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Hard optimization problems are often approached by finding approximate solutions. Here, we highlight the
concept of proportional sampling and discuss how it can be used to improve the performance of stochastic
algorithms for optimization. We introduce an NP-Hard problem called Max-Haf and show that Gaussian boson
sampling (GBS) can be used to enhance any stochastic algorithm for this problem. These results are applied
by enhancing the random search, simulated annealing, and greedy algorithms. With numerical simulations, we
confirm that all algorithms are improved when employing GBS, and that a GBS-enhanced random search performs
the best despite being the one with the simplest underlying classical routine.
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In this unique time in history, we are witnessing the
emergence of the first generation of quantum computers. The
so-called noisy intermediate-scale quantum (NISQ) era [1]
signals the first time that quantum devices capable of out-
performing classical computers at specific tasks will become
available for public use. With universal fault-tolerant quantum
computing still a long road ahead, short-term focus has shifted
to identifying the problems that current quantum devices
can solve more efficiently than classical computers, without
necessarily placing emphasis on their practical applications
[2–11].

One such example is boson sampling, i.e., the task of
generating random outcomes from the probability distribution
induced by a collection of indistinguishable photons passing
through a linear optics network [12]. Boson sampling was
initially conceived as an experimentally appealing method of
challenging the extended Church-Turing thesis, which states
that all physically realizable processes can be efficiently
simulated on a classical Turing machine. Since then, there
has been significant effort to implement boson sampling
[13–16] and to propose related models such as scattershot
boson sampling [17–19] and Gaussian boson sampling [20,21]
that are more amenable to experiments. In all these cases,
the focus has been to outperform classical computers at the
corresponding sampling task instead of using these devices
for solving practical problems. Arguably the first clue that
boson sampling could actually be linked to problems of interest
came from Ref. [22], where it was shown that Gaussian boson
sampling could be used to efficiently infer the vibronic spectra
of complex molecules. Proof-of-principle experiments have
also been recently reported [23,24].

In this work, which is a companion paper to [25], we
show that Gaussian boson sampling (GBS) can be used to
enhance stochastic algorithms for an NP-Hard optimization
problem related to finding optimal submatrices. The main

*juanmiguel@xanadu.ai
†tom@xanadu.ai
‡pr@patrickre.com

insight behind our results is that there exist problems where
the GBS distribution naturally assigns a probability to each
outcome that is proportional to their value with respect to
the underlying figure of merit. This causes good outcomes to
be sampled with high probability and bad results to almost
never be observed. In cooperation with classical stochastic
optimization algorithms, this intrinsic bias can be harnessed to
give rise to hybrid algorithms that perform improved searches
over the optimization landscape.

In the following, we discuss the concept of proportional
sampling and outline its advantage with respect to uniform
sampling in stochastic optimization. We introduce a generic
optimization problem, which we call the Max-Haf problem,
and we show that the output distribution from GBS is a
proportional distribution for this task. Max-Haf is the canonical
optimization problem for GBS and it serves as the template for
extending GBS to other optimization problems, as we do for
the densest k-subgraph problem in [25]. We give analytical
results quantifying the expected improvement to a random
search obtained by sampling from the GBS distribution, and we
suggest how GBS can be used within more advanced heuristic
algorithms. Our results are complemented with a numerical
study of the performance of these enhanced algorithms on an
example Max-Haf problem.

I. PROPORTIONAL SAMPLING

A combinatorial optimization problem can be cast as
follows. Given a set X = {x1,x2, . . . ,xN } and an objective
functionf : X → R, the goal is to find an elementx∗ ∈ X such
that f (x∗) � f (x) for all x ∈ X. Let yi := f (xi) and define the
set Y = {y1,y2, . . . ,yN } as well as the N -dimensional vector
y = (y1,y2, . . . ,yN ). We focus on the case in which yi � 0
for all i = 1, . . . ,N . This can be guaranteed, for example, by
finding a lower bound y0 such that f (x) � y0 for all x ∈ X

and introducing a new objective function f ′(x) = f (x) − y0

without altering the solution to the optimization problem.
Suppose that we can draw samples from X according to

some probability distributionP (x), so that we now think ofY as
a random variable with corresponding probability distribution
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P (Y = y). The simplest stochastic algorithm for giving an
approximate solution to the above combinatorial optimization
problem, known as a random search, is to sample multiple
values of X and choose the one with the largest value of
the objective function. For a uniform distribution of samples,
PU (x) = 1/N , the expected value of Y is

EU (Y ) = 1

N

N∑
i=1

yi = 1

N
‖y‖1, (1)

where ‖ · ‖p is the p-norm. Now suppose that we instead draw
samples with respect to a distribution in which the probability
of drawing a given element x ∈ X is proportional to the
objective function f (x), i.e.,

P∝(xi) = 1

‖y‖1
yi. (2)

We refer to this type of sampling as proportional sampling.
Here, the expected value of Y is

E∝(Y ) = 1

‖y‖1

N∑
i=1

y2
i = (‖y‖2)2

‖y‖1
. (3)

For p-norms on finite-dimensional vector spaces, it holds that

‖y‖p � N
1
p
− 1

q ‖y‖q (4)

for any q > p � 1. The ratio between the expectation values
of Y with respect to the proportional and uniform distributions
hence satisfies

E∝(Y )

EU (Y )
=

(√
N‖y‖2

‖y‖1

)2

� 1, (5)

where we have used Eq. (4) for the case p = 1, q = 2.
This inequality means that sampling from the proportional
distribution is never worse on average than sampling from
the uniform distribution. The advantage obtained from propor-
tional sampling increases when the elements of Y have very
different values, in particular when there are a few elements
that are much larger than the rest. Indeed, on one extreme, there
is only a single nonzero element of Y , and the proportional
distribution outputs the optimal element x∗ with certainty, thus
solving the combinatorial optimization problem with a single
sample. On the other extreme, all of the elements of Y are
equal and the proportional distribution reduces to the uniform
distribution.

