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Minimal qubit resources for the realization of measurement-based quantum computation

Monireh Houshmand, Mahboobeh Houshmand,* and Joseph F. Fitzsimons
Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372

and Centre for Quantum Technologies, National University of Singapore, Block S15, 3 Science Drive 2, Singapore 117543

(Received 31 May 2017; published 17 July 2018)

In measurement-based quantum computation (MBQC), a special highly entangled state (called a resource
state) allows for universal quantum computation driven by single-qubit measurements and postmeasurement
corrections. The large number of qubits necessary to construct the resource state constitutes one of the main
down sides to MBQC. However, in some instances it is possible to extend the resource state on the fly, meaning
that not every qubit must be realized in the devices simultaneously. We consider the question of the minimal
number of physical qubits that must be present in a system to directly implement a given measurement pattern.
For measurement patterns which have quantum circuit representation as formalized by the notion of flow, with n

inputs, n outputs, and m total qubits, we show that only a minimum of n + 1 and m qubits are required, while the
number of required qubits can be as high as m − 2 for measurement patterns which implement a unitary but do
not have a quantum circuit representation, as formalized by the notion of generalized flow (gflow). We discuss
the implications of removing the Clifford part of a measurement pattern, using well-established transformation
rules for Pauli measurements, for the presence of flow versus gflow, and hence the effect on the minimum number
of physical qubits required to directly realize the measurement pattern.
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I. INTRODUCTION

The circuit model of quantum computation [1] provides a
direct analog to the common classical computational model
based on networks of logic gates. On the other hand,
measurement-based quantum computation (MBQC) [2] pro-
vides a conceptually and practically different model. This
model harnesses unique features of quantum mechanics related
to entanglement and measurement, and hence does not have a
direct classical counterpart.

A measurement-based computation can be represented by
a measurement pattern, where single-qubit measurements are
made on a special resource state (known as graph state)
consisting of qubits prepared in a specific entangled state. For a
formal definition of a measurement pattern we refer the reader
to [3]. Resource states can be formed by first preparing single-
qubit states and then applying specific entangling operations.
The entangling operations in a measurement pattern can be
represented by a graph, where each vertex corresponds to a
qubit and each edge corresponds to an entangling operation
performed between the qubits indicated by the vertices it
connects. This graph together with identified sets of input
and output qubits is known as the open graph corresponding
to the computation [4]. Since the measurements underlying
such computations do not have predetermined outcomes, it
is necessary to have some dependency structure in order to
guarantee determinism. The existence of such a structure for
arbitrary choices of measurement angles is determined fully
by the open graph. For open graphs the presence of flow [5]
is a sufficient condition, and generalized flow (gflow) [6] is
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a sufficient and necessary condition for the existence of an
appropriate dependency structure to ensure determinism [7].
The class of measurement patterns with flow is universal for
quantum computing, and the translation from quantum circuits
to measurement patterns always leads to a pattern with flow [8].
The measurement patterns which implement a unitary but do
not have a quantum circuit representation are formalized by
the notion of gflow.

Despite the advantages of the MBQC model [8–18], its
realization is often expensive in terms of physical qubits, as
the number of qubits in a measurement pattern is usually much
more than the number of logical qubits in the computation
[15,19–21]. This stems from the fact one qubit is required
for each (non-Clifford) single-qubit gate in the computation.
MBQC has been demonstrated experimentally using various
discrete-variable (qubit) systems [22–28] and continuous-
variable systems [29–31]. However, experiments for qubit
systems have generally been restricted to low numbers of qubits
and scaling them up is an important challenge [22,31].

Here we examine the number of physical qubits required to
realize a measurement pattern when entanglement operations
and measurements can be reordered. We consider the question
of whether the whole resource state has to be constructed
at the beginning, or whether it is possible to add qubits
on an as needed basis. In the latter case, we consider the
minimal number of necessary physical qubits at any time,
which we denote minQR . We show that minQR is different
for open graphs with flow versus those with only gflow,
and in some instances this difference can be dramatic. The
remainder of the paper is structured as follows. We begin by
introducing needed definitions and background. We then derive
the required physical qubit resources for measurement-based
computations for the cases of flow and gflow. We also examine
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the effect of removing Pauli measurements, which implement
Clifford group gates, in terms of its effect on the presence of
flow.

II. DEFINITIONS AND BACKGROUND

For a graph G = (V,E), V denotes the set of its vertices and
E is the set of its edges. An open graph is a triplet (G,I,O),
where G = (V,E) is an undirected graph and I,O ⊆ V are
respectively the sets of input and output vertices. The size of
G, m is its number of vertices. Noninput vertices are denoted
by IC and nonoutput vertices are denoted by OC .

