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Measurement-device-independent quantum key distribution protocol, whose security analysis does not rely on
any assumption on the detection system, can immune the attacking against detectors. We give a first composable
security analysis for continuous-variable measurement-device-independent quantum key distribution using
squeezed states against general coherent attacks. The security analysis is derived based on the entanglement-based
scheme considering finite-size effect. A version of entropic uncertainty relation is exploited to give a lower bound
on the conditional smooth min-entropy by trusting Alice’s and Bob’s devices. The simulation results indicate
that, in the universal composable security framework, the protocol can tolerate 2.5 dB and 6.5 dB channel loss
against coherent attacks with direct and reverse reconciliation, respectively.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2], which is an indis-
pensable part of today’s quantum cryptography, allows two
legitimate users (Alice and Bob) to distribute keys secretly
thanks to quantum physics. The most attractive property
of QKD may be the information-theoretic security against
any potential attacks. Broadly speaking, QKD has two main
approaches: one is discrete-variable (DV) QKD and the alter-
native is continuous-variable (CV) QKD [3–5]. Compared to
DV-QKD protocols, CV-QKD protocols are based on variants
of homodyne detection which is “off the shelf” [6–8], and
can perform high secret key rates for metropolitan range.
Various novel CV-QKD protocols were proposed in recent
years, including a two-way quantum cryptographic protocol
[9–14], single-quadrature protocols [15,16], floodlight QKD
protocol [17–19], and so forth, which enrich the field of
CV-QKD. A new CV protocol design framework has been
proposed to design protocols according to the user’s needs
[20], which can be achieved by arbitrary nonorthogonal states.
Experiments [21–26], especially field tests [27] for distributing
secret keys over long distances, are currently achievable,
making CV protocols competitive with respect to their DV
counterparts.

The security-proof toolbox of CV-QKD has been enriched
over the past few years, with the de Finetti theorem [28,29],
postselection technique [30,31], the entropic uncertainty re-
lations [32–34], and so forth. Many protocols show their
security against collective attacks via a Gaussian optimality
argument [35–38] but are only considered in the asymptotic
limit. Fortunately, those security-proof tools make it possible
to generalize the security analysis to the most general coherent
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attacks even considering finite-size effect. For instance, under
Gaussian modulation, the coherent state protocol with hetero-
dyne detection was proved secure against coherent attacks with
the help of rotation invariance [28] and the squeezed state [39]
protocol with homodyne detection is secure using entropic
uncertainty relations [32].

Apart from theoretical security analysis, practical security
analysis in QKD is gradually paid attention to take the gap
between theory and practice into consideration. Measurement-
device-independent (MDI) QKD protocol is a genius idea to
immune the attack against detectors [40–45], moving towards
practical security of QKD. CV-MDI QKD, as one of the
candidate protocols to achieve multipartite communication
[46–49], has been shown to guard against collective attacks and
some work also takes finite-size effect into account [50–52].
Recently, the composable security analysis of CV-MDI QKD,
which could be applied both to coherent-state protocols and
to entangled-state protocols, has been proposed to defend
general coherent attacks via Gaussian de Finetti reduction
[53], while the composable security analysis of that using
squeezed states under coherent attacks has not been discussed
yet.

We should note that the entropic uncertainty relations are
paid a lot of attention in both DV-QKD and CV-QKD’s
security proofs [54,55]. There is a large family of entropic
uncertainty relation, among which the infinite-dimensional
state-independent entropic uncertainty relation with quantum
memories was studied in depth [56] and it was soon applied for
the security proof of squeezed-state protocol with homodyne
detection [32–34]. The entropic uncertainty method can be
exploited to prove the security of squeezed-state CV-MDI
QKD protocol directly.

