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We establish a lower bound concerning the computational complexity of Grover’s algorithms on fractal
networks. This bound provides general predictions for the quantum advantage gained for searching unstructured
lists. It yields a fundamental criterion, derived from quantum transport properties, for the improvement a
quantum search algorithm achieves over the corresponding classical search in a network based solely on its
spectral dimension, ds . Our analysis employs recent advances in the interpretation of the venerable real-space
renormalization group (RG) as applied to quantum walks. It clarifies the competition between Grover’s abstract
algorithm, i.e., a rotation in Hilbert space, and quantum transport in an actual geometry. The latter is characterized
in terms of the quantum walk dimension dQ

w and the spatial (fractal) dimension df that is summarized simply by
the spectral dimension of the network. The analysis simultaneously determines the optimal time for a quantum
measurement and the probability for successfully pinpointing a marked element in the network. The RG further
encompasses an optimization scheme devised by Tulsi that allows us to tune this probability to certainty, leaving
quantum transport as the only limiting process. It considers entire families of problems to be studied, thereby
establishing large universality classes for quantum search, which we verify with extensive simulations. The
methods we develop could point the way towards systematic studies of universality classes in computational
complexity to enable modification and control of search behavior.
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I. INTRODUCTION

Quantum walk presents one of the frameworks in which
quantum computing can satisfy its promise to provide a speed
up over classical computation. It applies to a significant number
of interesting problems such as quantum search [1,2], element
distinctness [3,4], graph isomorphisms [5–7], and circuit de-
sign [8]. Analogous to random walks, which have been of
fundamental importance for the development of stochastic
algorithms in classical computing [9,10], quantum walks have
been established as a universal model of quantum computing
[11–13]. Similarly, the physical properties of quantum walks in
localization [14–16], in entanglement [17–19], in interference
[20], in decoherence [21], in topological invariants [22], etc.
[23], rival classical diffusion as an important transport prob-
lem [24–26]. In fact, numerous experimental realizations of
quantum walks have been proposed and studied in waveguides
[27], in photonics [8,15,19,28], and in atomic physics [29–32].
Photosynthesis provides even a natural occurrence [33,34].

Grover [1] has developed a quantum algorithm that, starting
from an initial state of uniform weight, can locate an entry in
an unordered database of N elements with high probability in
a time that scales as ∼√

N . This presents a quadratic speed up
over classical search algorithms and has inspired countless al-
gorithmic developments [35–42] and recently several physical
implementations [29,43,44]. In a database with a nontrivial
network geometry, as in Fig. 1, what we will call a spatial
Grover search is faced with the competition between

(i) the accumulation of weight on a marked entry (or site)
w at the expense of its neighbors, and

(ii) the ability to transport weight via quantum walk into
that neighborhood.

Here we show how both of these tasks simultaneously can be
described (and optimized) with the real-space renormalization
group (RG) [45], buttressed by a Mathematica script provided
in the Supplemental Material [46]. As a result, see Fig. 2,
we infer a lower bound on the complexity (or asymptotic
computational cost) of spatial Grover search in terms of the
network’s fractal dimension df and quantum walk dimension
dQ

w or, alternatively, its spectral dimension ds . To this end, we
study the exact RG on several fractal networks exemplified by
the dual Sierpinski gasket here; the corresponding calculation
for the other networks in Fig. 2 follows from their RG in
Refs. [47,48]. Each of these networks obtains the foregoing
results in a nontrivial (and often distinct [48]) manner, which
suggests (but does not prove) that our prediction for the com-
plexity bound exhibited in Fig. 2 holds for networks of finite ds

generally. Additionally, although we assail fundamental tenets
of computer science by exploring the Grover algorithm where
it fails to saturate its optimal limit, it is exactly in this regime,
1 < ds < 2, where we gain the necessary insight to understand
its behavior for all dimensions.

A discrete-time quantum walk with a coin was instrumental
in the earliest implementations of a quantum search algorithm
to reach the Grover limit (∼√

N ) in as low as two dimensions
[40,49], up to logarithmic corrections, although alternative
implementations have been found [36,39,50]. While the accu-
mulation in (i) inherently [51] requires at least ∼√

N updates,
in (ii) the neighborhood is replenished by quantum transport
on a time scale of ∼NdQ

w /df , as we will show. It becomes the
limiting cost for the entire search when df < 2dQ

w . The walk
dimension dw(= dR

w ) has been introduced for random walks as
the exponent that characterizes the asymptotic scaling relation
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FIG. 1. In Grover’s quantum search algorithm, the search operator
Rw affects an accumulation (white arrows) of the wave function ψx,t

onto the marked site, w, but only from its neighborhood (shaded).
The walk operatorU transports ψ uniformly between mutually linked
sites (black arrows), replenishing neighbors of w in the process. This
distinction only arises in a finite-dimensional geometry; it is moot in
Grover’s original work [1], where all N sites are linked.

between the spatial and temporal extend in the probability
density function [26,52], ρ(x,t) ∼ f (|x|dw/t). Such a scaling
is a powerful notion that in statistical physics has led to the
invention of the Nobel prize winning idea of the renormaliza-
tion group (RG) [53,54], as discussed in many textbooks [45].
We shall assume that such a scaling, now with some dw = dQ

w ,
also exists for a the quantum walk with wave function ψx,t ,
where ρ(x,t) = |ψ2

x,t |. On a line, so-called weak-limit results
[55] verify scaling with dQ

w = 1, which has been reproduced
with RG [56]. This result, dQ

w = 1, has been extended to
regular lattices in all dimensions [57]. The networks we
consider usually lack the translational invariance essential to
prove properties on lattice where df = d is integer. Yet, our
generalized results for real (fractal) dimensions incorporate
those for regular lattices. They show that the Grover limit can
always be achieved in dimensions d > 2, where the average
distance between sites on those lattices is ∼NdQ

w /d � √
N ,

and in the critical dimension d = 2 with likely logarithmic
corrections. In turn, in the mean-field limit [45], when all sites
are neighbors (complete graph), it is df = ∞ and transport is
instantaneous, as it is for random graphs of finite degree [41]
with typical distances are ∼ ln N .