A. Enhancing random search algorithms

Let us build on the intuition that proportional sampling
is beneficial by providing a framework for assessing the
performance of a random search. Suppose that we sort X so
that Y is in nondecreasing order, i.e., y1 � y2 � · · · � yN .
The combinatorial optimization problem depends only on the
relative values of Y , and we can hence change this random
variable so that a given xi has a corresponding yi now given by
yi = i/N . The value yi thus denotes the fraction of samples
x ∈ X whose objective function value f (x) does not exceed
f (xi). In typical optimization problems of interest, the size
of the sample space N is exponentially large, so we can
approximate Y as a continuous random variable with values

in the interval (0,1] and probability density function p(y).
The goal of the combinatorial optimization is to find the
x∗ ∈ X such that Y = 1, and we can find approximate solutions
through a random search by taking κ samples of Y and finding
the maximum. The result of the random search is another
random variable,

Z = max{Y1,Y2, . . . ,Yκ}, (6)

with Z ∈ (0,1], and its corresponding probability density
function is determined by p(y).

When Y has a uniform distribution, i.e., p(y) = 1, the
cumulative distribution of the random variable Z is

PU (Z � z) =
κ∏

j=1

p(y � z) = zκ, (7)

and its probability distribution is

PU (Z = z) = κzκ−1, (8)

which is a beta distribution with mean κ/(κ + 1). We thus
conclude that the expected output of the random search
algorithm using uniform sampling is

EU (Z) = κ

κ + 1
. (9)

This should be interpreted as stating that, after taking κ samples
of X from the uniform distribution, on average we will find a
value of f (x) that is larger than a fraction κ/(κ + 1) of all
possible values of f (x) among x ∈ X.

Instead, if p(y) corresponds to a proportional distribution
on X, then

P∝(Z � z) =
[∫ z

0
p(y)dy

]κ

, (10)

and so

P∝(Z = z) = d

dz
P∝(Z � z) = κ

[∫ z

0
p(y)dy

]κ−1

p(z).

The expectation value of Y when sampled from the propor-
tional distribution is thus

E∝(Z) = κ

∫ 1

0
z

[∫ z

0
p(y)dy

]κ−1

p(z)dz. (11)

In general, the resultant expectation value will depend on the
particular form of p(y). To illustrate the effect of proportional
sampling, we focus on the case in which p(y) is exponentially
increasing in y, given by the form

p(y) = λeλ(y−1)

1 − e−λ
, (12)

for some positive constant λ. For small values of λ, the
distribution is close to uniform, whereas for larger values the
probability is increasingly concentrated on the largest values,
as illustrated in Fig. 1. With this distribution, the expectation
value in Eq. (11) can be evaluated using standard integral tables
as

E∝(Z) = 1

λ
(1 − eλ)−κ{[(1 − eλ)κ − 1]λ − Hκ (13)

− κeλ
3F2(1,1,1 − κ; 2,2; eλ)}, (14)
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FIG. 1. Plot of a uniform distribution (dashed black line) and the
probability distribution p(y) = λeλ(y−1)/(1 − e−λ) for λ = 1, 2, 4, and
8, where the distributions are further from uniform for increasing
values of λ.

where Hκ is the κth harmonic number defined as

Hκ =
κ∑

n=1

1

n
(15)

and 3F2(a1,a2,a3; b1,b2; z) is a generalized hypergeometric
function. The improvement obtained by performing propor-
tional sampling is illustrated in Fig. 2. Here we plot α :=
− log10[1 − E∝(Z)] as a function of κ for different values of
λ. This function quantifies how close the expected result of a
random search is to finding the optimal X with the value Y = 1,
i.e., for a given value of α, then E∝(Z) is larger than a fraction
1 − 10−α of all possible values of Y . As expected, proportional
sampling always leads to a significant improvement compared
to uniform sampling, with the output of the optimization
algorithm E∝(Z) being located in ranges that are orders of

FIG. 2. Plot of the coefficient α as a function of the number
of samples κ for proportional sampling compared to uniform sam-
pling. The dashed black line corresponds to uniform sampling, and
higher curves correspond to proportional sampling with distribution
p(y) = λeλ(y−1)/(1 − e−λ) and values λ = 1, 2, 4, and 8. Proportional
sampling always outperforms uniform sampling, and the advantage
increases with λ.

magnitude higher. The advantage increases with the parameter
λ, showcasing the added benefits of proportional sampling
when there is a small subset of elements with much larger
values of the objective function.