Flow and gflow on open graphs, as defined in the
following, determine an ordering of measurements which
guarantees that measurement angles can always be adapted
based on previous results to implement a unitary trans-
formation deterministically, for any choice of measurement
angles.

Definition 1 (Danos and Kashefi [5]). An open graph
(G,I,O) has flow if and only if there exists a map
f : OC → IC and a strict partial order ≺f over V such
that all of the following conditions hold for all i ∈ OC :

(i) i ≺f f (i),
(ii) if j ∈ N (f (i)), then j = i or i ≺f j , where N (v)

contains adjacent vertices of v in G,
(iii) i ∈ N (f (i)).
In this case, (f, ≺f ) is called a flow on (G,I,O).
To aid clarity, we will make use of the notation u → v, if

f (u) = v and u ⇒ v, if u → v1 → v2 → · · · → vn−1 → vn

where vn = v.
Let (G,I,O) be an open graph with flow. Then a collection

Pf of directed paths in G is called a path cover of (G,I,O) [32]
if (i) each v ∈ V is included in exactly one path. In other words,
paths are vertex-disjoint and they cover G, (ii) each path in Pf

is either disjoint from I or intersects I only at its initial vertex,
and (iii) each path in Pf intersects O only at its final vertex.
In this paper, we assume that |I | = |O| = n (corresponding to
patterns performing unitary transformations). In this case, for
(G,I,O), there are n paths, each starting from an input vertex ij
and ending at an output vertex, oj (possibly overlapping), such
that ij → v1j → v2j → · · · → vnjj

→ oj ∈ Pf . The path to
which qubit w belongs is denoted by P(w).

Definition 2 (Browne: et al. [6]). An open graph (G,I,O)
has generalized flow (gflow) if and only if there exists a map
g : OC → P IC

(the set of all subsets of vertices in IC) and
a strict partial order ≺g over V such that all of the following
conditions hold for all i ∈ OC :

(i) if j ∈ g(i) then i ≺g j ,
(ii) if j ∈ Odd(g(i)), then j = i or i ≺g j , where

Odd(K) = {k| |N (k) ∩ K| = 1 mod 2}, is the odd neighbor-
hood of K , i.e., the set of vertices which have an odd number
of neighbors in K ,

(iii) i ∈ Odd(g(i)).
In this case, (g, ≺g) is called a gflow on (G,I,O).
There is a well-established method for translating from

quantum circuits to measurement patterns through the use of
gate teleportation [33]. The notion of flow captures the fact
that f (i) is the qubit that adaptively corrects the teleportation
byproduct produced by measuring qubit i. The partial order
guarantees that there is a chain of qubits which is teleported

along disjoint paths in Pf in the open graph such that if they are
measured in the partial order induced by flow, the corrections
can be consistently applied. It should be noted that the class
of patterns with flow is universal for quantum computing and
the translation from circuits to the patterns always leads to a
pattern with flow [34].

Gflow is a generalization of flow and turns out to be a nec-
essary condition where the state is not necessarily teleported
into a single site but across many sites during the computation.
In these open graphs, the teleportation byproduct produced
by measuring a qubit i can be consistently corrected by a
correcting set denoted g(i) instead of one single qubit.

III. MINIMAL QUBIT RESOURCES

In this section, we discuss the question of the minimal
number of physical qubits that must be present in a system to
directly implement a given measurement pattern. We consider
the reordering of the entanglement and measurement oper-
ations such that the number of physical qubits necessary at
any one time is minimized. The idea is based on postponing
each entangling operation as long as possible. Suppose it is
the turn of a qubit w ∈ OC to be measured with respect to
an ordering of measurements induced by flow. We will denote
the set of unmeasured qubits at this stage, excluding w, as
Uw and the set of measured qubits as Mw. The measurement
on a particular qubit w commutes with entangling operations
between u and v when neither u nor v is equal to w but does
not commute with entanglement operations between w and
its unmeasured neighbors [35]. Therefore, these operations
have to be performed first before the measurement. The set
of unmeasured neighbors of w is denoted by Nw, which is
equal to N (w) ∩ Uw. The measurement of the qubit w affects
the state of qubits in Nw. As no operation acts on a previously
measured qubit [3], w is not required beyond this point during
the realization of a pattern.

Now we investigate the minimal set of qubits which must
simultaneously exist prior to the measurement of w, excluding
w itself, which we labelQw. This set is the union of two subsets
of vertices: (i) the subset that is required for performing the
measurement on w, Nw, and (ii) the subset of qubits which
have been affected by previous operations and which have not
been measured, and hence must be retained until measurement
(if they do not belong to O) or until the end of computation.
We now characterize this latter subset.