The naive application of Grover’s algorithm on a finite-
dimensional geometry also impacts the probability p =
|ψ2

w,topt
| to overlap with the marked site w–the objective of the

search – when the measurement is undertaken at the optimal
time topt. The RG we discuss below finds asymptotically
for large N that topt ∼ NdQ

w /df , accompanied by a decrease
of p ∼ N1−2dQ

w /df when 2dQ
w /df > 1, which is comparable

to the optimal overlap with the target element found in a
continuous-time quantum walk [42,60]. Thus, the complexity
c(N ) of this naive quantum search algorithm, which is given
by the product of topt with the necessary number of repeat
measurements (∼1/p), becomes

c = topt

p
∼ max

{√
N,N

3 d
Q
w

df
−1}

. (1)
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FIG. 2. Illustration of the computational cost c ∼ Nω as a func-
tion of df /dQ

w . The systems studied with RG all possess df /dQ
w < 2,

where the Grover limit (ω = 1
2 ) can not be reached and the scaling is

nontrivial. The naive Grover search algorithm, analyzed in Sec. III,
achieves the scaling in Eq. (1) (red line, red-framed symbols), which
can be optimized (down-arrows) by Tulsi’s method [58], see Eq. (2)
(black line, blue symbols). Aside from log corrections, the RG finds

ω = max { d
Q
w

df
, 1

2 }, which provides a fundamental limit, constraint by

quantum transport through the network geometry for df /dQ
w < 2

(magenta-shaded area) or else by the inherent Grover limit of rotating
the state vector in Hilbert space [51] (red-shaded area). Assuming
dQ

w = 1
2 dR

w , as obtained in Ref. [48], all results can be expressed
purely via the spectral dimension of the network Laplacian, for which
it is known that ds = 2df /dR

w [59]. We treat DSG as example here;
the values for df /dQ

w listed here for other networks—MK3, MK4,
and HN3, i.e., three- and four-regular Migdal-Kadanoff and Hanoi
networks—are adapted from Tab. 1 in Ref. [47]. Since dQ

w = 1 on a
d-dimensional lattice, i.e., ds = df = d , this diagram applies directly
to lattices, with d = 2 as the critical dimension [45].

We have verified the RG predictions for both, topt and p,
for several other networks, see Fig. 2, and with numerical
simulations, explained in Fig. 5. Furthermore, an optimized
algorithm was developed by Tulsi [58] that we can directly
analyze with RG also. It allows us to boost the overlap p at the
expense of at most two extra qubits, when the eigenvalue with
the smallest positive argument of the evolution operator fulfills
certain properties. Then, the overlap always can be tuned to
a finite value, p ∼ 1, independent of N , and the complexity
bound finally attains its optimal form

cTulsi ∼ max
{√

N,N
d
Q
w

df

}
. (2)

The dependence of the scaling of c with N on df /dQ
w for both

of these scenarios is illustrated in Fig. 2. Ultimately, our RG
calculation below implies that the algorithmic complexity is
constrained by the speed of quantum transport: If df /dQ

w > 2,
Grover’s limit can be reached.

For coined quantum walks with no marked nodes it has been
shown previously that there is a relation between quantum
walks and the corresponding classical random walk [47,48],
i.e., dQ

w = 1
2dR

w . Using dR
w/df = 2/ds [59], we can represent

Eqs. (1)–(2) purely in spectral terms, i.e., df /dQ
w = ds , as
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FIG. 3. Depiction of the (final) RG step in the analysis of DSG.
Recursively, the inner six sites (here labeled 3, . . . ,8) of each larger
triangle (left) in DSG are decimated to obtain a reduced triangle (right)
with renormalized hopping operators (primed). Since site w = 0 is
distinct, modified recursion rules apply for the matrices labeled with
subscript 0.

indicated in Fig. 2. In that case, our result mirrors Szeged’s find-
ing for hitting times of 1/

√
δ ∼ N

1
ds in bipartite networks with

spectral gap δ in quantized Markov chains [61,62]. A similar
result has also been shown for quantum first passage times [63].

II. METHODS

A. Quantum evolution equation

The time evolution of a quantum walk is governed by the
discrete-time equation

|�t+1〉 = U |�t 〉 (3)

with unitary propagator U . It resembles closely the master
equation for a random walk (or any other Markov process),
for which U would be a stochastic operator. Then, in the
discrete N -dimensional site-basis |x〉 with ψx,t = 〈x|�t 〉, the
probability density function is given byρ(x,t) = |ψx,t |2. In this
basis, the propagator can be represented as an N × N matrix
Ux,y = 〈x|U |y〉 with operator-valued entries that describe the
transitions between neighboring sites (hopping operators). To
study the long-time dynamics, it is advantageous to apply a
discrete Laplace transform [26],

ψx(z) =
∞∑
t=0

ψx,t z
t , (4)

such that Eq. (3) becomes

ψx =
∑

y

zUx,yψy + ψx,t=0. (5)

The self-similarity of fractal networks allows for a decom-
position of Ux,y into its smallest substructures, exemplified by
Fig. 3. It shows the elementary graph of nine sites that is used
to recursively construct the dual Sierpinski gasket (DSG). The
master equations pertaining to these sites are

ψ0 = (M0 + C0)ψ0 + A(ψ3 + ψ4) + I0ψIC,

ψ {1,2} = (M + C)ψ {1,2} + A(ψ {5,7} + ψ {6,8}) + IψIC,

ψ {3,4} = Mψ {3,4} + Cψ {8,5} + A0ψ0 + Aψ {4,3} + IψIC,

ψ {5,6,7,8} = Mψ {5,6,7,8} + Cψ {4,7,6,3}

+A(ψ {1,5,2,7} + ψ {6,1,8,2}) + IψIC. (6)

The hopping operators A and C describe transitions between
neighboring sites, while M (not shown in Fig. 3) permits the
walker to remain on its site in a lazy walk. The inhomogeneous
ψIC terms allow for an initial condition ψx,t=0 on the respective
site x.