The benefits of sampling from probability distributions that
are tailored for specific problems have long been understood.
Indeed, the goal of Markov chain Monte Carlo (MCMC)
algorithms is to use a source of uniform randomness to generate
samples from more general distributions. In this sense, pro-
portional sampling can be interpreted as a type of importance
sampling, a technique widely employed in optimization and
Monte Carlo methods [26], where here the importance is
achieved through proportionality. Nevertheless, the overhead
that arises from MCMC algorithms can be extremely costly,
and there exist distributions that cannot be sampled efficiently
using classical algorithms. For this reason, it is highly desirable
to have access to physical devices that can generate high-rate
samples from useful probability distributions. As we show in
the following section, Gaussian boson sampling systems can
serve that role by sampling from proportional distributions that
are useful for optimization problems related to finding optimal
submatrices.

Before proceeding, it is important to remark on the methods
used to solve combinatorial optimization problems and the
resultant usefulness of stochastic algorithms. Approximate
optimization becomes relevant for any problem that takes
superpolynomial time to solve. In these cases, a desirable ap-
proach is to identify a polynomial time approximation scheme.
However, such a scheme does not always exist for every
problem, or it can be hard to identify. One alternative approach
is to make use of deterministic- or stochastic-based heuristic
algorithms to provide approximate solutions. The choice of
deterministic or stochastic algorithm is problem-dependent.
Proportional sampling is a tool to enhance stochastic heuristic
algorithms.

II. GAUSSIAN BOSON SAMPLING

Gaussian boson sampling (GBS) [20,21] is a variant of
boson sampling where the input to a linear optical network is
a multimode Gaussian state instead of a collection of single
photons. From an experimental perspective, this platform
offers several advantages compared to traditional boson sam-
pling, and it is therefore a leading candidate for the practical
development of larger-scale boson sampling devices. In its
simplest form, the input Gaussian state in GBS is a tensor
product of squeezed vacuum states in each mode. We denote
the possible outputs of GBS by vectors S = (s1,s2, . . . ,sn),
where there are a total of n input and output modes, and si is
the number of photons detected in output mode i. It was shown
in Ref. [20] that for a linear optics network characterized by
the n × n unitary U and for input states with equal squeezing
parameter r > 0 on all modes, the probability of observing an
output pattern S is given by

Pr(S) = 1

(cosh r)n
|Haf(BS)|2
s1!s2! · · · sn!

, (16)

where B = tanh r × UUt , and BS is the matrix obtained by
selecting the rows and columns corresponding to the nonzero
entries of S. The function Haf(·) is the Hafnian of a matrix,
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defined as

Haf(X) =
∑

σ∈PMP2m

m∏
j=1

Xσ (2j−1),σ (2j ) (17)

for even dimensional matrices X, where dim(X) = 2m, and
Haf(X) = 0 for odd-dimensional X. Here, PMP2m is the
set of perfect-matching permutations on 2m elements. The
Hafnian can be shown to be #P-Hard to approximate in a
worst-case setting, a fact that has been leveraged to argue that
even approximate simulation of GBS cannot be performed in
polynomial time on classical computers unless the polynomial
hierarchy collapses to the third level [20].

A. The Max-Haf problem

We now introduce the Max-Haf combinatorial optimization
problem, defined on a complex-valued matrix B of any dimen-
sion. For Max-Haf, the problem is to find a submatrix BS of
B among those of a fixed even dimension k = 2m, with the
largest Hafnian in absolute value, i.e.,

given B, solve:

argmax
BS

|Haf(BS)|2

Subject to: dim(BS) = k.

(18)

This problem is NP-hard, as we now prove.
Theorem 1. The Max-Haf problem is NP-Hard to solve

exactly in a worst-case setting.
Proof. The proof is by reduction to the maximum clique

problem, which is known to be NP-Hard [27]. We consider the
specific case in which B is the adjacency matrix of a graph
G, so that the submatrices BS are equivalent to subgraphs of
G. The largest possible Hafnian of a graph is achieved by the
complete graph, i.e., a clique, and a complete graph is the
only graph that achieves this maximum value. Thus, given an
algorithm to solve Max-Haf, we can iterate over all values of
k and output the largest k such that the Hafnian of the optimal
subgraph is equal to the Hafnian of a clique. This solves the
maximum clique problem with

∑n
k=1 k = O(n2) calls, i.e., a

polynomial number of calls, to the algorithm for Max-Haf.
This implies that Max-Haf is also NP-Hard.

The NP-hardness of the Max-Haf problem means that in
general we cannot expect to find exact solutions in polynomial
time and must instead settle for approximate solutions. It is im-
portant to emphasize that the Max-Haf problem is introduced
here due to its fundamental link to Gaussian boson sampling,
as now discussed.

Suppose that B can be written as tanh r × UUt . By con-
struction, from Eq. (16) we know that the GBS distribution is a
proportional distribution for Max-Haf, provided that the GBS
output is postselected on samples corresponding to submatrices
of dimension k; see Eq. (19) below. This enables all the
advantages outlined in the previous section for stochastic al-
gorithms aimed at providing approximate solutions. Moreover,
approximate sampling from the GBS distribution is infeasible
for classical devices, further motivating the importance of
a physical GBS device. The NP-Hardness of Max-Haf also
implies that we can in principle reduce any problem in NP to
Max-Haf and then employ GBS to improve the performance

of stochastic optimization algorithms for the resulting prob-
lem. Alternatively, we can identify quantitative connections
between the Hafnian and relevant objective functions of other
optimization problems, rendering samples from a GBS device
directly useful for finding approximate solutions to these
problems as well. In our companion paper [25], we show
how GBS can be used for finding approximate solutions
to the densest k-subgraph problem [28], which has several
applications in data mining [29–32], bioinformatics [33,34],
and finance [35].

