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Quantum illumination takes advantage of quantum entanglement to achieve low error probability for detecting a
low reflective object embedded in a noisy thermal bath. The two-mode squeezed state (TMSS), which is a Gaussian
state, has been applied to quantum illumination as the detecting states in experiment. The photon-subtracted
TMSS has also been proposed to achieve even lower error probability. Here we study quantum illumination with
non-Gaussian states generated by photon subtraction and photon addition. Helstrom limit and quantum Chernoff
bound are evaluated for comparison between performance of states with the same squeezing strength and with the
same signal strength, respectively. Particularly, states generated by asymmetrical coherent superposition of photon
subtraction and addition are studied, which are shown by us to have better performance than symmetrical ones. We
show that non-Gaussian operations enhance the quantum illumination by introducing both stronger entanglement
and signal strength. We then give a strategy on how to choose the optimal states for the best performance in
different scenarios.
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I. INTRODUCTION

Quantum illumination [1,2], also called entanglement-
enhanced sensing, utilizes entangled states to enhance the
performance of a target-detection task in a lossy and
noisy scenario. Unlike other entanglement-assisted quantum
techniques, it can still benefit from entanglement in an
entanglement-breaking environment [1–3]. Gaussian quantum
illumination using two-mode squeezed states (TMSS) has
been proposed [4] and realized experimentally [5–8]. Quantum
illumination has inspired applications in quantum security
communication [9,10], microwave quantum radar [11], and
cloaking [12]. The measurement step of quantum illumination
can be regarded as a binary quantum state discrimination task
[13–16], whose performance is evaluated by detection error
probability [17–20]. Besides, quantum illumination can be
studied in the context of quantum hypothesis testing [21],
quantum estimation [22], and quantum communication pro-
tocol [23,24]. It is also one kind of quantum imaging [25].

Non-Gaussian quantum resources play important roles in
quantum information [26]. Photon subtraction and photon
addition can generate non-Gaussian states with enhanced
entanglement and quantum correlation [27–29]. Entanglement
is regarded as the key resource assisting quantum illumination
[1,2,4]. It has been shown that a photon-subtracted TMSS
achieves lower error probability [30], where the detecting
states compared have the same squeezing strength. Coherent
superposition of photon subtraction and addition can enhance
entanglement more than mere subtraction and addition, partic-
ularly in small squeezing regimes [31,32], in which quantum
illumination also has the most advantages [1,2,4]. Thus we
could expect coherent superposition of photon subtraction and
addition can enhance quantum illumination more than other
non-Gaussian operations.

Even though entanglement is regarded as the key resource
for quantum illumination, mutual information and quantum
discord [33,34] have also been shown to be sources assist-
ing quantum illumination [23,24,35]. The fractional increase
of mutual information is shown to give a close approxi-
mation of signal-to-noise ratios [35]. Quantum discord ex-
plains the resilience of quantum illumination in entanglement-
breaking channels [23,24]. Here we only use entanglement
as an indicator of performance. We show that comparison
between entanglement strength of states gives us useful
clues on how to choose better detecting states for quantum
illumination.

In this paper, we apply various two-mode entangled states
to quantum illumination, including the non-Gaussian states
obtained by photon subtraction and photon addition. We then
study the error probability of each state with respect to its
squeezing strength and signal strength. The performance is
evaluated using the Helstrom limit [13] and the quantum Cher-
noff bound [17]. The entanglement strength of the detecting
state is measured by entropy of entanglement. We show that
under the same squeezing strength, non-Gaussian states can
enhance quantum illumination because of their larger entan-
glement and signal strength. However, the TMSS performs
better than other non-Gaussian states when a constraint on
signal strength is applied. We also show that the asymmetrical
coherent superposition of photon subtraction and addition can
achieve better performance than symmetrical ones.