Preserving the norm of the quantum walk demands uni-
tary propagation, i.e., I = U†U . This can be achieved in
the discrete-time case only when the hopping operators like
{A,C,M} in Eqs. (6) are matrices, not scalars. Correspond-
ingly, the state of the walk at each site, ψx,t , must be a
vector of conforming length. At each update, a conforming
coin matrix C entangles the components of the state vector,
which the hopping operators subsequently distribute to their
respective neighboring site. For coined quantum walks, it has
been conventional to consider merely those coins whose di-
mensions adhere to the degree of the sites in the network under
investigation. Then, each component of a site’s state vector is
shifted along one specific direction at each update, ensuring the
unitarity of the propagator U overall. However, for networks
of higher degree, or of mixed degree, this approach becomes
quite unwieldy, if not impossible. In Appendix A, we have
laid out how to obtain generalized unitarity conditions for any
network. When applied to DSG specifically, we have derived
the following conditions concerning the hopping operators in
Eqs. (6):

I = A†A + B†B + C†C + M†M,

0 = A†B + B†M + M†A = C†M + M†C

0 = A†C = B†C. (7)

These conditions at hand, we can now systematically design
generalized hopping operators {A,B,C,M}. We make a most
simple choice by requiring an additional symmetry, A = B,
while choosing 2 × 2 matrices

M =
[− 1

3 0
0 0

]
C, A =

[
2
3 0
0 0

]
C, C =

[
0 0
0 1

]
C (8)

that satisfy Eqs. (7) for any unitary coin C. Here, the most
general unitary 2 × 2 coin matrix is given by

C =
(

sin η eiχ cos η

eiϑ cos η −ei(χ+ϑ) sin η

)
. (9)

In the following, we merely consider variable η but set
χ = ϑ = 0. [We note that for nonzero χ and ϑ , the following
results would be identical aside from a trivial rotation in
the Laplace parameter, z → z e−i(χ+ϑ).] However, with the
free parameter η, which specifies the extent by which the
components of the state vector get entangled, we are now in
a position to study an entire family of problems. Even though
the degree of the network is larger than this coin space, for
the Hadamard coin in Eq. (9) we show in the following that it
reproduces the phenomenology of the quantum walk with 3 ×
3 matrices and lower symmetry (A 	= B) for the Grover coin
described in Refs. [48,64]. Besides this minimalist example,
other interesting three- (or higher-)dimensional matrices that
solve the conditions in Eq. (7) may exist, potentially harboring
new universality classes and localization behaviors [65].

In Eqs. (6), we have distinguished site w = 0. (This choice
is largely a matter of convenience; any other w would result
in the same scaling but with a w-dependent pre-factor [66].)
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In such a way, we can study either a quantum walk starting on
that site to determine the spreading dynamics or the quantum
search problem of amplifying the wave function on site w = 0
after starting from a uniform initial stateψx,0 = 1√

N
ψIC , where

ψIC denotes an initial-state vector. The latter case is discussed
below. In the former case, the initial condition is localized at
w, ψx,t=0 = δx,wψIC , with I0 = I, I ≡ 0, M0 = M , A0 = A,
and C0 = C, as discussed elsewhere [48]. Although they result
in very different physical situations, both cases built on the
following analysis of the RG recursions for the homogeneous
walk, irrespective of the initial conditions I . The manipulations
in the analysis of the following sections can be conveniently
reproduced in a Mathematica script provided in the Supple-
mental Material [46].

B. RG for the homogeneous quantum walk

As we have indicated in Sec. I, the real-space RG for a
walk [26] provides information that relates the temporal and
spatial spreading of the walk. Instead of yielding a specific,
quantitative result on a question of, say, how much time T ,
on average, does it take for a walk to fall off a table of base
length L after starting in its center, the RG answers the scaling
question: By how much does a change in Lk → Lk+1 = 2Lk

rescale time Tk → Tk+1 = λTk , in each step k → k + 1 of the
RG? Assuming scalingTk ∼ L

dw

k (at least asymptotically for all
large k), the answer to that question would imply dw = log2 λ.
Clearly, for a classical random walk (i.e., diffusion) on any d-
dimensional table it is λ = 4, i.e., dw = 2. In a fractal geometry,
the answer to this question generally is nontrivial [26,52]. This
example illustrates the relevance of RG for the complexity
of the Grover algorithm, which concerns the question of how
much does topt for search increase when I increase N (= Ldf ).
Note, however, that due to the Laplace transform in Eq. (4) the
large-t limit is accessed for z → 1 here.

The recursive structure of DSG (and many other fractals,
such as those discussed in Ref. [47]), allows us to establish
exact recursion relations between a walk at length k and
k + 1. These RG recursions for the DSG, as represented by
Eqs. (B5), are generic and have been derived previously [48].
In Appendix B, we recall how to obtain those recursions,
for completeness. Iterating these RG recursions as described
there for only one step already reveals a recursive pattern that
suggests the parametrization

Mk =
(

ak − 2

3
bk

)[
1 0

0 0

]
C,

Ak =
(

ak + 1

3
bk

)[
1 0

0 0

]
C, (10)

Ck = z

[
0 0

0 1

]
C,

which exactly closes on itself after one iteration, k → k + 1,
when we identify for the scalar RG flow:

ak+1 =
(9akbk + 3z ak − 2z bk) sin η

+ 9z akbk + 3ak − 2bk

3(3z − 6ak + bk) sin η

+3(3 − 6z ak + z bk)

,

bk+1 =

2
(
9akb

2
k + 3z akbk + z b2

k − 3z2ak + 2z2bk

)
sin2 η

+ 4(1 − z2)(6akbk − b2
k) sin η

+2
(
3ak − 2bk − 3z akbk − z b2

k − 9z2akb
2
k

)
2
(
6akbk − b2

k + 3z ak + z bk + 3z2
)

sin2 η

+ 4(1 − z2)(3ak − 2bk) sin η

−2
(
3 + 3z ak + z bk + 6z2akbk − z2b2

k

)
.

(11)

This flow is initiated at k = 0 with ak=0 = z/3 and bk=0 = z,
to match Eqs. (10) to the unrenormalized hopping operators in
Eqs. (8). Note that these RG-flow recursions are vastly simpler
than the five-term recursions previously reported in Ref. [64],
or those in Ref. [48], even though here they describe an entire
family of coins via the coin parameter η.

As explained above, the real-space RG equations encapsu-
late the behavior of the physical process under rescaling of
length (on DSG, from base-length Lk = 2k to Lk+1 = 2Lk ,
while size Nk = L

df

k = 3k changes by a factor of 3, i.e.,
df = log2 3). Thus, we now proceed to study the fixed-point
properties of the RG flow in Eq. (11) at k ∼ k + 1 → ∞ near
z → 1 [26]. The particular combination of ak and bk in Eq. (10)
ensures that the Jacobian of the fixed point already is diagonal,
with eigenvalues λ1 = 3 and λ2 = 5

3 . Extending the expansion
of Eq. (11) in powers of ζ = z − 1 for k → ∞ to sufficiently
high order, we obtain:

ak(z) ∼ 1
3 + ζ Aλk

1 + ζ 2α
(2)
k + ζ 3α

(3)
k + . . . ,

bk(z) ∼ 1 + ζ Bλk
2 + . . . , (12)

with unknown constants A and B. Here, we defined

α
(2)
k ∼ 3

2A
2λ2k

1 + . . . ,

α
(3)
k ∼ 9

4A
3λ3k

1 − 3
8A

2Bλ2k
1 λk

2 + . . . , (13)

where we have only kept leading-order terms relevant for the
following considerations. It was argued previously [48,67] that
we can identify:

df = log2 λ1, dQ
w = log2

√
λ1λ2, (14)

i.e., df = log2 3 and dQ
w = log2

√
5 for DSG.