B. Enhancement of approximate solutions through GBS

Here we focus on instances of GBS where the interferometer
unitary U is drawn from the Haar measure. As shown in
Ref. [20], in this case the n × n matrix B = tanh r × UUt is
proportional to a unitary drawn from the circular orthogonal
ensemble (COE). Moreover, for m sufficiently smaller than n,
namely when m = O(

√
n), the matrix BS is well approximated

by a symmetric random Gaussian matrix with entries drawn
from the complex normal distribution N (0, tanh r√

n
). We focus

on this setting in the following to evaluate the single-shot
enhancement of using GBS proportional sampling, following
methods introduced in [12].

As we have discussed in the previous section, a simple clas-
sical random search algorithm for solving the corresponding
Max-Haf problem proceeds by sampling even k-dimensional
submatrices BS of B uniformly at random. The algorithm
generates many such samples, calculates the Hafnians of
the corresponding submatrices, and outputs the sample with
the largest Hafnian. We represent the set of dimension k

submatrices of B by the labels

�S,k :=
{

S : si ∈ {0,1} ∀ i,
∑

i

si = k

}
(19)

such that each element S ∈ �S,k describes the rows and
columns of B selected to form the submatrix BS . Since |�S,k| =(
n

k

)
, the expected value of |Haf(BS)|2 under uniform sampling

satisfies

μ̂U :=
(

n

k

)−1 ∑
S∈�S,k

|Haf(BS)|2. (20)

The submatrices of B are approximated by symmetric Gaus-
sian random matrices [20], so the above quantity is an approxi-
mation of the expectation value over the distribution G of these
matrices, i.e., μ̂U ≈ EG[|Haf(BS)|2].

We now compute the expectation value of |Haf(BS)|2 when
employing GBS, which we evaluate in terms of k, n, and r .
Let p be the probability that a GBS sample satisfies S ∈ �S,k .
This probability approaches unity for k � n. Furthermore,
let qn,r (k) be the user-controlled probability of sampling the
required k photons when there are n input squeezed modes
with squeezing parameter r , given by

qn,r (k) =
( n+k

2 − 1
k
2

)
(sechr)n(tanh r)k. (21)

Using the fact that s1!s2! · · · sn! = 1 for all S ∈ �S,k , we have
from Eq. (16) that the expectation value of |Haf(BS)|2 using
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GBS satisfies

μ̂GBS : = 1

pqn,r (k)

∑
S∈�S,k

|Haf(BS)|2 1

(cosh r)n
|Haf(BS)|2

= 1

pqn,r (k)(cosh r)n

(
n

k

)(
n

k

)−1 ∑
S∈�S,k

|Haf(BS)|4

≈
(
n

k

)
qn,r (k)(cosh r)n

EG[|Haf(BS)|4]. (22)

Thus, to compute the expected value of |Haf(BS)|2 when
sampling from the uniform and GBS distributions, we
need to compute the first two moments EG[|Haf(BS)|2] and
EG[|Haf(BS)|4] of the random variable |Haf(BS)|2 with BS

sampled from k-dimensional symmetric Gaussian random
matrices with entries drawn from N (0, tanh r√

n
). For simplicity,

we introduce the random variable

X =
√

n

tanh r
BS, (23)

so that X is now a random Gaussian matrix with entries drawn
from the standard complex normal distribution N (0,1). It is
straightforward to compute the first moment EG[|Haf(X)|2]
using the definition in Eq. (17):

EG

⎛
⎝ ∑

σ,τ∈PMPk

n∏
j=1

Xσ (2j−1),σ (2j )X
∗
τ (2j−1),τ (2j )

⎞
⎠

= EG

⎛
⎝ ∑

σ∈PMPk

n∏
j=1

|Xσ (2j−1),σ (2j )|2
⎞
⎠

=
∑

σ∈PMPk

n∏
j=1

EG(|Xσ (2j−1),σ (2j )|2) =
∑

σ∈PMPk

1 = (k − 1)!!.

(24)

The calculation for the second moment EG[|Haf(X)|4] is
significantly more involved, the details of which we defer to
the Appendix. The result is

EG[|Haf(X)|4] = k! (25)

From Eqs. (23), (24), and (25), we get

EG[|Haf(BS)|2] = (tanh r)k

nk/2
(k − 1)!!, (26)

EG[|Haf(BS)|4] = (tanh r)2k

nk
k!. (27)

Finally, using these values we obtain the ratio between the
expectation values μGBS and μU , given by

R := μ̂GBS

μ̂U

=
(
n

k

)
k!!( n+k

2 −1
k
2

)
nk/2

. (28)

This ratio characterizes the advantage obtained by using GBS,
as illustrated in Fig. 3. Note that this ratio does not depend on
the squeezing parameter r , whose only role is to determine the
probability qn,r (k) of observing the desired number of photons.