This article is organized as follows. In Sec. II A, we give a
brief review of quantum illumination and its equivalent model.
In Sec. II B, we introduce various non-Gaussian states and
discuss their properties on entanglement and signal strength.
In Sec. III A we compare the performance of these states
under the same squeezing strength. In Sec. III B, we make a
comparison between performances of states under the same
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FIG. 1. Model of quantum illumination.

signal strength. In Sec. IV, we study the performance of
asymmetrical two-mode entangled states.

II. QUANTUM ILLUMINATION AND NON-GAUSSIAN
STATES

A. Quantum illumination

The task of quantum illumination is to determine the
existence of a low-reflective object which is embedded in
a noisy thermal bath. Its equivalent model is illustrated in
Fig. 1. The two-mode entangled photon state ρAB is used as
the detecting state. The mode B (signal) is sent for detecting
the suspect object; i.e., it can be reflected back by the object if
there exists one. The mode A (idler) is retained to be measured
together with the returned signal B ′. The suspect object can
be modeled by a beam splitter with low reflectance R. The
thermal noise C, whose average photon number is Nth, will
enter the final measurement device M if no object is present.
If an object is present, the thermal noise is mixed with B by
the beam splitter. In the latter case, the average photon number
of the thermal noise is adjusted to be N ′

th = Nth
1−R

during nu-
merical calculation to compensate for the loss during mixing.

Let the photon annihilation operators for the idler, the signal,
and the thermal noise be aA, aB , and aC . The two-mode mixing
operator U (ξ ) = exp (ξa

†
BaC − ξ ∗aBa

†
C) describes the beam

splitter, where ξ = arcsin
√

R. The output modes after mixing
are labeled by aB ′ and aC ′ as shown in Fig 1. Thus we have
aB ′ = cos(ξ )aC − sin(ξ )aB . Two possible output states ρ0 and
ρ1 can enter the measurement device M , depending on whether
the suspect object is absent or present:

absent (nomixing): ρ0 = TrB[ρAB] ⊗ ρC,

present (mixing): ρ1 = TrC[UρAB ⊗ ρCU†]. (1)

Next step, we use a measurement device M to infer whether
an object is present or not by discriminating above two states as
best as we can. The performance of discrimination is measured
by the error probability of inference, which may depend on a
priori probability. Here we assume that the suspect object is
equally absent and present. When we have N identical copies
of entangled states for detection, the optimal error probability
is given by the Helstrom limit [13]:

Perr,N = 1
2

(
1 − 1

2

∣∣∣∣ρ⊗N
0 − ρ⊗N

1

∣∣∣∣). (2)

It is difficult to evaluate because of the high dimensionality.
Another difficulty is that it is not monotonic for the tensor
power. An asymptotically tight upper bound, which is called
the quantum Chernoff bound (QCB) [17], is easier to evaluate

and is given by

Perr,N � 1
2P N

QCB = 1
2

{
min

0�t�1
Tr

[
ρ t

0ρ
1−t
1

]}N

. (3)

We use the above two quantities to measure the performance
of quantum illumination. Meantime the entanglement of a
detecting state can be measured by the von Neumann entropy
of reduced density operators, which is given by

E(|ψAB〉) = −Tr[ρA ln ρA] = −Tr[ρB ln ρB], (4)

where ρA = TrB|ψAB〉〈ψAB| and ρB = TrA|ψAB〉〈ψAB|. We
call it the “entropy of entanglement” and use the label E for it
hereafter.

B. Non-Gaussian entangled states

The TMSS is a widely used entanglement state in
continuous-variable quantum information [36,37]. It is given
by

|TMSS〉 =
√

1 − λ2
∞∑

n=0

λn|n〉|n〉, (5)

where λ = tanh s and s is the squeezing parameter. The TMSS
is a Gaussian state. Quantum illumination has been realized
experimentally with the TMSS as the entangled detecting
photon source [4–8]. As entanglement is regarded as the key
quantum resource assisting quantum illumination, we expect
that detecting states with enhanced entanglement strength can
achieve lower error probability.