In this paper, we use the method similar to Ref. [32]
of the squeezed-state CV-MDI QKD protocol by trusting
Alice’s and Bob’s devices, and show the performance against
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general coherent attacks, which is based on a state-independent
entropic uncertainty relation with quantum side information for
smooth entropies. Meanwhile, the analysis not only considers
the finite-size effect, but also takes some necessary steps
into account, such as channel parameter estimation and error
correction, so that the final secret key length has to be reduced
due to the fact that those estimation phases inevitably consume
an amount of keys. Moreover, we analyze both direct and
reverse reconciliation scenarios. Focusing on the extremely
asymmetric cases, where Bob is placed on Charlie’s side,
the ideal case (modulation variance tending to infinity) and
a practical feasible parameters case (modulation variance as
small as 5.04, referring to 10 dB squeezing [57], with imperfect
reconciliation efficiency β = 96.9% [58]) are both discussed at
different block lengths. More general cases are also discussed
in the Appendixes.

The paper is organized as follows. In Sec. II A, a short
review on the definition of composable security in QKD is
described. In Sec. II B, we provide a detailed description of
the squeezed-state CV-MDI QKD protocol against general
coherent attacks under the entanglement-based scheme. In
Sec. II C, we introduce a version of the state-independent
entropy uncertainty relation conditional on quantum side
information into the security analysis of the protocol and derive
the secure key rate against coherent attacks. Then, in Sec. III,
we give out the simulation results of the secret key rate in
both direct and reverse reconciliation cases, especially under
extremely asymmetric scenarios. Finally, a summary of the
paper is given in Sec. IV.

II. FRAMEWORK OF THE SECURITY ANALYSIS

In this section, a brief introduction about the definition of
composable security in QKD is given, and the details can
be found in Refs. [59,60]. Then the CV-MDI QKD protocol
using squeezed states against coherent attacks is described in
detail, followed by the entropic uncertainty relation to obtain
the secret key rate of the protocol.

A. Composable security definition

Roughly speaking, a protocol can be called “security,”
which should satisfy three criteria called “robustness,” “cor-
rectness,” and “secrecy.”. If the probability of producing an
empty set of the secret key is not higher than εrob when the
eavesdropper is inactive, a protocol is called εrob robust.

A QKD protocol can be called “correct” if Alice and Bob
can get the same keys for any initial quantum state �ABE

(no matter what strategy of the adversary may be used to
the quantum state). The secret key is denoted by SA and SB

after they finish the protocol, and a protocol is called εcor

correct if the probability of producing different sets of the
secret key between SA and SB is not higher than εcor, i.e.,
Pr [SA �= SB] � εcor.

A final key is � secret if it is � close to a uniformly
distributed key that is unpredictable for the adversary. Here
� quantifies the distance between a practical key and an ideal
one, for a �-secret protocol, which should satisfy

1
2‖ρSASBE′ − ωl ⊗ ρE′ ‖1 � �, (1)

where ρSASBE′ is the practical state mixing of Alice, Bob, and
the potential adversary Eve’s strings SA, SB , and E′ and ωl is
the fully mixed state on classical strings of length l. ωl ⊗ ρE′

shows the ideal classical-quantum state is separable. Hence
if � = 0 for any of Eve’s attack strategies, a QKD protocol
can be called secret. Moreover, a protocol is called εsec secret
if it is εsec indistinguishable from an ideal secret protocol. In
particular, a protocol is εsec secret if it outputs �-secure keys
with (1 − pabort )� � εsec, where pabort is the probability that
the protocol aborts. εrob, εcor, and εsec are parameters to qualify
robustness, correctness, and secrecy respectively and they will
affect the final rate of the secret key.

A QKD protocol is called secure if it satisfies both correct-
ness and secrecy. It is called ε secure if it is ε indistinguishable
from a secure protocol. In particular, a protocol is ε secure if
it is εcor correct and εsec secret with εcor + εsec � ε.

B. CV-MDI QKD using squeezed states against coherent attacks

In this subsection, we describe the squeezed-state CV MDI
QKD protocol for which we prove composable security against
coherent attacks based on the entropic uncertainty relation.
Here we focus on the entanglement-based (EB) model of the
protocol [61] instead of the prepare and measure (PM) version,
for the former scheme is often used in the security analysis
of QKD, while the latter is easy to implement and, once the
security of the EB scheme is proved, the security of the PM
version is easily obtained because of the equivalence between
two schemes [42]. The EB scheme of the squeezed-state CV-
MDI QKD protocol (Fig. 1) is described as follows.