This result quantifies the fundamental feature that makes
GBS useful: whenever we sample a submatrix, the GBS

FIG. 3. Plot of the ratio R of Eq. (28) quantifying the im-
provement of using GBS sampling as opposed to uniform sampling
for finding approximate solutions to the Max-Haf problem with
submatrix size k. We plot R for different values of even k when n = k2.
The ratio is larger than 1 for all k � 2, showcasing the advantage
obtained by using GBS.

distribution has a preference for selecting submatrices that
have a large absolute Hafnian while neglecting those with
negligible Hafnians. The net result of this effect is that
submatrices with larger Hafnians are on average sampled,
leading to better approximations to the Max-Haf problem in a
random search algorithm. However, random search algorithms,
although powerful, do not exploit the local structure of the opti-
mization landscape. Alternative stochastic algorithms employ
a combination of exploration of the landscape—which is done
by random sampling—and exploitation of local structure. We
now outline how GBS can be used to enhance both of these
elements within stochastic algorithms.

III. USING GBS TO ENHANCE STOCHASTIC
OPTIMIZATION ALGORITHMS

Stochastic algorithms usually employ randomness in two
ways: exploration and tweaking, which is used in the exploita-
tion phase. Let us first show how GBS can be used to enhance
exploration, which in the case of Max-Haf corresponds to a
random selection of a set of submatricesBS . Optimization algo-
rithms usually perform this step either by selecting submatrices
uniformly at random, or by seeding them, i.e., picking a few that
are believed to be good submatrices. This latter strategy is often
infeasible when the number of possibilities is exponentially
large and may also restrict the resultant approximate solutions
to suboptimal local maxima since there are no guarantees that
the initial picks are indeed good candidates. For this reason,
uniform initialization is used as a reliable approach. However,
as we have shown, it is always preferable to replace uniform
sampling with proportional sampling. In the case of Max-Haf,
this corresponds to sampling from the suitably postselected
GBS distribution. We thus define a function, GBS-Explore,
to be employed in heuristic algorithms:

Definition 1. GBS-Explore(k,B): Given the matrix B,
generate a sample S from the conditional GBS distribution
Pr(S|S ∈ �S,k) = 1

pqn,r (k)(cosh r)n |Haf(BS)|2. Output the corre-
sponding matrix BS .
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In a physical implementation, sampling from Pr(S|S ∈
�S,k) can be performed by generating outcomes from the
complete distribution Pr(S) and keeping only outcomes with
k photons. This incurs a penalty of pqn,r (k) in terms of the
sampling rate qn,r (k), which can be optimized by selecting an
appropriate value of the squeezing parameter r , and the valid
sample probability p, which approaches 1 for k � n.

Tweaking is an operation used within exploitation where
samples are randomly modified to produce new outputs in the
vicinity of the original sample. In our case, since each possible
submatrix is specified by a binary vector S = (s1,s2, . . . ,sn)
with

∑n
i=1 = k, the only freedom for modification is to change

the location of some of the nonzero entries of S. This is
achieved by randomly selecting a subset of nonzero entries
and setting them to zero, and then randomly selecting a subset
of zero entries and setting them to 1. To make use of GBS in
this tweaking stage, we sample from the GBS distribution to
identify which entries to change from 0 to 1. Here, the idea is
that GBS will prefer to highlight new submatrices with a large
absolute Hafnian to substitute into the candidate submatrix
BS . We formalize this into the subroutine GBS-Tweak, where
� ∈ {0,2,4, . . . ,k − 2} fixes the minimum number of nonzero
entries of S to be left unchanged:

Definition 2. GBS-Tweak(S,�,B):
(i) Generate a binary vector S ′ with � + L entries randomly

selected from the nonzero entries of S and with the remaining
entries set to zero, where L ∈ {0,1, . . . ,k − � − 1} is selected
uniformly at random.

(ii) Generate a sample T from the conditional GBS distri-
bution Pr(T |�T,�) = 1

pqn,r (�)(cosh r)2n |Haf(BT )|2, producing sam-
ples T with � nonzero entries.

(iii) Fix a binary vector T ′ by selecting L of the nonzero
entries of T at random and setting the remaining entries to
zero. If there is any overlap between the nonzero entries of T ′
and S ′, repeat this step.

(iv) Calculate the vector R given by combining the nonzero
entries of S ′ with T ′ and return the submatrix BR .

The result of GBS-Tweak is a submatrix BR that has
been tweaked from BS by using GBS to preferentially select
submatrices of size � < k with large absolute Hafnians.

Algorithm 1 GBS Simulated Annealing for Max-Haf

B : Input matrix
k : Dimension of submatrix
� : Minimum number of entries to change when tweaking
t : Initial temperature
amax : Number of steps
BS = GBS-Explore(k,B)
Best = BS

for a from 1 to amax:
BR = GBS-Tweak(S,�,B)
if |Haf(BR)| > |Haf(BS)|:

BS = BR

else:
Set BS = BR with prob. exp

[ |Haf(BR )|−|Haf(BS )|
t

]
if |Haf(BS)| > |Haf(Best)|:

Best = BS

Decrease t

end for
Output Best, Haf(Best)

GBS-Explore and GBS-Tweak can be used to construct
quantum-enhanced versions of any stochastic algorithm em-
ploying randomness for exploration and tweaking. This is the
essential merit of GBS as a tool for approximate optimization:
anything that a classical stochastic optimization algorithm can
do, we can do better by enhancing it using GBS randomness.
More generally, since classical algorithms must always operate
on an initial source of uniform randomness, even algorithms
whose goal is to sample from nonuniform distributions can be
expected to improve by replacing their initial uniform sampling
with GBS.