At the beginning of a measurement-based computation,
the qubits in I are provided or prepared in some joint input
state and must be retained until they are measured (if they
do not belong to O), or until the end of computation. When
it is the turn of a qubit w to be measured, the set of all
unmeasured input qubits excluding w is denoted Iw. During
the computation, measurements cannot be commuted past
entangling operations involving the same qubit, and hence the
neighbors of any measured qubits must either be measured or
retained. We will denote by Ow the subset of qubits in Uw with
measured neighbors. More formally, Ow = {v ∈ Uw|N (w) ∩
Mw �= ∅}, where ∅ is the empty set. Therefore, we have
Qw = Nw ∪ Iw ∪ Ow.

Suppose it is the turn of a qubit w ∈ OC to be measured
with respect to an ordering of measurements induced by flow.
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The paths in Pf are like the teleportation paths of the qubits,
and Lemma 3 indicates that there is exactly one qubit in each
path that must exist prior to the measurement of w.

Lemma 3. Let (G,I,O) be an open graph with flow. There
exists exactly one member of Qw in each path P of Pf .

Proof. We first prove that in each P there exists at least one
member of Qw, and then we prove that this lower bound must
be saturated. We will use v to label this unique vertex for a
particular path. Tackling the upper bound first, for a given P ,
one of the following two cases will happen:

(1) w ∈ P: With respect to the flow definition, there is v ∈
Nw ∩ Uw given by v = f (w) such that P(v) = P(w).

(2) w /∈ P: In this situation, there are only two possible
cases:

(i) None of the qubits in P have been measured previ-
ously. Therefore, there exists v ∈ Iw in this path.

(ii) At least one of the qubits in P has been measured
previously. Let u be the last qubit which has been measured
in this path. Therefore, we have v = f (u) ∈ Ow.
This guarantees that at least one qubit in each path must be

in Qw when the input state is left unspecified.
We now show that if u,v ∈ Qw and u �= v, then P(u) �=

P(v). The proof is done by contradiction. Suppose P(u) =
P(v) and without loss of generality, suppose u ⇒ v. In such
a situation, it must be the case that v /∈ Iw. Therefore, one of
the following two cases will occur:

(1) v ∈ Nw: Based on the flow definition, u has to be
measured before w which belongs to N (v). Therefore, u /∈ Qw.

(2) v ∈ Ow: Based on the flow definition, u has to be
measured before all of the neighbors of v, but since v ∈ Ow,
a neighbor of v has been previously measured. Therefore,
u /∈ Qw.

This leads directly to the conclusion that in each P , v is the
unique member of Qw.

In Theorem 4, minQR is determined for open graphs with
flow.

Theorem 4: Let (G,I,O) be an open graph with flow,
with the same number of inputs and outputs, n. To re-
alize patterns with the underlying open graph, minQR is
min(n + 1,m), where m is the whole number of qubits in the
pattern.

Proof. First, consider the case that I = O (m = n), which
implies that all qubits are inputs and outputs simultaneously.
In this case, minQR is trivially equal to m = n. Now, suppose
that I �= O, and in this case, according to Lemma 3, the size
of Qw is equal to the number of paths in the graph, trivially
equal to n, and therefore by including the presence of w, we
have minQR = n + 1.

Although we have shown that minQR for open graphs
with flow on n inputs is min(n + 1,m), it is not the case for
open graphs with gflow. This is demonstrated by constructing
a family of open graphs which require large numbers of
qubits to be present as a counterexample. We will consider
open graphs (Hn,I,O) with n > 1 inputs, {i1,i2,...,in}, n

outputs, {v1,v2,...,vn}, and (m − 2n) �= 0 intermediate qubits,
{vn+1,vn+2,...,vm′ }, where m′ = m − n. Rather than specifying
the edges of Hn directly, we instead specify the edges of the
graph HC

n obtained by complementing the edges of Hn. This
is for simplicity since Hn will be highly connected. The graph
HC

n , shown in Fig. 1, has the following edges: {ij ,vj } for

vm’-1

vm’

vn+1

vn+2

i1

i2

in-2

in-1

in

v1

v2

vn-2

vn-1vm’-1

vm’

vn+1

vn+2

i1

i2

in-2

in-1

in

v1

v2

vn-2
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vnvn

FIG. 1. Representation of (HC
n ,I,O). Input qubits are shown by

i1,i2,...,in and squared vertices represent output qubits.

j ∈ {1,2,...,n − 2}, {vn+j ,vn+j+1} for j ∈ {0,1,...,m′ − n −
1}, and {in−1,vm′ }.