(1) State preparation. Alice and Bob prepare 2N two-mode
squeezed vacuum states EPR1 and EPR2 with variances VA

and VB , respectively. They keep mode A1 and B1 on each side
and then send the other modes A2 and B2 to the untrusted third
party (Charlie) through two insecure quantum channels, i.e.,
channelAC and channelBC .

(2) Bell measurement. Charlie applies Bell detection of
the received quantum states. Modes A′ and B ′ are combined
with a balanced beam splitter with output C and D and,
afterwards, x quadrature of mode C and p quadrature of mode
D are measured with homodyne detectors. The results of joint
measurement xC and pD are announced to Alice and Bob
through public classical channel.

(3) Displacement. After receiving Charlie’s measurement
results {xC,pD}, Bob applies local displacement operations
D(β) on mode B1 to get mode B1

′, where β = g(xC + pD)
and g is the gain of this operation related to the total channel
loss.

(4) Measurement. Alice and Bob measure the 2N modes
using homodyne detection which randomly detects the x

quadrature or p quadrature and the measurement outcomes
are discretized with the finite range analog-to-digital converter
(ADC). For every two modes A1 and B1

′, Alice gets the data
{XA(PA)} and Bob gets the data {XB(PB)}, respectively.

(5) Sifting. Both of two communication parties announce
which quadrature they choose through an authentic pubic
channel. They hold the data in which the selected quadratures
are the same and discard the rest. The length of effective data
after this step reduces to about N in each party.
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FIG. 1. EB scheme of the squeezed-state CV-MDI QKD protocol.
EPR: two-mode squeezed state. Hom: homodyne detection. Hom1x :
homodyne detection of measuring the x quadrature. Hom2p: homo-
dyne detection of measuring the p quadrature. XC (PD): measure-
ment results of Hom1x (Hom2p). BS: 50:50 balanced beam splitter.
ChannelAC (ChannelBC): totally untrusted quantum channel between
Alice (Bob) and Charlie controlled by adversary. Public channel:
authenticated channel used for classical communication.

(6) Channel parameter estimation. Once Alice and Bob
have collected sufficient correlated data, they use the pub-
lic channel to perform parameter estimation to check the
correlation between their data. The two parties randomly
choose a common subset of length kpe from the sifted data
and estimate the average distance between their samples:

d
(
X

pe

A ,X
pe

B

) = 1

kpe

∑kpe

i=1

∣∣Xpe

A,i − X
pe

B,i

∣∣, (2)

where X
pe

A = (Xpe

A,i)
kpe

i=1
and X

pe

B = (Xpe

B,i)
kpe

i=1
. If d(Xpe

A ,X
pe

B )
is smaller than a certain parameter d0, they proceed and,
otherwise, the protocol aborts. The parameter d0 is the distance
between the measurement results of Alice and Bob, which
should be chosen small enough to ensure the data are correlated
enough. Data X

pe

A and X
pe

B are also used to estimate the amount
of information needed in the error correction step.

(7) Error correction. Alice sends some information to Bob
and Bob corrects the errors in his data using an error reconcil-
iation algorithm (direct reconciliation), or Alice corrects the
errors in her data with the help of Bob sending information
(reverse reconciliation). It may cost a length of �EC secret keys
during the error correction phase. After that, two parties do the
hash check [28], i.e., they expend the length of kcheck extra

data to check if both hashes coincide. If this check passes, the
protocol resumes; otherwise, it aborts.

(8) Calculation of secret key length. Alice and Bob calculate
the secret key length � according to the presented secret key
length formula and entropic uncertainty relation which will be
shown in Sec. II C. If the secret key length is negative, they
abort the protocol.

(9) Privacy amplification. Both of two communication
parties apply a hash function [62] on their corrected strings
respectively to generate the secret key of length �.