A. Applying GBS to example algorithms

To exhibit the enhancement of stochastic algorithms
through GBS for approximate optimization, we focus on
two well-known algorithms: simulated annealing [36] and a
greedy algorithm. We describe each algorithm and propose the
enhanced versions using the GBS-Explore and GBS-Tweak
subroutines. A comparison of performance between the two
versions of each algorithm, i.e., enhanced with GBS sampling
and the traditional uniform sampling, is then carried out in the
following section.

Simulated annealing is a heuristic optimization algorithm
that combines elements of random search and hill climbing. It
begins with an exploration phase, where an initial submatrix
is generated, and then proceeds to exploit the local landscape
by repetitively tweaking the submatrix. For each tweak, if the
absolute Hafnian of the proposal submatrix is larger than the
current one, it is kept. If its absolute Hafnian is smaller, the
proposal submatrix can still be retained with a probability
that depends on the difference between the absolute Hafnians
and a time-evolving temperature parameter. The temperature
is initially set high, so new submatrices with lower absolute
Hafnians are often accepted, leading effectively to a random
search that avoids getting stuck in local minima. As the algo-
rithm progresses, the temperature is lowered and only better
submatrices are kept, leading to an effective hill-climbing
behavior. The GBS version of simulated annealing is shown as
Algorithm 1.

Algorithm 2 GBS Greedy Algorithm for Max-Haf

B : Input matrix
k : Dimension of submatrix
BS = GBS-Explore(k,B)
for i from 1 to k:

BestHaf = 0
Bestj = 0
for j from 1 to n:

C = Matrix obtained by replacing ith row/column
of BS with j th row/column of B.
if |Haf(C)| > BestHaf:

BestHaf = |Haf(C)|
Bestj = j

end if
end for
Update BS by replacing its ith row/column with the
row/column corresponding to Bestj.

end for
Output BS , Haf(BS)
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The greedy algorithm begins with exploration by randomly
generating a submatrix BS from GBS. It then proceeds to
generate candidate replacement submatrices by exhaustively
substituting the first row and column of BS with all possible
remaining rows and columns of B, while keeping all other
rows and columns of BS fixed. The best of these candidates is
kept and set as BS . The process is repeated for all rows and
columns of BS . Note that tweaking in the greedy algorithm
is deterministic, and hence cannot be enhanced through GBS
randomness. However, the initial exploration step can still be
improved, leading us to the GBS Greedy Algorithm outlined in
Algorithm 2. This algorithm can be repeated many times with a
new random initial submatrix in each run. The resulting output
is the best submatrix among all repetitions. The quantum en-
hancement of this hybrid algorithm arises because the starting
submatrix will on average have a larger absolute Hafnian than
one obtained from uniform sampling.

B. Numerical study of enhancement through GBS

Here we quantitatively analyze the performance of a random
search, simulated annealing, and greedy algorithms in both
their GBS and uniform versions. To do this, we set up an
example Max-Haf problem by generating a 30 × 30 random
matrix B = tanh r × UUt , where U is drawn from the Haar
measure. B is given explicitly in the supplemental material
[37]. We fix the instance of the problem to be finding the
submatrix of dimension 10 with the largest absolute Hafnian.
To exactly perform GBS sampling, we carry out a brute force
calculation of the GBS probability distribution conditioned on
10 output photons with no more than one photon in each mode
[38], and then we sample from the resulting distribution. The
brute force calculation also allows us to find the exact solution
of Max-Haf [37]. Note that the dimensions of the matrix and
submatrix in this instance of Max-Haf are chosen to allow us
to perform the numerical simulations in reasonable time.

We report results for algorithms making 1000 evaluations
of the objective function, which is the largest overhead in
each algorithm. For a random search and simulated annealing,
the number of evaluations is equivalent to the number of
samples. However, for the greedy algorithm, given an initial
submatrix of dimension 10, the algorithm iterates over at
least 21 × 10 = 210 other submatrices, evaluating the Hafnian
for each. Thus, to compare fairly to the results of a random
search and simulated annealing, we restrict ourselves to five
repetitions of the greedy algorithm. Our results complement the
study in [25] testing the enhancement through GBS of a random
search and simulated annealing in finding dense subgraphs.

The performances of a random search, simulated annealing,
and the greedy algorithm are shown in Fig. 4. The simulated
annealing parameters were set to T = 3 × 10−5 and � = 6,
with a linear cooling schedule used. As expected, we observe
an improvement when using GBS over uniform sampling in all
cases. The advantage is most significant for a random search,
which is the algorithm harnessing the most randomness. The
improvement is more modest for simulated annealing and
the greedy algorithm. This is to be expected for the greedy
algorithm since it is mostly deterministic: the only random
component is the initial exploration. On the other hand,

FIG. 4. Performance of random search (top), simulated annealing
(middle), and greedy (bottom) algorithms for Max-Haf. The goal is
to find an optimal submatrix of dimension 10 from a 30 × 30 starting
matrix B drawn from the circular orthogonal ensemble. The top red
curves correspond to GBS random search and the bottom gray curves
to uniform random search. The solid curve is the average observed
over 400 repetitions, and the continuous error bars represent one
standard deviation. Max-Haf can be solved by brute force with the
result 7.17 × 10−4 [37].
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the small advantage for simulated annealing indicates that
GBS-tweak is only slightly more useful than a uniform tweak.
For certain situations, as in Ref. [25], it is possible to further
optimize GBS-tweak to increase the overall advantage. A
striking feature of these results is that the GBS random search
is the best performing algorithm among all variations, whereas
a uniform random search is the worst. This highlights the
power of proportional sampling for optimization: even the
simplest algorithm we have studied, when enhanced with
GBS, surpasses the capabilities of more sophisticated classical
algorithms.