III. RESULTS FOR THE COMPLEXITY
OF QUANTUM SEARCH

To apply the RG results in Sec. II to the corresponding
quantum search problem, we use the abstract search algorithm
[1,40,49]. It replaces the operator U by an equally unitary
search propagator Uw = U · Rw that distinguishes the sought-
after site |w〉 from the remaining sites using the search operator

Rw = I − |w〉〈w|(2D). (15)

The walk operator U corresponds to the inversion-about-
average operator defined by Grover [1]. It drives the quantum
walk by transporting the weight of the wave-function between
neighboring sites in an attempt to make it uniform. Alas, in the
quantum search, which starts from a uniform state, the prior
reflection of the phase at site w by Rw first imbalances the
amplitude there, before U now amplifies this imbalance at w.
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Thus, site w acts as an attractor for the weight of the wave
function at the expense of its immediate neighbors, a deficit
that U persistently tries to correct. Since we require Uw to be
unitary, so must beRw in Eq. (15), which implies the condition

2D†D = D† + D. (16)

Grover [1], and by default many authors since, have further
imposed reflectivity, R2

w = I, which conveniently reduces
Eq. (16) to D = D2, further implying Hermiticity, D = D†.
These conditions on D still allow for entire classes of operators,
as well as D = I. We will consider first the family,

D(γ ) =
[

cos2 γ sin γ cos γ

sin γ cos γ sin2 γ

]
, (17)

which for γ = π
4 reduces to the Grover operator that is widely

used in numerical simulations for this task [49]. Note that D

in Eq. (17) is singular, det D = 0, for all γ , while D = I is the
unique nonsingular solution of D = D2. The RG reveals that
D = I does not allow for an efficient search, as we will show
in Sec. III C. Similarly, the RG calculation in Sec. III D implies
that reflectivity appears to be necessary condition.

A. General considerations for quantum search on DSG

Uniform initial conditions are provided by |�t=0〉 =
1√
N

∑
x |x〉 ⊗ |ψIC〉, i.e., ψx,t=0 = 1√

N
ψIC . With the goal to

optimize the amplitude ψ0,t to detect the walk on the sought-
after site w = 0 in the shortest time possible, Eq. (5) then
becomes

ψx =
∑

y

z(Uw)x,yψy + ψIC√
N

,

=
∑

y

zUx,y(I − 2Dδy,0)ψy + ψIC√
N

, (18)

which turns into Eqs. (6) when applied to the DSG with O0 =
O(I − 2D) for each O ∈ {A,C,M,I }. After k iterations, in the
final step, as shown in Fig. 3, the DSG reduces to a triangle of
sites with:

ψ0 = (Mk + Ck)(I − 2D)ψ0 + Ak(ψ1 + ψ2)

+ Ik(I − 2D)
ψIC√

N
,

ψ {1,2} = (Mk + Ck)ψ {1,2} + Ak[(I − 2D)ψ0 + ψ {2,1}]

+ Ik

ψIC√
N

. (19)

Solving for ψ0, we obtain

ψ0 = [I − (Mk + Ck + VkAk)(I − 2D)]−1(I + Vk)Ik

ψIC√
N

,

(20)

where we abbreviated Vk = 2Ak(I − Ak − Ck − Mk)−1.
Note that ψ0 appears to depend also on the RG recursion

for Ik . Yet, we can eliminate it by the following consideration:
If it were D = 0, then we would have Rw = I and Uw ≡ U
for the propagator, which would leave the uniform initial state
invariant. Thus, ψ0(z)|D=0 = F (z)ψIC√

N
, where F (z) has at most

N independent, trivial poles. In fact, we find from Eq. (20) at
D = 0 that

F (z) = [I − (Mk + Ck + VkAk)]−1(I + Vk)Ik,

= 1

1 − z2

[
1 + z sin η z cos η

z cos η 1 − z sin η

]
, (21)

independent of k. Then substituting Eq. (21) back into Eq. (20)
yields

ψ0 = [I − 2G(z)D]−1F (z)
ψIC√

N
, (22)

with

G(z) = [I − (Mk + Ck + VkAk)−1]−1. (23)

Even before we discuss the effect of the search operator
D, the properties of G(z) itself are crucial for the proper
interpretation of the quantum search. It closely resembles
the Laplace-space amplitude for a quantum walker to remain
at its starting location examined previously [48], although
that situation has quite different (localized) initial conditions.
Inserting the RG results from Eqs. (10)–(13) into Eq. (23), we
find in powers of ζ = z − 1:

G(z) ∼ 1

9Aλk
1

G−1ζ
−1 + G0ζ

0 + 5Bλk
2

24
G1ζ

1 + . . . . (24)

with dominant contributions in large k from the matrices

G−1 =
[

1 cos η

1+sin η
cos η

1+sin η

1−sin η

1+sin η

]
, (25)

G0 = 1

2

[
1 cos η

1+sin η

− cos η

1+sin η
1

]
+ . . . ,

G1 = G−1 + . . . .

The emergence ofλk
2 as the dominant term for large k at order ζ 1

is a consequence of unitarity [48], due to a delicate cancellation
between α2

2 and (Aλk
1)α3 in Eq. (13). Also, in the following it

will prove crucial that G−1 in Eq. (25) is a singular matrix.