C. Uncertainty relation and secret key rate

In previous researches of CV-QKD, in general, a practical
homodyne detector is modeled as an ideal homodyne detector
and an ADC with finite range [28]. To illustrate the mea-
surement phase in our protocol more clearly, without loss
of generality, we model the homodyne detector as an ideal
homodyne detector followed by an ADC with finite range and
divide the measurement process into two steps. First, Alice and
Bob use ideal homodyne detectors to measure the quadratures
of the states that they received (ρA1 and ρB1

′ in Fig. 1). The
outputs of ideal homodyne detectors ({QA,PA}, {QB,PB}) in
two sides are ideal continuous variables with infinite range, and
the statistical distribution of each outcome should generally
follow a Gaussian distribution.

It is important for the protocol to have high correlations
between two parties’ outcomes. However, due to the channel
losses, the quadratures x and p at Alice and Bob’s sides
({QA,PA},{QB,PB}) will decay. In order to handle that, the
quadrature measurements in one of two parties {QA,PA} or
{QB,PB} need to be rescaled before grouping into the intervals.
We use the transformations below (using Alice as an example):

QA → Q̃A = tqQA, PA → P̃A = tpPA, (3)

where tq and tp denote the rescaling factors related to the
channel loss of channelAC and channelBC (see Appendix A
about the estimation). After that, the data between Alice and
Bob should be correlated enough.

In step (2), Alice and Bob use ADCs with finite sam-
pling range and finite resolution to discretize the continuous
quadratures {Q̃A,P̃A} and {QB,PB} into different intervals:
(−∞, − α], (−α, − α + δ], . . ., (α,∞). Here, α is the maxi-
mum discretization range of ADC, which takes the finite range
of detectors into consideration in the security proof, and δ

denotes the precision of the measurement. The corresponding
outcome alphabet is denoted by χ = {1,2, . . . ,2α/δ}, where
we assume 2α/δ ∈ N and every measurement outcome corre-
sponds to one of the intervals. Therefore, the data {XA,PA}
in Alice’s side is obtained by discretizing the quadrature
measurements {Q̃A,P̃A}; likewise the data in Bob’s side.

It should be noted that practical homodyne detection may
lead to security problems since its outputs lack information
of the quadratures. For instance, in equal-length intervals
(−α, − α + δ], . . ., (α − δ,α], owing to the finite sampling
bits, any measurement outcomes inside of one sampling inter-
val will map to the same value and it may cause a lack of the
details about the state within each sampling interval, for one
cannot determine whether the distribution of measured states
is Gaussian distribution or other non-Gaussian distribution.
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Moreover, we assume that any information in another two
infinite-length intervals (−∞, − α] and [α,∞) will also map
to one value as a result of the finite sampling range property
of ADC, e.g., one cannot distinguish whether the measured
pulse is a low-energy pulse or a high-energy pulse, which
makes the measurement outcomes short of the information
about the state outside the range. Those imperfect features
of detection may open the loophole to a potential Eve and
a number of attacks, such as large energy attack, may be
exploited to reduce the security of the protocol. There are in
general two approaches to handle that problem. One is using
the method as Ref. [32] did by trusting Alice’s and Bob’s
devices and another solution is adding the energy test to provide
detailed information about measured states (as Ref. [33] did)
to replace the trusted source assumption. This paper follows
the former solution and assumes that Alice and Bob produce
trusted states with quadratures being larger than α with very
small probability pα .

After the measurement step is done, the physical steps of the
protocol are finished, and the rest of the protocol is treated as
the postprocessing part aiming at extracting secure keys from
the raw keys. Due to the leftover hash lemma, the εc-correct and
εs-secret key of length � can be extracted [63], which satisfies

� � Hε
min(XA|E)ω − �EC − O

(
log2

1

εsεc

)
, (4)

where �EC denotes the leakage information in the error
correction phase and Hε

min(·) is the smooth min-entropy with
smoothing parameter ε. Hε

min(XA|E) is the smooth conditional
min-entropy of data XA conditioned on the information Eve
may have, which quantifies Eve’s uncertainty about Alice’s
measurement outcomes. In the coherent attack cases, the goal
is to bound the smooth min-entropy Hε

min(XA|E) conditioned
on the event that the protocol does not abort. Different from
the parameter estimation method in Ref. [53], the smooth
min-entropy Hε

min(XA|E) can be estimated with the help of the
entropic uncertainty relation conditioned on side information
with infinite-dimensional quantum memories [32] in our paper.