A combination of photon-subtraction and photon-addition
operations can generate various non-Gaussian entangled states
which have enhanced entanglement [27,28]. Here we study
states obtained by following non-Gaussian operations: photon-
subtraction (PS), photon-addition (PA), photon-subtraction-
following-addition (PSA), and photon-addition-following-
subtraction (PAS). It has also been shown that a coherent
superposition of both photon subtraction and photon addition
[31] leads to the strongest enhancement of entanglement under
small squeezing strength [32]. We call the non-Gaussian state
generated by such an operation a “PCS” state for short. The
former four kinds of states are given by

âb̂|TMSS〉 .=
√

A1

∞∑
n=0

(n + 1)λn|n〉|n〉,

â†b̂†|TMSS〉 .=
√

A1

∞∑
n=0

(n + 1)λn|n + 1〉|n + 1〉,
(6)

ââ†b̂b̂†|TMSS〉 .=
√

A2

∞∑
n=0

(n + 1)2λn|n〉|n〉,

â†âb̂†b̂|TMSS〉 .=
√

A2

∞∑
n=0

(n + 1)2λn|n + 1〉|n + 1〉,

where the
.= means that the left-hand side equals the right-hand

side after normalization. The normalization factors are given
by

A1 = (1 − λ2)3

1 + λ2
, A2 = (1 − λ2)5

1 + 11λ2 + 11λ4 + λ6
. (7)
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The PCS state is given by [32]

(taâ + raâ
†)(tbb̂ + rbb̂

†)|TMSS〉
.=

√
A3

∞∑
n=0

λn[λtatb(n + 1)|n〉|n〉

+ λtarb

√
(n + 1)(n + 2)|n〉|n + 2〉

+ λratb
√

(n + 1)(n + 2)|n + 2〉|n〉
+ rarb(n + 1)|n + 1〉|n + 1〉], (8)

where t2
i + r2

i = 1(i = a,b), and the normalization factor is
given by

A3 = (1 − λ2)3

λ2(1 + |tar∗
b + rat

∗
b |) + |tatbλ2 + rarb|2 . (9)

Some properties of these non-Gaussian states have been
discussed in previous studies [28,32]. However, the previous
discussion on PCS states is limited to symmetrical ones, where
ra = rb holds. Here we show properties of these states with a
focus on their entanglement and photon numbers, particularly
for asymmetrical PCS states. We illustrate the entropy of
entanglement E in Fig. 2(a) and the total average photon
number 〈n〉 in Fig. 2(b) for each state with respect to λ. The
ratio between them, which indicates entanglement provided by
each photon, is illustrated in Fig. 2(c). It is shown that for a
given λ, PS and PA have the same entropy of entanglement
E; however, PA has one more photon per mode than that of
PS. Similar results are observed for PSA and PAS. Meanwhile
PSA (PAS) has larger entanglement than PS (PA). Therefore,
non-Gaussian operations not only enhance entanglement, but
also bring larger average photon numbers, i.e., signal strength.

The properties of PCS are somehow complicated because
of free choices on ra and rb. In Fig. 2, for each λ, we choose
the pair of ra and rb which leads to the largest entropy of
entanglement E for plotting. With such choices, the PCS state
has the most enhanced entanglement of any other state under
small squeezing strength for λ � 0.15. In the region from λ ≈
0.15 to λ ≈ 0.35, its entanglement becomes less than that of
PAS and PSA, but it is still larger than the entanglement of
other states. When λ � 0.35, the optimal PCS reduces to PA
or PS. That is to say, there are two optimal choices which
lead to the largest entanglement: ra = rb = 0 and ra = rb = 1.
In Fig. 2(b), the curve of PCS starts from point (0,1.0), and
then it goes between the curves of PS and PA until the point
around λ = 0.05. For λ from 0.05 to 0.35, the curve of PCS
almost overlaps with that of PA (ra = rb = 1). Our numerical
results show that values of ra and rb are very close to 1.0, but
not identical to 1.0. For λ � 0.35, the optimal PCS reduces to
either PA or PS as mentioned earlier. In the plot, we choose to
set ra = rb = 1, so the curve of PCS overlaps exactly with that
of PA for λ � 0.35.