B. Discussion of D in Eq. (17)

With a search operator containing the generalized Groverian
matrix D(γ ) in Eq. (17), we indeed find a quantum search
algorithm with a nontrivial complexity. With G(z) in Eq. (24),
we can construct the combination I − 2G(z)D in Eq. (22),
which itself is singular at order ζ−1, due to G−1. It is thus not
surprising to find that its inverse in Eq. (22) has a leading contri-
bution of order ζ 0. The combination of [I − 2G(z)D]−1F (z)
in Eq. (22) should therefore be ∼ζ−1, owing to the pole in
F (z). Amazingly, however, the matrix F (z) in Eq. (21) exactly
annihilates that ζ−1 term in ψ0 for any η or γ . Evaluation of
Eq. (22) then leads to:

ψ0 ∼ {(
Aλk

1

)
F0ζ

0 + (
Aλk

1

)2(Bλk
2

)
F2ζ

2 + . . .
}ψIC√

N
, (26)

where we have only kept the most divergent term in k at
each order of ζ . Each term contains a k-independent matrix
Fi(η,γ,ζ ) that is regular in ζ and that captures the entire
dependence on the coin parameter η from Eq. (9) and the γ

dependence of the search operator D in Eq. (17). Although

012320-5



BOETTCHER, LI, FERNANDES, AND PORTUGAL PHYSICAL REVIEW A 98, 012320 (2018)

FIG. 4. Plot of the poles of the Laplace transform for the am-

plitude at the sought-for site, ψ
(k)
0 (z) in Eq. (22), in the complex-z

plane at RG steps k = 4 (�) and k = 5 (•) for quantum search on
the dual Sierpinski gasket (DSG). (The poles are certain to occur
in complex-conjugate pairs, so only the upper z plane is shown.) A
finite fraction of those poles progressively impinge on the real-z axis
at z = 1.

each such matrix is singular, every one of their components is a
well-behaved function on 0 < η < π

2 and 0 < γ < π
2 without

poles or selections for which any Fi would vanish entirely.
Thus, we can conclude that our following results for the scaling
of quantum search are universal as far as this choice of coin
and search operator is concerned.

To extract the relevant scaling behavior for the amplitude
at the sought-for site, ψ0 in Eq. (26), we have to discuss the
expectation we have for its form [26]. For t > 0, ψ0,t should be
a periodic function of some fundamental periodT (N ) = 2π/θk

that is small at t = 0 but rises to a significant maximum with
some amplitude factor ∼Nε at the optimal time to conduct a
measurement, topt = T (N )/4. Both the increasing number of
Laplace poles of the RG with increasing system size, shown in
Fig. 4, and the additional overtones exhibited in the numerical
simulations in Fig. 5, would suggest an ansatz for ψ0 as a
superposition of modes in a generalized Fourier sin series, as
analyzed in Ref. [48]. However, the discussion in Appendix C
confirms that even the simplest ansatz of considering merely
the two closest poles to z = 1 suffices here, and we may write

ψ0,t ∼ Nε sin(θkt)
ψIC√

N
, (27)

which, after Laplace transformation according to Eq. (4),
produces two Laplace-poles at z0 = e±iθk symmetrically
impinging on z = 1 along the unit circle in the complex-z
plane:

ψ0(z) ∼ Nε

2i

(
1

1 − zeiθk
− 1

1 − ze−iθk

)
ψIC√

N
,

∼ Nε

[
1

θk

ζ 0 − 1

θ3
k

ζ 2 + 1

θ3
k

ζ 3 + 1

θ5
k

ζ 4 + . . .

]
ψIC√

N
.

(28)

Then, we match Eqs. (26) and (28) term by term in ζ to get

Nε

θk

∼ λk
1,

Nε

θ3
k

∼ λ2k
1 λk

2, (29)

which provides for the characteristic period and the amplitude
at time topt with sin (θktopt)2 = 1:

T (N ) ∼ 1

θk

∼
√

λk
1λ

k
2 ∼ N

d
Q
w

df ,

|ψ0,t |2 ∼
(

Nε

√
N

)2

∼ λk
1

Nλk
2

∼ N
1−2 d

Q
w

df , (30)

where we have identified the eigenvalues with the appropriate
dimensions as given in Eq. (14). In fact, we have extended
the RG expansion in Eq. (26) to two more orders and found
that they scale consistently with the ζ 3 and ζ 4 terms of
Eq. (28). In Figs. 5, we demonstrate that the scaling in
Eq. (30) perfectly collapses the data we have obtained from
numerical simulations of quantum search on DSG. They yield
the computational complexity stated in Eq. (1) and the naive
scaling shown in Fig. 2.

In fact, those values for the rescaling of p = |ψ2
0,t | and

T in Eq. (30) have been studied numerically before by
Patel and Raghunathan [68], who found p ∼ N–0.440(4) and
T ∼ N0.730(2) for a coined quantum search on a regular
Sierpinski lattice, which is not too far from the analyti-

cal prediction here: 2 dQ
w

df
− 1 = log3 5 − 1 = 0.464974 . . . and

dQ
w

df
= 1

2 log3 5 = 0.732487 . . .. Similarly, Marquezino et al.
[69] simulated a quantum search with a modified Grover
coin on the Hanoi network (HN3) and found p ∼ N−0.37 and
T ∼ N0.65, in reasonable agreement with the analytical predic-

tion of 2 dQ
w

df
− 1 = 0.30576 . . . and dQ

w

df
= 0.652879 . . ., using

dQ
w = 2 − log2

√
5+1
2 and df = 2 found for this network [47].

Both of these numerical studies also considered successful
implementations of Tulsi’s method to optimize the overlap to
become p ∼ 1, which we explore analytically with the RG in
the following.

1. Optimization with Tulsi’s method

Tulsi [58] realized that the interplay between walk operator
and search operator in an implementation of Grover’s algo-
rithm on a low-dimensional geometry can be further optimized
by adding at most two ancilla qubits [70]. Thereby, each is dou-
bling the dimensions to the internal coin space of the quantum
walk (which has been compared to giving a Dirac fermion a
position-dependent mass [68]). This minimal extension inserts
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FIG. 5. Plot of the probability p = |ψ2
w,t | to detect the quantum walk at site w = 0 as a function of time t for all combinations of parameters

of the coin in Eq. (9) with η = π/4 and π/8 and of the search operator in Eq. (17) with γ = π/4 and π/8 for DSG of size Nk = 3k . (Shown

here are k = 5, . . . ,8, in order from bottom to top near the first peak at t/Nd
Q
w /df ≈ 1.) Appropriately rescaled according to Eq. (30), the data

collapses on a quasiperiodic sinusoidal function, as in Eq. (27). For the collapse, we use the value for dQ
w and df according to Eq. (14). The

optimal time for a measurement would be at topt/N
d

Q
w /df ≈ 1, near the first well-formed peak. Smoother (but less insightful) behavior for p

would be obtained after implementing Tulsi’s method [58] (see also Sec. III B 1 and Appendix D) and various improvements of the evolution
operator [68,69].