Entropic uncertainty relations are used in some security
proofs of QKD protocols giving their power to describe the
bounds of guessing uncertainty Eve may have, when both
Alice and Bob perform measurements in two random bases
in a certain tripartite quantum system. There is a large family
of entropy uncertainty relations with both infinite-dimensional
and finite-spacing formulas [55]. However, a more operational
way to express uncertainty is in terms of the discrete Shannon
entropy rather than differential relations, so we follow the
above to calculate the secret key length with the discrete
Shannon entropy version of uncertainty relation, and quantum
side information is considered with smooth min- and max-
entropies.

The scenario of uncertainty relations can be understood
as follows. The tripartite state ωABE with Alice, Bob, and
Eve holds infinite-dimensional quantum systems A, B, and E,
respectively. Alice randomly measures quadrature x or p on
state ωA = TrBE[ωABE] in each run and stores the outcomes
in one of two classical systems. The same operation is done at
Bob’s side acting at ωB = TrAE[ωABE]. The outcome strings
are denoted by {XA,PA} and {XB,PB}, respectively. After
sifting, two pairs of random strings {XA,XB} and {PA,PB}

should obey the uncertainty principle and Eve cannot predict
Alice and Bob’s measurement outcomes precisely. Hence the
relation between smooth min- and max-entropies satisfies

Hε
min(XA|E)ω � n log2

1

c(δ)
− Hε′

max(XA|XB)ω. (5)

Here we assume the random selection is identically and
independently distributed. The term c(δ) is the “incompatibil-
ity” of the measurement operators and Hε′

max(XA|XB)ω is the
smooth max-entropy between the data of Alice and Bob with
smoothing parameter ε′, which reads

ε′ = εs/(4ppass) − 2f (pα,n)/
√

ppass, (6)

with f (pα,n) = √
2[1 − (1 − pα)n] [32], which is the function

considered about the probability of the event outside of the
detection range [−α,α]. c(δ) takes the measurement discretiza-
tion into consideration, which is

c(δ) = 1

2π
δ2S

(1)
0

(
1,

δ2

4

)2

, (7)

where S
(1)
0 denotes the zeroth radial prolate spheroidal wave

function of the first kind [64]. c(δ) can be well approximated
with c(δ) ≈ δ2/(2π) when the length of interval δ is small. For
a certain value of δ, c(δ) is a constant also, so the value of
smooth min-entropy Hε

min(XA|E) can be estimated by upper
bounding the smooth max-entropy Hε′

max(XA|XB) between
random strings XA and XB .

To estimate the upper bound of Hε′
max(XA|XB), the correla-

tion of the data between Alice and Bob needs to be qualified
first. Alice and Bob randomly choose a subset χkpe with string
length kpe to calculate the average distance d(Xpe

A ,X
pe

B ) be-
tween their data X

pe

A and X
pe

B in the parameter estimation step,
wherepe stands for parameter estimation. Ifd(Xpe

A ,X
pe

B ) < d0,
the ε′-smooth max-entropy can be bounded by

Hε′
max(XA|XB) � n log2 γ (d(XA,XB)), (8)

where γ is a function arising from a large deviation consider-
ation, which reads

γ (t) = (t +
√

t2 + 1)[t/(
√

t2 + 1 − 1)]t . (9)

Using sampling theory, the quantity d(XA,XB) can be esti-
mated by d(Xpe

A ,X
pe

B ) plus a correction μ with high probability.
μ quantifies its deviation to d(XA,XB) considered about the
finite-size statistical fluctuation. Finally, the � length secret key
can be extracted from the remaining data XA,XB ∈ χn with the
length of n, which is written as

�= n

[
log2

1

c(δ)
− log2 γ (d0 + μ)

]
− �EC − log2

1

ε2
s εc

(10)

and

μ = 2α

δ

√
N (kpe + 1)

nk2
pe

ln
1

ε′ . (11)

Here the remaining data has a length n = N − kpe − kcheck

approximately, for some raw keys were cut off from the test
steps above.

