

Finally, we would like to comment on the extension of two-
stage adaptive quantum tomography to the case of multiqudit
systems. Standard tomography can be extended to the case of
multipartite systems considering a decomposition on tensor
products of local SU(d ) generators [11], that is,

ρ = 1

2n

d2−1∑
i0,...,in=0

Si1···inσi1 ⊗ · · · ⊗ σin , (44)

where σ0 = 2I/d and {Si1...in} are the averages of the lo-
cal observables {σi1 ⊗ · · · ⊗ σin}. Therefore, by performing
measurements on these d2n observables, the state ρ can be
reconstructed. The main characteristic and appeal of this
tomographic scheme is that it only requires local measure-
ments on each subsystem. Analogously, the two-stage adaptive
tomography could be extended to multipartite systems. First,
an estimate is obtained from a fraction of the total ensem-
ble by local standard multipartite tomography following the
previous equation. Thereafter, a second standard multipartite
tomography in the remaining ensemble is carried out. Here, the
measurement operators are adapted to the base of eigenstates of
the preliminary estimate. However, this simple generalization
leads to a significant drawback: The tomographic scheme is
no longer local. Since the state to be reconstructed might
be entangled, the method would require measuring on bases
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containing entangled states. This is precisely what standard
quantum tomography avoids. Clearly, a generalization of stan-
dard multipartite quantum tomography to two-stage adaptive
multipartite standard quantum tomography requires further
consideration [58].
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APPENDIX A: TAYLOR SERIES EXPANSION
OF INFIDELITY

In this section, we calculate the second-order approximation
of the infidelity by resorting to the Fréchet derivative. The
infidelity between two quantum states ρ and ρ̃ is defined by
the expression

I (ρ, ρ̃ ) = 1 − Tr(
√√

ρρ̃
√

ρ )2. (A1)

The main advantage of resorting to the Fréchet derivative is
that this does not require a particular parametrization of the
space of density matrices.

Let us consider that the density matrix ρ has rank r � d and
that the state ρ̃ is an infinitesimal perturbation of ρ, that is,

ρ̃ = ρ + �, (A2)

where � is a Hermitian and traceless matrix such that ||�|| =√
Tr(�2) � 1. The operator � describes the error in a tomo-

graphic process. In the case of standard quantum tomography,
we have that the error operator is given by

� = ρ̃ − ρ (A3)

= 1

d
I + 1

2

d2−1∑
i=1

S̃iσi −
⎛
⎝ 1

d
I + 1

2

d2−1∑
i=1

Siσi

⎞
⎠ (A4)

= 1

2

d2−1∑
i=1

(S̃i − Si )σi. (A5)

The norm of the error operator becomes

||�|| =
√

Tr(�2) (A6)

=
⎡
⎣1

4

d2−1∑
i,j=1

(S̃i − Si )(S̃j − Sj )Tr
(
σiσj

)⎤⎦
1/2

(A7)

=
⎡
⎣1

2

d2−1∑
i=1

(S̃i − Si )
2

⎤
⎦

1/2

(A8)

∼ O(1/
√

N ). (A9)

Without loss of generality, we can write ρ as a direct sum
between the subspace with rank r and a d − r null matrix

�d−r , that is,

ρ = ρr ⊕ �d−r =
[
ρr �r,d−r

�d−r,r �d−r

]
. (A10)

Similarly,

� =
[
�r �r,d−r

�d−r,r �d−r

]
, (A11)

where �d−r is positive semidefinite and Tr(�r ) = −Tr(�d−r ).
Thus,

√
ρ�

√
ρ =

[ √
ρr �r,d−r

�d−r,r �d−r

][
�r �r,d−r

�d−r,r �d−r

]

×
[√

ρr �r,d−r

�d−r,r �d−r

]
(A12)

=
[√

ρr�r
√

ρr �r,d−r

�d−r,r �d−r

]
(A13)

= √
ρr�r

√
ρr ⊕ �d−r . (A14)

Thereby, the infidelity becomes

1 − I (ρ, ρ̃ ) = Tr(
√

ρ2 + √
ρ�

√
ρ)2 (A15)