a tunable parameter τ that allows us to buffer more weight |ψ2
0,t |

only at the sought-after site w in just the right amount so as
to optimize p = |ψ2

0,t | to attain a finite, N -independent value
just at the time of measurement. The optimal choice for this
parameter itself does depend on N but is independent of w.
While the implementation details are technical and have been
deferred to Appendix D, the calculation follows that in Sec.
III A closely but with somewhat enlarged matrices. In the end,
we obtain relations almost identical to Eq. (26) but with an
overall factor of cot τ . Then, Eq. (29) generalizes to:

Nε

θk

∼ λk
1 cot τ,

Nε

θ3
k

∼ λ2k
1 λk

2 cot τ. (31)

Note that the limit τ → 0, in which the part of the product space
linked by Tulsi’s ancilla qubits would disconnect, emerges as a
singular limit, cot τ → ∞, in the RG. Taking the ratio of both
expressions in Eq. (31) cancels the τ dependence, signifying
that the quantum transport scaling expressed by T ∼ 1/θk

found in Eq. (30) remains unaffected, consistent with the fact

that the ancilla merely acts only locally at site w. However, the
amplitude at site w, obtained by the product of both relations
in Eq. (31) now becomes

|ψ0,t |2 ∼ λk
1

Nλk
2

cot2 τ, (32)

which in reference to Eq. (30) we are free to optimize via

τ ∼ N
d
Q
w

df
− 1

2 � 1, (33)

such that p = |ψ2
0,t | ∼ 1, mindful of the fact that p is bounded

by unity, of course. This analytical results reproduces again the
numerical predictions and the scaling relations found [68,69]
for Tulsi’s parameter τ .

C. Discussion of search operator D = I

With the preceding methods, we can also address interesting
questions regarding the universality of the results. We have
shown that the search operator with the choice of D in Eq. (17)
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FIG. 6. Plot of the probability p = |ψ2
w,t | to detect the quantum walk at site w = 0 as a function of time t for DSG of size Nk = 3k with

defective search operators, D = I (top) and D nonreflective (bottom). Although we have plotted the simulation data on the same scale as in
Fig. 5, it is apparent that no effective search is achieved, as predicted by the RG in Eq. (34) and Eq. (37), respectively. There are no discernible
peaks, and the probability p to find anything is decaying despite the indicated rescaling with size. Instead, we find p ∼ 1

N
throughout, equivalent

to a classical random search for both cases.

provides a scaling of the complexity that is independent of
the parameter γ . In turn, we find that D = I, another choice
that satisfies the conditions on the search operator in Eq. (16),
will not allow to accumulate weight at the sought-after site w.
Following Eq. (25) in Sec. III A, I − 2G(z)D in Eq. (22) is
again singular at order ζ−1, yet, even its inverse in Eq. (22)
possesses a leading contribution of order ζ−1 and has the
expansion:

[I − 2G(z)D]−1 ∼ − 2

9
(
Aλk

1

)X−1ζ
−1 + X0ζ

0

− 5
(
Bλk

2

)
12

X1ζ
1 + . . . ,

with

X0 = 1 + sin(η)

cos(η)

[
0 1

−1 0

]
,

Xi 	=0 =
⎡
⎣ 1 − 1+sin η

cos η

− 1+sin η

cos η

(
1+sin η

cos η

)2

⎤
⎦.

Amazingly, for all i 	= 0 the matrices Xi are identical in
each order of ζ i for large k. Now, F in Eq. (21) annihi-
lates all such Xi , i.e., Xi 	=0F ≡ 0. Thus, the combination
[I − 2G(z)D]−1F (z) in Eq. (22) results in a single term,

ψ0 ∼ 1

2ζ

[
−1 − sin η − cos η

(1+sin η)2

cos η
1 + sin η

]
ψIC√

N
, (34)

near z = 1, entirely independent of k. Hence, it remains
|ψ2

0,t | ∼ 1
N

for all times. We show simulations for |ψ2
0,t | with

D = I for various sizes N in Fig. 6.

D. Discussion of nonreflective search operators

In a further exploration of universality classes for quantum
search, we want to investigate the effect of more general
search operators. Tulsi [70] has shown that a search operator
Rw, which is nonreflective, should not affect the complexity

of quantum search significantly. However, that discussion
assumed that the network was complete. As a simple test
whether the reflectivity condition on Rw can be relaxed, we
generalize Eq. (17) to

D(φ,γ ) = eiφ cos φD(γ ), (35)

which satisfies Eq. (16) but is not Hermitian, so D2 	= D for all
φ 	= 0. For such a case, we find that the RG analysis produces
a very different result that dramatically changes in the limit
φ → 0.

With the matrix D(φ,γ ), the combination I − 2G(z)D in
Eq. (22) is also singular at order ζ−1, and its inverse in Eq. (22)
has a similarly leading contribution of order ζ 0. However, the
key cancellation that brought λ2 to prominence in the ζ 1 term
of G(z) in Eq. (24) is undone in this inversion, due to the
nonreflectivity of D: At each order in ζ j , the most divergent
term in k is always ∼[(1 − eiφ cos φ)λk

1]
j
, making λ2 irrelevant

unless φ = 0. This property continues also for the term [I −
2G(z)D]−1 ∗ F (z) in Eq. (22). There, it incurs an additional
factor of λk . F (z) again annihilates the leading term while
providing a factor of ζ−1. Leaving constants of unit order aside,
we then have from Eq. (22):

ψ0 ∼ λk
1

⎧⎨
⎩

∞∑
j=0

[
(1 − eiφ cos φ)λk

1ζ
]j

⎫⎬
⎭ψIC√

N
,

∼ N

1 − (1 − eiφ cos φ)N (z − 1)

ψIC√
N

, (36)

since λk
1 = N . The inverse Laplace transform then yields

ψ0,t ∼ exp

{
− t

(eiφ cos φ − 1)N

}
ψIC√

N
. (37)

Ignoring the (rather approximate) complex exponential, which
represents a more general function that is bounded for all times
t , Eq. (37) again suggest thatp will not exceed classical scaling,
∼ 1

N
. We show simulations for |ψ2

0,t | with φ = π
4 for various

sizes N also in Fig. 6, which confirms the RG prediction.
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IV. DISCUSSION