It would be a practical consideration to achieve better
detecting performance with less photons consumed. To get
some clues, we plot entanglement provided per photon E/〈n〉
with respect to λ in Fig. 2(c) for all these states. It is shown that
the TMSS is the most “efficient” one to obtain entanglement
with the least number of photons. We could expect that the
TMSS would perform best for quantum illumination if we
have a constraint on signal strength. The PA, PAS, and PCS
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FIG. 2. (a) Entropy of entanglement E, (b) signal strength 〈n〉,
and (c) entanglement provided per photon E 〈n〉, for TMSS and non-
Gaussian states under given values of λ ranging from 0.0 to 0.6. (a)
Comparison of entanglement E among states with respect to λ. Here
we have extra notes for PCS states. As a PCS state is determined
by the three variables ra , rb, and λ, its entanglement still varies with
respect to ra and rb when λ is given. In the plot above, the curve of
PCS states shows the maximum E can be obtained for each λ; i.e.,
the optimal pairs of ra and rb for each λ are used for calculating the E

of PCS states. (b) Comparison of average photon numbers 〈n〉 among
states with respect to λ. The values of ra and rb used for PCS states
for each given λ are the same as those used in panel (a). So the 〈n〉 of
PCS shown in the curve may not be the maximum one for each λ. (c)
Comparison of E/〈n〉 among states with respect to λ. The values of
ra and rb used for PCS states for each λ are the same as those used in
panel (a).
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FIG. 3. Entropy of entanglement E with respect to ra and rb for
PCS states given for four different values of λ. All four subplots
are symmetrical with respect to ra = rb. Optimal points which have
the largest entanglement have been labeled in each plot by solid
yellow dots. They are (0.100,0.100) for λ = 0.01, (0.211,1.00) and
(1.00,0.211) for λ = 0.15, (0.451,1.00) and (1.00,0.451) for λ =
0.30, and (0.0,0.0) and (1.0,1.0) for λ = 0.45.

states are less “efficient” as their photon-addition operations
increase their average photon numbers a lot, meanwhile their
entanglement is not enhanced that much.

PCS states show complicated curves, as they have free
choices on ra and rb. Four examples to show how their
entanglement depends on ra and rb are illustrated in Fig. 3. It is
obvious that the modes A and B are equivalent so that the plots
are symmetrical around the antidiagonal line where ra = rb

holds. Numerical results show that for λ � 0.05, the optimal
choices to obtain the largest entanglement are symmetrical
states so that r

opt
a = r

opt
b . Then the optimal points move to the

edge as λ increases, i.e., ra = 1 or rb = 1. Finally the optimal
points move to and stay on two antidiagonal vertices.

III. COMPARISON OF PERFORMANCE

The photon subtracted two-mode squeezed state has been
compared with the TMSS for quantum illumination [30]. The
comparison between these two kind of states was made under
the condition that they have the same squeezing strength,
i.e., the same λ. Here we extend the comparison to all non-
Gaussian states mentioned in Eqs. (6) and (8). We carry out
numerical calculations of the quantum Chernoff bound and
the Helstrom limit for N = 1 using Eqs. (2) and (3) to evaluate
the performance. We first make a comparison of performance
under the same squeezing strength in Sec. III A like what has
been done in the Ref. [30]. Then, in Sec. III B we make a
comparison under the signal strength of mode B, i.e., the same
average photon number 〈nB〉 of mode B.

Setup. As mentioned in Ref. [1,4], quantum illumination
shows its greatest advantage under low signal-to-noise ratios.
Also it has to be mentioned that these two-mode states
approach classical-state behavior when their signal strength is
too large [4]. Therefore, throughout our numerical calculations,
we set up the low-reflectance and high-noise scenario. The
reflectance of suspect object R = 0.01. The average photon
number of thermal noise has a relatively large value so that
Nth = 1.0. Values of λ are also limited to be below 0.6 in order
to keep the signal strength of detection states small enough. In
such a scenario, error probability for detection using one copy
of state is close to 0.5, as the signal is too weak to distinguish
between two possible output states.