= Tr
(√

ρ2
r ⊕ �d−r + √

ρr�r

√
ρr ⊕ �d−r

)2

(A16)

= Tr
(√

ρ2
r + √

ρr�r

√
ρr

)2
. (A17)

The infidelity between ρ and ρ + � only depends on the
non-null eigenspace of ρ. Let us note that ρr + �r is not
a quantum state, but this will not influence our arguments.
Defining f (A) := √

A, we can write the infidelity as

I (ρ, ρ̃ ) = 1 − Tr
[
f

(
ρ2

r + √
ρr�r

√
ρr

)]2
. (A18)

Now, we can approximate F (ρ, ρ + �) by performing the
Taylor expansion of f (A) around B,

f (A + B ) = f (A) +
∞∑

m=1

1

m!
Dmf (A)([B]m), (A19)

where Dmf (A)([B]m) is the mth directional Fréchet derivative
of f (A) along B, which can be calculated as

Df (U )(V ) = d

dt
f (U + tV )

∣∣∣∣
t=0

. (A20)

In our case, A = ρ2
r and B = √

ρr�r
√

ρr . It should be noted
that this expansion does not depend on any parametrization of
density matrices. The first and second derivatives of f can be
obtained from the product rule

Df 2(A)(B ) = D[ff ](A)(B ) (A21)

= Df (A)(B )f (A) + f (A)Df (A)(B ). (A22)

Since Df 2(A)(B ) = B, we obtain that

Df (A)(B )
√

A +
√

ADf (A)(B ) = B. (A23)

Let us now consider {|ai〉} the basis of eigenvectors of A and
{ai} the corresponding eigenvalues of A, with i = 1, ..., r ,
where r is the dimension of A, which in this case is equal
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to rank of ρ. Expanding on this basis, we have

r∑
j=1

([Df (A)(B )]ij
√

aj δjk + √
aiδij [Df (A)(B )]jk ) = Bik,

(A24)

√
ak[Df (A)(B )]ik + √

ai[Df (A)(B )]ik = Bik, (A25)

(
√

ai + √
ak )[Df (A)(B )]ik = Bik. (A26)

Then,

[Df (A)(B )]ik = Bik√
ai + √

ak

. (A27)

Since A = ρ2
r is full rank, there is no indetermination in the

derivative. For the second derivative, we use the product rule
again,

D2f 2(A)(B )(C)

= D
[
Df 2(A)(B )

]
(C) (A28)

= D[Df (A)(B )f (A) + f (A)Df (A)(B )](C) (A29)

= D2f (A)(B )(C)f (A) + Df (A)(B )Df (A)(C)

+Df (A)(C)Df (A)(B ) + f (A)D2f (A)(B )(C) (A30)

= D2f (A)(B )(C)
√

A + Df (A)(B )Df (A)(C)

+Df (A)(C)Df (A)(B ) +
√

AD2f (A)(B )(C). (A31)

Using D2f 2(A)(B )(C) = 0 and writing per component,

0 =
r∑

j=1

(
[D2f (A)(B )(C)]ij

√
aj δjk

+ Bij√
ai + √

aj

Cjk√
aj + √

ak

+ Cij√
ai + √

aj

Bjk√
aj + √

ak

+√
aiδij [D2f (A)(B )(C)]jk

)
(A32)

= √
ak[D2f (A)(B )(C)]ik + √

ai[D
2f (A)(B )(C)]ik

+
r∑

j=1

(
Bij√

ai + √
aj

Cjk√
aj + √

ak

+ Cij√
ai + √

aj

Bjk√
aj + √

ak

)
(A33)

= (
√

ai + √
ak )[D2f (A)(B )(C)]ik

+
r∑

j=1

(
Bij√

ai + √
aj

Cjk√
aj + √

ak

+ Cij√
ai + √

aj

Bjk√
aj + √

ak

)
. (A34)

Then, the second derivative is

[D2f (A)(B )(C)]ik

= − 1√
ai + √

ak

r∑
j=1

(
Bij√

ai + √
aj

Cjk√
aj + √

ak

+ Cij√
ai + √

aj

Bjk√
aj + √

ak

)
. (A35)