A gflow on Hn can be found by applying the algorithm
proposed in Ref. [36], which yields the following: g(ij ) =
{vj ,vn−1} for j ∈ {1,...,n − 2}, g(vj ) = {vj−2,vj−1} for j ∈
{n + 1,...,m′}, g(in−1) = {vm′−1,vm′ }, and g(in) = vm′ . Since
from Fig. 1 the maximum degree of HC

n can easily be seen to be
2, the minimal degree of Hn must be equal to m − 3. Starting
from a qubit w in a partial order induced by a gflow on this open
graph, we have |Nw| � m − 3. Therefore minQR � m − 2.

We conclude by examining the effect of measurement of
Pauli operators on graphs with flow and those with gflow, since
this can alter the presence of flow. Unitary operators which map
Pauli group operators to the Pauli group under conjugation are
known as Clifford group operations. Any of these operators
can be implemented by patterns with Pauli measurements X

and Y only [37]. Due to the nature of corrections made during
an MBQC, measurements of Pauli operators are unaffected
and can be shifted to the start of the computation. In Ref. [19],
general transformation rules for graphs are described when
Pauli measurements are performed on qubits. This allows
for Pauli measurements to be eliminated by modifying the
graph state to be prepared and updating the other measurement
bases. For example, in the case of a Y measurement on qubit
w, the graph corresponding to the resulting state is obtained
by replacing the subgraph consisting of neighbors of w by
its complement, and removing w and any incident edges.
Measurement bases of qubits neighboring w also need to be
updated.

Consider an open graph (H ′
n,I,O) where H ′

n is a graph
consisting of HC

n (shown in Fig. 1) and another vertex, y, which
is connected to all of the vertices of HC

n . (H ′
n,I,O) has a flow

as follows: f (ij ) = vj for j ∈ {1,...,n − 2}, f (in−1) = vm′ ,
f (in) = y, f (vj ) = vj−1 for j ∈ {n + 1,...,m′}, and f (y) =
vn−1. Thus, minQR = n + 2. It can be readily verified that
when y is measured in the Y basis, H ′

n will be transformed
to Hn, which has been previously shown to have gflow, with
minQR � m − 2. On the other hand, when any vertex in Hn

is measured in the Y basis, (Hn,I,O) will lead to an open
graph which has gflow but not flow. In Fig. 2, further examples
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FIG. 2. Examples of removing or introducing flow in open graphs
after measuring a single qubit in the Y basis. Input qubits are shown
by i1,i2 and squared vertices represent output qubits. (a) A sample
open graph (Ga,I,O) with flow. (b) The resulting open graph after
measuring v4 in (Ga,I,O), which has flow. (c) A sample open graph
(Gc,I,O) with gflow. (d) The resulting open graph with flow after
measuring v3 in (Gc,I,O).

are given where measurement maintains flow and where Pauli
measurement introduces flow to an open graph that previously
had only gflow. This highlights the fact that when certain
measurements are fixed to a Pauli basis in measurement pattern,
their removal can have either a positive or negative effect on
the minimal physical qubit resources necessary to implement
the pattern.

IV. SUMMARY OF RESULTS AND CONCLUSION

In this paper, we considered the question of the minimal
number of physical qubits that must be present in a system to
directly implement a given measurement pattern. We showed
that for measurement patterns with flow, with n inputs, n

outputs, and m total qubits, only a minimum of n + 1 and
m qubits are required, while the number of required qubits can
be as high as m − 2 for measurement patterns with only gflow.

Our results provide a mechanism to take advantage of
protocols naturally constructed in the measurement-based

model directly in the circuit model augmented with in-
dividual gate teleportations. As an application of our re-
sults, we consider the case of blind quantum computing
(BQC) protocols natively derived in the measurement-based
model introduced in Refs. [8] and [15]. In the UBQC protocol
[8], a regular graph state, known as a brickwork state, of
dimensions N × M is used, where N and M are proportional
to the dimensions of the quantum circuit corresponding to the
desired computation. The open graph related to this brickwork
state has flow, and Theorem 4 provides a way to implement
the BQC protocol using only N + 1 qubits instead of N × M

qubits. In order to equip BQC with verification [15], randomly
prepared single qubits (called traps), isolated from the actual
computation, are inserted blindly, which act as a witness. The
introduction of trap qubits increases the size of the required
brickwork state by 2 × M in the most basic verification proto-
col of Ref. [15], while by converting to the circuit model, the
minimal number of qubits to implement verification becomes
N + 3.

We also discussed the implications of removing the Clifford
part of a measurement pattern, using well-established transfor-
mation rules for Pauli measurements, for the presence of flow
versus gflow. We concluded that when certain measurements
are fixed to a Pauli basis in measurement pattern, their removal
can have either a positive or negative effect on the minimal
physical qubit resources necessary to implement the pattern.
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