Methods. We use PYTHON, NUMPY, SCIPY, and the
QUTIP [38,39] quantum toolbox for numerical calculations.
MATPLOTLIB and SEABORN are used for plotting figures. In
QUTIP, a Fock state |n〉 is created by basis(n_max, n),
where n is the Fock number and n_max is the truncated
photon numbers for numerical calculation. We set n_max
= 32 throughout our numerical simulations. First, we
create all these two-mode states shown in Eqs. (5), (6),
and (8) by summation of the tensor product of Fock
states over n from n = 0 to n = 31. For example we
can create a TMSS by tmss = sum([lambda ** n *
tensor(basis(n_max, n), basis(n_max, n)) for
n in range(n_max)]).unit(), where .unit() is a
normalization operation. The annihilation operator a =
destroy(n_max), then the two-mode mixing operator
U (ξ ) = exp (ξa

†
BaC − ξ ∗aBa

†
C) can be created by U =

s * tensor(a.dag(), a) - conj(s) * tensor(a,
a.dag()). With these density matrix and operators created,
we can obtain ρ0 and ρ1 shown in Eq. (1), and the Helstrom
limit shown in Eq. (2). The calculation can be carried out
straightforwardly using methods of tensor product, partial
trace, and trace norm, which are predefined in the QUTIP

toolbox. The numerical calculation of the quantum Chernoff
bound takes some extra effort as optimal t needs to be
found. It is fulfilled by using the minimize method from
scipy.optimize.

A. Under the same squeezing strength

Here we first study how performance changes with respect
to λ for each state. Then we compare the performance of
these states given the the same λ. The results for the quantum
Chernoff bound and the Helstrom limit are illustrated in
Figs. 4(a) and 4(b), respectively. The two figures show similar
results and conclusions. First we discuss the states except the
PCS state. The rank of performance, from the best to the worst,
is in the order of PAS, PSA, PA, PS, and TMSS. The ranking
order can be understood by looking at Fig. 2. For a given value
of λ, PSA and PAS have the most enhanced entanglement,
then PS and PA follow. The TMSS has the smallest entropy of
entanglement. Meanwhile PAS (PA) has a larger signal strength
than PSA (PS). As both the entanglement strength and the
signal strength affect the performance, this explains why we
get the ranking order mentioned above.

In Fig. 4, we plot two curves for PCS states, labeled by
PCS-etgl and PCS-opt, respectively. For the curve of PCS-
etgl, we choose those ra and rb which lead to the largest

012319-4



QUANTUM ILLUMINATION USING NON-GAUSSIAN … PHYSICAL REVIEW A 98, 012319 (2018)

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.4975

0.4980

0.4985

0.4990

0.4995

0.5000
Q

ua
nt

um
C

he
rn

of
f

B
ou

nd
(N

=
1)

TMSS

PS

PA

PSA

PAS

PCS-etgl

PCS-opt

0.0 0.1 0.2 0.3 0.4 0.5
λ

0.45

0.46

0.47

0.48

0.49

0.50

H
el

st
ro

m
L

im
it

(N
=

1)

TMSS

PS

PA

PSA

PAS

PCS-etgl

PCS-opt

(a)

(b)

FIG. 4. (a) Quantum Chernoff bound and (b) Helstrom limit with
respect to λ for quantum illumination using a single copy of the
detecting state (N = 1). Here we set Nth = 1.0 and R = 0.01. Here
we have some extra notes for PCS states. Two curves for PCS states are
plotted in both panels (a) and (b). The points for the curve of PCS-etgl
are constituted with PCS states which have the largest entanglement
under a given λ, i.e., the ra and rb used here are the same as what we
used for plotting Fig. 2(a). Meanwhile, the curve of PCS-opt shows
the optimal lowest quantum Chernoff bound which a PCS state can
reach for each λ.

entanglement as in Fig. 2. Meanwhile the PCS-opt curve shows
the lowest error probability a PCS state can achieve for each λ.
In the region where λ is smaller than about 0.17, the PCS state
outperforms all other states, which results from its advantage
in both entanglement and signal strength as shown in Fig. 2.
We find similar stairs jumping at about the same positions
(λ ≈ 0.05) in both Figs. 4 and 2(b), which indicates the signal
strength has an impact on the performance.