The algorithms we have discussed so far require several
evaluations of a Hafnian, which is generally a #P-Hard quantity
to compute. For large problem sizes, when this evaluation
becomes infeasible, it may be desirable to employ alternative
algorithms such as Bayesian optimization [39] that are more
suitable for handling objective functions that are costly to eval-
uate. We reiterate that a random search, greedy algorithms, and
simulated annealing are only examples, but the improvement
from GBS can occur for any stochastic algorithm relying on
exploration and tweaking. It is important to further investigate
the extent to which GBS-enhanced stochastic algorithms for
Max-Haf may outperform purely classical methods, in par-
ticular deterministic algorithms that are not straightforwardly
improved by using GBS.

Finally, the Max-Haf problem is the canonical optimization
task for GBS, so studying it provides the best insights for under-
standing how GBS can be applied to approximate optimization.
However, the true potential of GBS is unlocked when we carry
these insights over to a wider class of optimization problems, as
shown in detail in Ref. [25] for the densest k-subgraph problem.

IV. DISCUSSION

We have argued that Gaussian boson sampling, besides pro-
viding an avenue for challenging the extended Church-Turing

thesis, can be a valuable tool in enhancing stochastic algorithms
for NP-Hard optimization problems. Our results provide addi-
tional evidence to challenge the common perception that boson
sampling devices, while performing a task that is hard to repli-
cate with classical computers, are not immediately relevant to
problems of practical interest. Furthermore, classical sampling
algorithms employ deterministic rules and sources of uniform
randomness to generate samples from target distributions. This
approach can often introduce significant overhead, and it is
incapable of efficiently sampling from arbitrary distributions.
Boson sampling devices, and quantum computers more gener-
ally, when programed in a deliberate and engineered fashion,
have the potential to efficiently sample from a larger class of
probability distributions, leading to improved algorithms for
optimization and simulation.

Future work should focus on expanding the range of
applications of Gaussian boson sampling for approximate opti-
mization. One particularly appealing direction is to understand
how we can generate proportional distributions for problems
beyond submatrix optimization, for instance by employing
techniques from machine learning. It will also be important
for a given problem to benchmark the enhancement through
GBS against optimized classical algorithms.
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APPENDIX

We perform a detailed calculation of the quantity
EG[|Haf(X)|4]. Our calculation follows closely a strategy from
Ref. [12] to compute analogous moments of permanents of
Gaussian random matrices. We have

EG[|Haf(X)|4] = EG

⎛
⎝ ∑

σ,τ,α,β∈PMP2m

n∏
j=1

Xσ (2j−1),σ (2j )Xτ (2j−1),τ (2j )X
∗
α(2j−1),α(2j )X

∗
β(2j−1),β(2j )

⎞
⎠

=
∑

σ,τ,α,β∈PMP2m

EG

⎛
⎝ n∏

j=1

Xσ (2j−1),σ (2j )Xτ (2j−1),τ (2j )X
∗
α(2j−1),α(2j )X

∗
β(2j−1),β(2j )

⎞
⎠ =

∑
σ,τ,α,β∈PMP2m

M(σ,τ,α,β),

where we have implicitly defined the function M(σ,τ,α,β). We write σ ∪ τ = α ∪ β if

{(σ (1),σ (2)),(τ (1),τ (2)), . . . ,(σ (2m − 1),σ (2m)),(τ (2m − 1),τ (2m − 1))}
= {(α(1),α(2)),(β(1),β(2)), . . . ,(α(2m − 1),α(2m)),(β(2m − 1),β(2m − 1))}.

Note that M(σ,τ,α,β) 
= 0 if and only if σ ∪ τ = α ∪ β, so
we can restrict our attention to the case σ ∪ τ = α ∪ β. For
each j = 1,2, . . . ,n there are two possibilities. If σ (2j −
1), σ (2j ) 
= τ (2j − 1),τ (2j ), then

EG(Xσ (2j−1),σ (2j )Xτ (2j−1),τ (2j )X
∗
α(2j−1),α(2j )X

∗
β(2j−1),β(2j ))

= EG(|Xσ (2j−1),σ (2j )|2|Xτ (2j−1),τ (2j )|2)

= EG(|Xσ (2j−1),σ (2j )|2)EG(|Xτ (2j−1),τ (2j )|2) = 1.

Similarly, if σ (2j − 1),σ (2j ) = τ (2j − 1),τ (2j ), we have

EG(Xσ (2j−1),σ (2j )Xτ (2j−1),τ (2j )X
∗
α(2j−1),α(2j )X

∗
β(2j−1),β(2j ))

= EG(|Xσ (2j−1),σ (2j )|4) = 2.