There are two main elements of Eq. (10): one is the
estimation of smooth min-entropy Hε

min(XA|E) and the other
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is the leakage information �EC during error correction. The
former, as mentioned above, can be estimated by the date
X

pe

A and X
pe

B , which is independent to the reconciliation
methods [65], while the latter is determined by the information
reconciliation; hence Eq. (10) can be exploited to calculate the
secret key rate in both direct and reverse reconciliation cases.

For the direct reconciliation case, the leakage information
in the error correction step reads

�DR
EC = H (XA) − βI (XB : XA), (12)

and in the reverse reconciliation case it reads

�RR
EC = H (XB) − βI (XB : XA), (13)

where H (XA) and H (XB) denote the discrete Shannon en-
tropies and I (XB : XA) is the mutual information between
Alice and Bob.

III. NUMERICAL SIMULATION AND DISCUSSION

In this section, we focus on the simulation results of the
squeezed-state CV-MDI QKD protocol in the ideal detection
case against coherent attacks. Section II C illustrates that the
simulation of secret key rate in our protocol can be divided
into two parts: one is the estimation of smooth min-entropy
Hε

min(XA|E) considering finite-size effect; the other is the
leakage information �EC in error correction, which could
be calculated with the help of the covariance matrix. Only
the extremely asymmetric cases are discussed here as the
examples, where Bob is located at Charlie’s side (TBC = 0),
for the transmission distance can reach the maximum [43].
The discussion of symmetric cases can be seen in Appendix D
considering more general attack strategy.

Considering the EB version of the squeezed-state CV-
MDI QKD protocol (Fig. 1), the covariance matrix can be
estimated by Alice and Bob’s data directly in experiment, and
here, without loss of generality, we assume that channelsAC

and channelsBC are under two independent entangling cloner
attacks to estimate the covariance matrix. We should point
out that Eve’s attack described here is not the optimal one
[44,66]. The entangling cloner attack is usually used to model
a Gaussian channel affected by the environment and is analyzed
to get a sense of a protocol’s performance in experiment [43],
and, in experiment, we can calculate the amount of information
used in the error correction phase in a parameter estimation step
without assuming which attack Eve may use. Moreover, the
estimation of leakage information does affect the final secret
key rate, but does not induce statistical fluctuation introduced
by the parameter estimation step, and all the statistical fluctu-
ation introduced by parameter estimation has been considered
in the estimation of max-entropy. Detailed derivation of the
covariance matrix can be seen in Appendix B. First, Alice
and Bob generate two-mode squeezed states ρA1A2 and ρB1B2 ,
respectively. The covariance matrices γA1A2 and γB1B2 read

γA1A2 =
⎛
⎝ VAI2

√
V 2

A − 1σz√
V 2

A − 1σz VAI2

⎞
⎠, (14)

γB1B2 =
⎛
⎝ VBI2

√
V 2

B − 1σz√
V 2

B − 1σz VBI2

⎞
⎠, (15)

where I2 is the identity matrix, VA(B) stands for the variance of
Alice (Bob)’s two-mode squeezed state from Eve’s view, and
σz = (1 0

0 −1).
Before Charlie applies Bell measurement to mode C and

mode D, the whole state ρA1CDB1 can be described by an 8×8
covariance matrix γA1CDB1 . Then modes A′ and B ′ received
by Charlie interfere at a beam splitter (BS) with two output C

and D modes measured by homodyne detections, respectively.
The measurement results xC and pD are announced by Charlie
in a public channel so that Bob can displace mode B1 to B ′

1.
It is easy to get the covariance matrix γA1B1

′ of the state ρA1B1
′

shared by Alice and Bob, which reads

γA1B1
′ =

⎛
⎝ VAI2

√
T

(
V 2

A − 1
)
σz√

T
(
V 2

A − 1
)
σz [T (VA − 1) + 1 + T e]I2

⎞
⎠,

(16)

where

T = T1

2
g2. (17)