The deviation between curves of PCS-etgl and PCS-opt also
shows that entanglement is not the only factor determining
the performance of quantum illumination. The choices of ra

and rb which result in the largest entanglement do not always
lead to the lowest quantum Chernoff bound, because the signal
strength also matters. Here is an example for the case where
λ = 0.0995 (such that we have 〈nB〉 = 0.01 for the TMSS),
Nth = 1.0, and R = 0.01. The optimal points which have the
largest entanglement are (0.140,1.0) (A) and (1.0,0.140) (B).
The corresponding quantum Chernoff bounds are 0.499 124
and 0.499 550 respectively. Meanwhile, the lowest quantum
Chernoff bound can be achieved under the same λ is 0.499 081,
which is obtained at point C (0.118,0.950). It is very close to
point A, which has the maximum entanglement. Point C has
entanglement of 0.688 and 〈nB〉 of 1.544. Meanwhile point
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FIG. 5. Entropy of entanglement E vs average photon number
〈nB〉 of mode B. ra and rb are sampled for PCS states to make scattered
plots. The TMSS has the largest entropy of entanglement among these
states when they all have the same 〈nB〉. The points of the PCS states
are bounded by the curve of PS from the top. (Notice that states used
for plotting PCS-etlg are optimized for each λ; they are no longer
the optimal states with the largest entanglement for each 〈nB〉. For
the same 〈nB〉, PCS states can have different combinations of ra , rb,
and λ, so we observe the u-turn shape of the PCS-etgl curve around
〈nB〉 = 1.6.)

A has entanglement of 0.699 and 〈nB〉 of 1.529. Even though
point C has less entanglement strength, it has larger signal
strength. The overall effect makes point C achieve the lowest
quantum Chernoff bound.

In summary, suppose now we have a TMSS in the labora-
tory, we could further improve the performance of quantum
illumination by applying various non-Gaussian operations on
it, as such operation can enhance the entanglement and the
signal strength of the detecting states at the same time. Among
all these non-Gaussian states, the PCS state performs the
best under small squeezing strength, as it can enhance the
entanglement the most.

B. Under the same signal strength

From Fig. 2 we learn that non-Gaussian operations on the
TMSS will not only enhance entanglement, but also bring
larger average photon numbers. Both factors can enhance the
performance of quantum illumination. The former is a quantum
effect, while the latter is purely classical. Furthermore, in
practice we would like to achieve the same performance with
less power, particularly with less power of mode B, as a large
detecting signal can also be detected by the other party we
would like to detect, which exposes ourselves. Since mode B

is sent out for detection, a constraint on its signal strength could
be a practical consideration.

As entanglement is the key resource of quantum illumina-
tion, we first explore how the entropy of entanglement E varies
with respect to different states under the same signal strength
of mode B. The results are shown in Fig. 5. We find that the
TMSS has the largest E of any other states under the same
〈nB〉. PCS states can have different values of E even for the
same 〈nB〉 because of the free choices of ra and rb, so we show
points of PCS states with scatter plots. An upper boundary
of all possible PCS points is observed, which exactly overlap

012319-5



LONGFEI FAN AND M. SUHAIL ZUBAIRY PHYSICAL REVIEW A 98, 012319 (2018)

0.0 0.5 1.0

(a)

(b)