We conclude that, whenever σ ∪ τ = α ∪ β, it holds that

M(σ,τ,α,β) = 2K(σ,τ ), (A1)
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4

FIG. 5. Graph Gξ (4) for the perfect matching permutation ξ =
(13)(26)(45)(78). There is a 1-cycle corresponding to the equiv-
alent action of the two permutations on the nodes 7 and 8. The
remaining edges form a 3-cycle for which there are two inequivalent
choices of permutations α,β such that σ0 ∪ ξ = α ∪ β, namely (i)
α = (12)(34)(56), β = (13)(26)(45) and (ii) α = (13)(26)(45), β =
(12)(34)(56).

where K(σ,τ ) is the number of j such that σ (2j − 1), σ (2j ) =
τ (2j − 1),τ (2j ). Finally, we obtain

EG[|Haf(X)|4] =
∑

σ,τ∈PMP2m

2K(σ,τ )N (σ,τ ),

where N (σ,τ ) is the number of permutations α,β such that
σ ∪ τ = α ∪ β. This expression can be simplified further as
follows. Let σ0 be the identity permutation, which is a perfect
matching permutation. Furthermore, for a given perfect match-
ing permutation σ , let σ−1 be the unique perfect matching
permutation such that σ−1σ = σ0. We then have

EG[|Haf(X)|4] =
∑

σ,τ∈PMP2m

2K(σ,τ )N (σ,τ )

= [(2m − 1)!!]2EG
σ,τ

[2K(σ,τ )N (σ,τ )]

= EG
σ,τ

[2K(σ−1σ,σ−1τ )N (σ−1σ,σ−1τ )]

= EG
ξ∈PMP2m

[2K(σ0,ξ )N (σ0,ξ )]

= (2m − 1)!!
∑

ξ∈PMP2m

2K(σ0,ξ )N (σ0,ξ ).

We now need to calculate
∑

ξ∈PMP2m
2K(σ0,ξ )N (σ0,ξ ).

Define a graph Gξ (m) of 2m nodes as follows. For all
j = 1,2, . . . ,m, draw an edge between nodes (2j − 1,2j ).
This is the graph representation of the identity permutation
σ0. Similarly, for ξ = (i1j1)(i2j2) · · · (imjm), draw an edge
between nodes (ik,jk) for all k = 1,2, . . . ,m. This is the graph
representation of ξ . An example of a graph Gξ (m) is shown in
Fig. 5. Note that, by construction, Gξ (m) is a union of cycles.

Whenever (σ0(2j − 1),σ0(2j )) = (ξ (2j − 1),ξ (2j )), there
will be a 1-cycle in the graph Gξ (m) consisting of the two
edges joining nodes 2j − 1 and 2j . Thus, K(σ0,ξ ) is equal to
the number of 1-cycles in Gξ (m). Every larger cycle in Gξ (m)
gives rise to two inequivalent choices of α,β such that σ0 ∪ ξ =
α ∪ β because we can assign the action of α to coincide with
either σ0 or ξ when restricted to the nodes in the cycles, and

1 2

3

4

56

7

8 3

56

7

1, 2, 8

4

(a) (b)

FIG. 6. When the permutation ξ has a swap of the form (1j )
with j 
= 2, we can combine the nodes 1,2 and j into a single node
without changing the number of cycles in the graph Gξ (m). Part (a)
shows the graph Gξ (4) for the perfect matching permutation ξ =
(18)(26)(35)(26) and (b) shows a graph with an equal number of
cycles obtained by combining nodes 1, 2, and 8 into a single node.

similarly for β. We therefore have that

N (σ0,ξ ) = 2�ξ , (A2)

where 2�ξ is the number of cycles in Gξ (m) of length equal to
or larger than 2. Combining these results, we conclude that

EG[|Haf(X)|4] = (2m − 1)!!
∑

ξ∈PMP2m

2cyc(ξ ), (A3)

where cyc(ξ ) is the number of cycles in Gξ (m). Now define
the function

f (m) :=
∑

σ∈PMP2m

2cyc(ξ ) (A4)

so that

EG[|Haf(X)|4] = (2m − 1)!!f (m). (A5)

Our goal is to derive a recursion relation for f (m). Focus on the
nodes (1,2). There are two possibilities for the action of ξ . One
case is when (12) appears in ξ . Call all such permutations ξ12.
For these permutations, the nodes (1,2) already form a cycle
in Gξ (m) and so it holds that∑

ξ12∈PMP2m

2cyc(ξ ) = 2
∑

ξ∈PMP2(m−1)

2cyc(ξ )

= 2f (m − 1).

Similarly, for all other permutations ξ with an element of the
form (1j ), for j 
= 2, we can combine the nodes 1, 2, and j

into a single node without changing the number of cycles in
the graph. This is shown in Fig. 6. Call these permutations ξj .
Since there are 2m − 2 possible values of j , we have∑

ξj ∈PMP2m

2cyc(ξ ) = (2m − 2)
∑

ξ∈PMP2(m−1)

2cyc(ξ )

= (2m − 2)f (m − 1).

Combining these results, we obtain the desired recursion
relation f (m) = 2mf (m − 1), which implies f (m) = (2m)!!.
Setting k = 2m, we finally obtain the desired expression for
the second moment,

EG[|Haf(X)|4] = (k − 1)!!k!! = k!. (A6)
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