From A = ρ2
r and B = √

ρr�r
√

ρr , we get

ai = λ2
i , Bij = √

λiλj

〈
λr

i

∣∣�r

∣∣λr
j

〉
, (A36)

where {λi} are eigenvalues of ρr with eigenvectors {|λr
j 〉}, with

i = 1, . . . , r . Thereby, the first and second derivatives are

[
Df

(
ρ2

r

)
(
√

ρr�r

√
ρr )

]
ij

=
√

λiλj

〈
λr

i

∣∣�r

∣∣λr
j

〉
λi + λj

(A37)

and

[
D2f

(
ρ2

r

)
([

√
ρr�r

√
ρr ]2)

]
ij

= −2
√

λiλj

λi + λj

r∑
k=1

λk

〈
λr

i

∣∣�r

∣∣λr
k

〉〈
λr

k

∣∣�r

∣∣λr
j

〉
(λi + λk )(λk + λj )

. (A38)

Thereby, the function f is up to second order given by

[
f

(
ρ2

r + √
ρr�r

√
ρr

)]
ij

= [
f

(
ρ2

r

)]
ij

+ [
Df

(
ρ2

r

)
(
√

ρr�r

√
ρr )

]
ij

+ 1

2

[
D2f

(
ρ2

r

)
([

√
ρr�r

√
ρr ]2)

]
ij

+ O(||�r ||3) (A39)

= λiδij +
√

λiλj

〈
λr

i

∣∣�r

∣∣λr
j

〉
λi + λj

−
√

λiλj

λi + λj

r∑
k=1

λk

〈
λr

i

∣∣�r

∣∣λr
k

〉〈
λr

k

∣∣�r

∣∣λr
j

〉
(λi + λk )(λk + λj )

+ O(||�r ||3).

(A40)

Taking the trace,

Tr
[
f

(
ρ2

r + √
ρr�r

√
ρr

)]
= 1 + 1

2

r∑
i=1

〈
λr

i

∣∣�r

∣∣λr
i

〉

− 1

2

r∑
i,k=1

λk

∣∣〈λr
i

∣∣�r

∣∣λr
k

〉∣∣2

(λi + λk )2
+ O(||�r ||3). (A41)

The last equation can be rewritten in term of the eigenvectors
{|λi〉} of ρ, where the states with index i = 1, . . . , r are the
non-null eigenvectors of ρ and the states with i = r + 1, . . . , d

are orthonormal states acting onto the kernel of ρ. Let us
note that 〈λr

i |�r |λr
k〉 = 〈λi |�|λk〉. Then, the first-order term
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becomes

r∑
i=1

〈
λr

i

∣∣�r

∣∣λr
i

〉 =
r∑

i=1

〈λi |�|λi〉 (A42)

= Tr(�) −
d∑

i=r+1

〈λi |�|λi〉 (A43)

= −
d∑

i=r+1

〈λi |�|λi〉. (A44)

Since � is Hermitian, the second-order term can be rewritten
as

r∑
i,k=1

λk

(λi + λk )2

∣∣〈λr
i

∣∣�r

∣∣λr
k

〉∣∣2

=
r∑

i,k=1

λk|〈λi |�|λk〉|2
(λi + λk )2

(A45)

= 1

2

r∑
i,k=1

[
λk|〈λi |�|λk〉|2

(λi + λk )2
+ λk|〈λi |�|λk〉|2

(λi + λk )2

]
(A46)

= 1

2

r∑
i,k=1

[
λk|〈λi |�|λk〉|2

(λi + λk )2
+ λi |〈λi |�|λk〉|2

(λk + λi )2

]
(A47)

= 1

2

r∑
i,k=1

λk + λi

(λi + λk )2
|〈λi |�|λk〉|2 (A48)

= 1

2

r∑
i,k=1

|〈λi |�|λk〉|2
λi + λk

. (A49)

Therefore,

Tr
[
f

(
ρ2

r + √
ρr�r

√
ρr

)]
= 1 − 1

2

d∑
i=r+1

〈λi |�|λi〉

− 1

4

r∑
i,k=1

|〈λi |�|λk〉|2
λi + λk

+ O(||�||3). (A50)