We have indications to believe that the bounds in Eqs. (1)–
(2) are generic for any network characterized in terms of the
dimensions dQ

w and df , or ds , as depicted in Fig. 2. It is straight-
forward to extend this calculation to other networks, such as the
networks MK3 and MK4 discussed in Ref. [47], which lead to
identical conclusions aside from minor details in the analysis
[48]. A similar RG analysis has been applied previously
to continuous-time quantum search algorithms [60]. Since
many quantum computing tasks are similarly defined over a
network geometry of interacting variables, we anticipate that
our findings would inspire equivalent studies for a broad range
of quantum algorithms in the future. For instance, quantum
walks also drive the leading quantum algorithm for the element
distinctness problem [3], for finding graph isomorphisms [7],
as well as for other decision-making processes [71].
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APPENDIX A: GENERALIZED UNITARITY CONDITIONS
FOR QUANTUM WALKS ON DSG

Here, we establish generalized unitarity conditions on the
propagator U in the master equation (3) for the DSG network.
For the terms of the propagator pertaining to a generic site
x = 0 in the DSG, see Fig. 7, we find

U0 = M(|0〉〈0| + |1〉〈1| + |2〉〈2| + |3〉〈3|)
+A(|0〉〈2| + |3〉〈4| + |2〉〈1| + |1〉〈0|)

C
C C

C

C

C

A

A

A

A
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B

B
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0 2

7
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FIG. 7. A generic site 0 and seven sites 1, . . . ,7 that are at most
two hops away from 0 on a dual Sierpinski gasket (DSG). Only the
relevant hopping operators A,B,C for Eq. (A1) are labeled here.

+B(|0〉〈1| + |3〉〈5| + |2〉〈0| + |1〉〈2|)
+C(|0〉〈3| + |3〉〈0| + |2〉〈7| + |1〉〈6|), (A1)

where sites labeled x = 1, . . . ,7 are all at most two hops away
from x = 0. However, even of those, we merely keep transition
operators |i〉〈j | for which (1) j = 0 so that U0|0〉 	= 0, or (2)
i is at most one hop away from x = 0 (here, i = 0,1,2,3).
These are the only terms that can impact the unitarity condition
applicable to site x = 0, i.e.,

U†
0U0|0〉 = U†

0 (M|0〉 + A|1〉 + B|2〉 + C|3〉),
= (A†A + B†B + C†C + M†M)|0〉

+ (A†B + B†M + M†A)|1〉
+ (A†M + B†A + M†B)|2〉
+ (C†M + M†C)|3〉 + A†C|4〉
+B†C|5〉 + C†A|6〉 + C†B|7〉. (A2)

As |0〉 is a generic site, its unitarity, 〈x|U†
0U0|0〉 = δx,0, ob-

tained from Eq. (A2), then implies U†
0U0 = I for every site

with the constraints finally summarized in Eq. (7).

APPENDIX B: RENORMALIZATION GROUP (RG)

To accomplish the decimation of the sites ψ {3,...,8}, as
indicated in Fig. 3, we need to solve the linear system in Eqs. (6)
for ψ {0,1,2}. (Note that the following procedure is equivalent to
that in Ref. [64], but significantly simplified by the assumption
of symmetry, A = B, among the hopping operators.) Thus,
we expect that ψ {3,...,8} can be expressed as (appropriately
symmetrized) linear combinations

ψ {3,4} = P0ψ0 + Qψ {1,2} + Rψ {2,1} + JψIC,

ψ {5,8} = R0ψ0 + Pψ {1,2} + Qψ {2,1} + JψIC, (B1)

ψ {6,7} = Q0ψ0 + Pψ {1,2} + Rψ {2,1} + JψIC.

Inserting this ansatz into Eqs. (6) and comparing coefficients
provides consistently for the unknown matrices {P,Q,R,J }:

P = (M + A)P + A + CR,

Q = (M + C)Q + AR,

R = MR + AQ + CP,

J = I + (M + A + C)J. (B2)

Abbreviating S = (I − M − C)−1A and T =
(I − M − AS)−1C, Eqs. (B2) have the solution:

P = (I − M − A − CT )−1A,

R = T P, Q = SR, (B3)

J = (I − M − A − C)−1I.

Finally, after ψ {3,...,8} have been eliminated, we find

ψ0 = ([M0 + 2AP0] + C0)ψ0 + A(Q + R)(ψ1 + ψ2)

+ (I + 2AJ )ψIC, (B4)

and similar for ψ {1,2}. By comparing coefficients between the
renormalized expression in Eq. (B4) and the corresponding,
self-similar expression in the first line of Eqs. (6), we can
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identify the RG recursions

Mk+1 = Mk + 2AkPk,

Ak+1 = Ak(Qk + Rk),

Ck+1 = Ck, (B5)

Ik+1 = Ik + 2AkJk,

where the subscripts refer to k-renormalized (or, unrenormal-
ized) and (k + 1)-renormalized form of the hopping operators.
These recursions evolve from the unrenormalized (k = 0)
hopping operators with

{M,A,C}k=0 = z{M,A,C},
Ik=0 = I or 0. (B6)

Note that the RG recursion for {M,A,C}, the engine that drives
the walk dynamics, evolves irrespective of the specific problem
under consideration and independently from Ik . Only Ik=0

refers to the specific problem one may intend to study, as we
discuss in Sec. II. Implementing these recursions in Mathe-
matica, for example, as we have provided in the Supplemental
Material [46], allows a convenient and detailed reproduction
of the results presented in the main text.

APPENDIX C: ANALYSIS CONSIDERING MANY POLES

Here, we present a more elaborate analysis of the Laplace
poles leading to the main result in Eq. (30). Instead of only
incorporating the poles closets to the real-z axis, as in Eq. (27),
we extend the discussion to allow for a diverging number of
such poles, as Fig. 4 would suggest. Such a consideration is
well advised and has proven necessary for some observables
[48], although it will only serve to justify our approach in the
main text for the present case.

Again, for t > 0, ψ0,t should be a periodic function of
some fundamental period T (N ) = 2π/θk , but now we want
to consider it as a generalized Fourier sin series, to wit

ψ0,t ∼ Nε

⎡
⎣h(N)∑

j=1

fj sin
(
gj jθkt

)⎤⎦ψIC√
N

. (C1)

To see why this form is justified, we take the Laplace transform
as in Eq. (4) to find

ψ0(z) ∼ Nε

⎡
⎣h(N)∑

j=1

fj

2i

(
1

1 − zeigj jθk
− 1

1 − ze−igj jθk

)⎤
⎦ψIC√

N
,

∼ Nε

[
S1

θk

ζ 0 − S3

θ3
k

ζ 2 + S3

θ3
k

ζ 3 + S5

θ5
k

ζ 4 + . . .