1.5 2.0
〈nB〉

0.4980

0.4985

0.4990

0.4995

0.5000
Q

ua
nt

um
C

he
rn

of
f

B
ou

nd

TMSS

PS

PA

PSA

PAS

0.0 0.2 0.4 0.6 0.8 1.0
〈nB〉

0.4990

0.4992

0.4994

0.4996

0.4998

0.5000

Q
ua

nt
um

C
he

rn
of

f
B

ou
nd

PS

PCS

FIG. 6. Quantum Chernoff bounds with respect to the signal
strength, i.e., the average photon number 〈nB〉 of mode B. (a) In this
figure, we compare Quantum Chernoff bounds among states except
the PCS states under the same signal strength, i.e., the same average
photon number 〈nB〉 of mode B. It is shown that given the same
〈nB〉, detecting using the TMSS can get the lowest quantum Chernoff
bound. (b) Here we show quantum Chernoff bounds of PCS states
with respect to the signal strength. Again we sample ra and rb to plot
scattered points. It is shown that these scattered points of PCS states
are bounded by the curve of PS states from the bottom, which is a
counterpart for the upper boundary shown in Fig. 5.

with the curve of PS. Therefore, given an arbitrary value of
〈nB〉, the optimally chosen PCS state can only perform as well
as a PS state with the same 〈nB〉. No PCS state can achieve
larger E than the TMSS. The states constituting the PCS-etgl
curve in Fig. 5 are the same as what we use in Fig. 2. It is far
below the upper boundary. Since their ra and rb are optimized
for each λ, they are no longer the optimal choices for a given
〈nB〉. Given the same 〈nB〉, the optimal PCS state which has
the largest entanglement reduces to a PS state.

The above results for E vs 〈nB〉 give us some clues on
the strategy of how to choose the optimal detecting state. We
would choose the TMSS, as it has the largest entanglement for
each 〈nB〉. We illustrate in Fig. 6 how the quantum Chernoff
bound changes with respect to 〈nB〉 to show that our strategy
is correct. The TMSS achieves the lowest quantum Chernoff
bound among these states under the same 〈nB〉. Then PS
and PSA follow. PA and PAS fall far behind, particularly for
〈nB〉 < 1. Their minimum 〈nB〉 is 1.0, meanwhile the curves
of other states start from (0.0,0.5). In Fig. 6(b), PCS states with
different values of ra and rb are sampled and shown with scatter
plots. It is clearly seen that these scatter points are bounded
by the curve of PS like what we have observed in Fig. 5. So

under the same 〈nB〉, the optimal PCS state which achieves
the lowest quantum Chernoff bound reduces to a PS state. The
results shown here are rather different from the results shown in
Fig. 4, where comparisons are made given the same squeezing
strength λ. We get a ranking order reversed from that in
Sec. III A.

So the strategy of choosing optimal states for detecting
depends on what constraints we have on states. First if we can
choose detecting states freely, the TMSS is the optimal one,
whenever there is a constraint on squeezing strength or signal
strength. If there is a constraint on the signal strength of mode
B, the TMSS can achieve the lowest quantum Chernoff bound
for a given value of 〈nB〉 as shown in Fig. 6(a). Meanwhile
if there is no constraint on the signal strength of mode B, the
TMSS is still the one that costs the least detecting power to
obtain an equal quantum Chernoff bound. Second assume that
we have limited TMSS sources available in our laboratory, we
could consider applying additional non-Gaussian operations
on these TMSS sources to obtain better performance.

It can be seen that Fig. 6(a) is like a mirroring of Fig. 5
with respect to the x axis. Also, Fig. 4(a) is like a mirroring
of Fig. 2(a). Both Figs. 5 and 2(b) show how entanglement
changes. This again indicates qualitatively that entanglement
is the key quantum resource assisting quantum illumination.
Form the curves of entanglement, we can get some clues on
how well states perform in quantum illumination.