Thus, the infidelity is up to second order given by the expres-
sion

I (ρ, ρ̃ ) = 1 −
[

1 − 1

2

d∑
i=r+1

〈λi |�|λi〉

− 1

4

r∑
i,k=1

|〈λi |�|λk〉|2
λi + λk

+ O(||�||3)

]2

(A51)

=
d∑

i=r+1

〈λi |�|λi〉 + 1

2

r∑
i,k=1

|〈λi |�|λk〉|2
λi + λk

− 1

4

[
d∑

i=r+1

〈λi |�|λi〉
]2

+ O(||�||3). (A52)

FIG. 5. Median infidelity Ī as a function of ensemble size N for
two-stage adaptive tomography with N0 = N/2 (blue squares), N0 =
N 2/3 (green triangles), and standard quantum tomography (orange
circles), for several dimensions d . The median considers uniformly
distributed pure states. For d = 2, 3 and d = 4 median infidelity was
obtained from a sample of 5 × 103 states. For d = 6, 8 and d = 10
median infidelity was obtained from a sample of 103 states.

FIG. 6. Median infidelity Ī as a function of ensemble size N for
two-stage adaptive tomography with N0 = N/2 (blue squares), N0 =
N 2/3 (green triangles), and standard quantum tomography (orange
circles), for several dimensions d . The median considers uniformly
distributed states of rank r = [d/2]. For d = 2, 3 and d = 4 median
infidelity was obtained from a sample of 5 × 103 states. For d = 6, 8
and d = 10 median infidelity was obtained from a sample of 103

states.
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FIG. 7. Median infidelity Ī as a function of ensemble size N for
two-stage adaptive tomography with N0 = N/2 (blue squares), N0 =
N 2/3 (green triangles), and standard quantum tomography (orange
circles), for several dimensions d . The median considers uniformly
distributed full-rank states. For d = 2, 3 and d = 4 median infidelity
was obtained from a sample of 5 × 103 states. Ford = 6, 8 andd = 10
median infidelity was obtained from a sample of 103 states.

For a low-rank state, the linear term in the expansion of the
infidelity dominates,

I (ρ, ρ̃ ) =
d∑

i=r+1

〈λi |�|λi〉 + O(||�||2). (A53)

Otherwise, for a full-rank density matrix, the first-order term
vanishes because ρ does not have a null subspace. In this case,
the approximation becomes up to second order

I (ρ, ρ̃ ) = 1

2

d∑
i,k=1

|〈λi |�|λk〉|2
λi + λk

+ O(||�||3). (A54)

APPENDIX B: MEDIAN AND INTERQUARTILE RANGE

Figures 5–8 show log-log graphics for the median infidelity
obtained from simulations. Squares and triangles indicate the

FIG. 8. Median infidelity Ī as a function of ensemble size N for
two-stage adaptive tomography with N0 = N/2 (blue squares), N0 =
N 2/3 (green triangles), and standard quantum tomography (orange
circles), for several dimensions d . The median considers pure states
uniformly distributed affected by white noise Eq. (43) with λ = 0.99.
For d = 2, 3 and d = 4 median infidelity was obtained from a sample
of 5 × 103 states. For d = 6, 8 and d = 10 median infidelity was
obtained from a sample of 103 states.

median infidelity obtained by means of two-stage adaptive
tomography with N0 = N/2 and N0 = N2/3, respectively.
Circles indicate the median infidelity obtained by standard
quantum tomography. Filled areas are the interquartile range,
that is, the difference between 75th and 25th percentiles. The
interquartile range is a measure of the dispersion of the data.

Mean and median have a similar behavior while interquar-
tile range is of the same order of magnitude than mean or
median infidelity. With the exception of dimension d = 2
and full-rank states in all dimensions, the choice N0 = N/2
provides a median infidelity whose interquartile range does not
overlap with the interquartile range of the median infidelity
provided by standard quantum tomography. Thus, 75% of
all reconstructed states are much better estimated by two-
stage standard quantum tomography than standard quantum
tomography.
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