]
ψIC√

N
,

(C2)

where we defined

Sm =
h(N)∑
j=1

fj

gm
j jm

. (C3)

The first line of Eq. (C2) reflects the observation, shown in
Fig. 4, that ψ0(z) possesses a set of Laplace poles on the unit
circle in the complex-z plane, symmetric around the real-z
axis, that increasingly impinge on that real axis at z = 1. Near

FIG. 8. Diagram for the two-qubit extension of the spatial Grover
search in Tulsi’s method. The inner (dashed) box describes the action
of the first qubit H ′

2 on the original walk operator U that yields U ′.
It is only the second qubit H ′′

2 that inserts the tunable parameter τ ,
whose optimized choice allows to evolve the state of the system from
its uniform initial state |s〉 to overlap with probability p ∼ 1 with the
sought-after state |w〉 after T iterations, as determined in Eq. (30), of
the search propagator U ′′

w = U ′′R′′
w (indicated by the faint outer box).

there, these poles are roughly equally spaced, as expressed
by multiples of a phase angle, jθk , where gj represents some
almost-constant function of j that captures any irregularities
in the spacings. The function h(N ) allows for the possibility
that a diverging number of such poles could contribute [48]. In
turn, the residues at those poles, Nεfj , are the amplitudes for
each mode in Eq. (C1). As |ψ0,t | is bounded, so is |fj |Nε−1/2

both as a function of index j and N . Accordingly, there must
be some m0 such that the sums in Eq. (C3) are convergent for
m � m0, i.e., Sm�m0 = O(1), independent of h(N ). In fact,
the boundedness of fj with j implies that Sm�2 = O(1). We
find that the only consistent choice to match the RG results
in Eq. (26) is to assume that also S1 is constant, hence, the
number of poles that needs to be considered, h(N ), does not
impact the considerations. Then, we match Eqs. (26) and (C2)
term by term in ζ to get

Nε S1

θk

∼ λk
1, Nε S3

θ3
k

∼ λ2k
1 λk

2, (C4)

which provides for the characteristic period and the amplitude
factor already shown in Eq. (30).

APPENDIX D: OPTIMIZED SEARCH
WITH TUSLI’S METHOD

References [58,70] outline an implementation of the spatial
Grover search algorithm for finite-dimensional networks that
can dramatically improve the probability to locate the sought-
after site w at the optimal time for a measurement. While Tulsi
introduces the idea first to obtain the most efficient search
algorithm to date on a square lattice [58], we follow here his
generalization for arbitrary unitary evolution operators [70],
such as U in Sec. III. Without further assumptions on U , we
then require two extra qubits, as shown in the diagram in Fig. 8.
The Hilbert space then becomes H′′ = HN ⊗ HC ⊗ H ′

2 ⊗ H ′′
2 ,

where H = HN ⊗ HC is the original Hilbert space consisting
of the real-space HN and the site-internal coin-space HC . For
example, the walk operator U and the search operator Rw =
IN ⊗ IC − |w〉〈w| ⊗ (2D), and the unitary search propagator
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Uw = U · Rw, as discussed in Sec. III, are operators inH. Then,
let H2 be a qubit two-state space, in which we conveniently
define the projectors Ps = |s〉〈s|, with s ∈ {0,1} for each
internal state of H2. Note thatP0 + P1 = I2 andP0 − P1 = σz,
where σz is a Pauli matrix.

The first extension of the walk operator with qubit H ′
2 entails

(see diagram in Fig. 8):

U ′ = (c′
1U†)(c′

0U ),

= (IN ⊗ IC ⊗ P′
0 + U† ⊗ P′

1)(U ⊗ P′
0 + IN ⊗ IC ⊗ P′

1),

= U ⊗ P′
0 + U† ⊗ P′

1. (D1)

Furthermore, for the target, we have

|w′〉 = |w〉 ⊗ |γ 〉 ⊗ |+′〉, (D2)

where in coin space |γ 〉 is such that we get the operator
|γ 〉〈γ | = D(γ ) in Eq. (17), and where |+〉 = (|0〉 + |1〉)/√2.
Then, the search operator R′

w = IN ⊗ IC ⊗ I′
2 − 2|w′〉〈w′|

and the search propagator U ′
w = U ′R′

w follow accordingly.
(Under certain conditions on U , this first qubit may be redun-
dant [70].)

The second qubit H ′′
2 finally yields the walk operator

U ′′ = (IN ⊗ IC ⊗ I′
2 ⊗ σ ′′

z )(c′′
0U ′),

= U ′ ⊗ P′′
0 − IN ⊗ IC ⊗ I′

2 ⊗ P′′
1, (D3)

and target

|w′′〉 = |w′〉 ⊗ |τ ′′〉, (D4)

introducing the free parameter τ via

|τ ′′〉 = sin τ |0′′〉 + cos τ |1′′〉. (D5)

Then, we finally obtain the search propagator U ′′
w = U ′′R′′

w

with the search operator

R′′
w = IN ⊗ IC ⊗ I′

2 ⊗ I′′
2 − 2|w′′〉〈w′′|,

= IN ⊗ IC ⊗ I′
2 ⊗ I′′

2

− 2|w〉〈w| ⊗ D(γ ) ⊗ D′
(

π

4

)
⊗ D′′(π − τ ),

in an obvious adaptation of the matrix D in Eq. (17).
To follow the procedure outlined in Sec. III, we now merely

need to first apply sequentially Eqs. (D1) and (D3) to each
hopping operator {M,A,C,I } to obtain {M ′′,A′′,C ′′,I ′′}. While
the entire fixed-point analysis of the RG in Sec. II does not
change, even in the search analysis in Sec. III, we only modify
Eq. (26) to read:

ψ0 ∼ cot τ
{(
Aλk

1

)
F ′′

0 ζ 0 + (
Aλk

1

)2(Bλk
2

)
F ′′

2 ζ 2
}ψIC√

N
, (D6)

where the F ′′
i are now the two-qubit enlarged versions of those

matrices in Eq. (26). From this relation, again in comparison
with Eq. (28), follow the Tulsi-improved Eqs. (31) discussed
in Sec. III B 1.
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