IV. ASYMMETRICAL PCS STATES

We have mentioned in Sec. III A that the PCS states which
have the largest entanglement for λ do not always result in the
best performance for the same λ. Here we show an example to
explain the reason behind this. First, we notice that the model of
quantum illumination shown in Fig. 1 is asymmetrical, because
the signal mode B and the idler mode A go through rather
different channels. Second, recall that the PCS states can have
asymmetrical operations on the two modes, respectively, as

PCS =
√

N3(taâ + raâ
†)(tbb̂ + rbb̂

†)|TMSS〉. (10)

By setting unequal values for ra and rb, we get asymmetrical
PCS states. One aspect of asymmetry is that two modes can
have different average photon numbers. We show how the
average photon numbers of two modes change with respect to
ra and rb in Fig. 7, where we set λ = 0.0995. It is not strange
that each mode achieves the largest average photon number if
its coefficient ri(i = a,b) for the creation operator is 1.0. As
mode B is sent out for detection, it must be large enough to
resist noise.

An example is illustrated in Fig. 8 to show how entangle-
ment and signal strength affect the performance of quantum
illumination with PCS states. The parameters we set are Nth =
1.0, R = 0.01, and λ = 0.0995. The entropy of entanglement
E is symmetrical with respect to the antidiagonal, where
ra = rb. There is a symmetrical L-shaped dark red band,
where the state has larger entropy of entanglement. However,
the quantum Chernoff bound is not symmetrical about the
antidiagonal. There is still an L-shaped band, which matches
roughly the L-shaped band shown in Fig. 8(a). However, the
optimal area which has the lower quantum Chernoff bound
moves to the bottom right corner of the L-shaped band, where
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FIG. 7. Average photon numbers of each mode for PCS states
with respect to ra and rb. (a) Average photon numbers 〈nA〉 of mode A,
which is retained in the laboratory. (b) Average photon numbers 〈nB〉
of mode B, which is sent out for detection. Here we set λ = 0.0995
in both panels (a) and (b). For comparison, the TMSS with the same
value of λ has an average photon number of 0.01 for each mode.

〈nB〉 is larger as shown in Fig. 7. The results for the quantum
Chernoff bound are as expected, because both the entangle-
ment and the signal strength affect the performance of quantum
illumination. Therefore when we use PCS states for quantum
illumination, an asymmetrical one where 〈nB〉 > 〈nA〉 will
outperform symmetrical input states where 〈nB〉 = 〈nA〉.

The results shown here again prove our conclusion that both
the entanglement and the signal strength of the detecting state
would affect the error probability of quantum illumination.
From the quantum point of view, a larger amount of entan-
glement results in larger quantum correlations between two
modes. From the classical point of view, stronger signals are
less vulnerable to noisy and lossy environments.

V. CONCLUSION

In this article, we explored the performance of different two-
mode entangled states for quantum illumination, including the
TMSS and non-Gaussian states obtained by applying photon-
subtraction and photon-addition operations to the TMSS. We
evaluated the Helstrom limits and the quantum Chernoff
bounds achieved by these states for comparisons given the
same squeezing strength and the same signal strength, respec-
tively. We also explored the performance of asymmetrical PCS
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rb
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FIG. 8. (a) Entropy of entanglement for PCS states with respect
to ra and rb. (b) Quantum Chernoff bound for PCS states with respect
to ra and rb. In both panels (a) and (b), we set Nth = 1.0, R = 0.01,
and λ = 0.0995.

states generated by an asymmetrical coherent superposition of
both photon subtraction and photon addition.

In summary, we conclude that non-Gaussian operations
can enhance the performance of quantum illumination com-
pared with the base TMSS where we apply these operations.
With these non-Gaussian operations, we obtain lower error
probability by introducing both stronger entanglement and
average photon numbers. Both factors affect the performance
of quantum illumination, the former is a quantum effect, and
the latter is a classical effect. However, if the signal strength
must be constrained, the TMSS is the best choice. It delivers the
same performance with the least number of photons consumed.
When choosing the PCS state as the detecting state, we would
consider an asymmetrical configuration to achieve lower error
probability by making the signal (mode B) stronger than the
idler (mode A). It is also possible to make many other kinds
of asymmetrical non-Gaussian states besides PCS states, for
example, by two photon-subtraction operations on one mode
and just one photon-addition operation on the other mode. The
asymmetrical properties of the quantum illumination channel
need further study to find the optimal detecting states.
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