T stands for the equivalent channel transmittance between
Alice and Bob, T1 is the channel transmittance between Alice
and Charlie, and g is the gain of displacement. The equivalent
excess noise e is given by

e = 1 + 1

T1
[2 + T2(ε2 − 2) + T1(ε1 − 1)]

+ 1

T1

(√
2

g

√
VB − 1 −

√
T2

√
VB + 1

)2

. (18)

In the numerical simulation, one can select g =
√

2
T2

√
VB−1
VB+1

so that the equivalent excess noise e is optimal [42]. Therefore,
we can get

e = ε1 + 1

T1
[T2(ε2 − 2) + 2]. (19)

Accordingly, the discrete Shannon entropies H (XA) and
H (XB) have the following forms when δ is small (see
Appendix C about the detailed derivation):

H (XA) ≈ log2(
√

2πeVA) − log2(δ) (20)

and

H (XB) ≈ log2(
√

2πeVB
′) − log2(δ), (21)

where VB
′ = T (VA − 1) + 1 + T e. The mutual information

between Alice and Bob can be well approximated, which reads

I (XA : XB) ≈ 1

2
log2

(
VA + χ

χ + 1
VA

)
, (22)

where χ = 1
T

− 1 + e. Once we have obtained the form of
the covariance matrix in the EB model, with the help of
Eq. (10), the secret key rate against coherent attack in both
direct reconciliation and reverse reconciliation cases can be
calculated.

012314-5



CHEN, ZHANG, WANG, LI, AND GUO PHYSICAL REVIEW A 98, 012314 (2018)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-4

10-3

10-2

10-1

100

101

Se
cr
et
K
ey
R
at
e
(b
its
/p
ul
se
)

Channel Loss (dB)

N= ∞
N=1012

N=1011

N=1010

FIG. 2. Secret key rates of squeezed-state CV-MDI QKD protocol
against coherent attack in the extremely asymmetric cases (TBC = 0)
with direct reconciliation in the frame of composable security. Those
lines are under the ideal conditions with ideal modulation variances
VA = VB = 105 and perfect reconciliation efficiency β = 1. The
block lengths from left to right curves show N = 1010 (green dot-
dashed line), 1011 (blue dot line), 1012 (red dashed line), and ∞ (black
solid line), respectively. Here the discretization parameter is set to
d = 13, the excess noise ε1 = ε2 = 0.002, and the overall security
parameter is smaller than 10−20.

A. Direct reconciliation protocol

First, numerical simulations of the secret-key rate in the
direct reconciliation cases are performed. The performance
of the extremely asymmetric structure with ideal modulation
variances (Va = Vb = 105) is given in Fig. 2. The perfect
reconciliation efficiency (β = 1) is set to get the optimal
performance of this protocol against coherent attacks. The
interval parameter is set to α = 52 [32], the discretization
parameter d = 13, the excess noises ε1 = ε2 = 0.002, and the
overall security parameter is smaller than 10−20. The block
length of information reconciliation kpe can be optimized
in experiment. If kpe is too large, the final key rate may
decrease due to a small quantity of raw key using for gen-
erating secret keys. On the contrary, one may not get accurate
estimation of the channel parameters if kpe is too small. In
this simulation, we choose the block length of information
reconciliation about 1/10 of the total length, i.e., kpe = N/10.
It can be seen that, when the block length is infinite size
(N = ∞), the protocol reaches the longest transmission dis-
tance, with a corresponding channel loss of about 2.5 dB. In
the N = 1012 case, the protocol is closed to the asymptotic
rate.

The realistic performance is described under the condition
that the practical variances are VA = VB = 5.04 (referring
to 10 dB squeezing) and imperfect reconciliation efficiency
is set to η = 96.9%. The key rate of a realistic extremely
asymmetric case of the CV-MDI QKD protocol is described
in Fig. 3. We plot the key rate as a function of the channel
loss TAC , while the channel loss TBC is set to 0 dB, with
different block lengths of 1010, 1011, 1012 and infinite size.
For the asymptotic case N → ∞, the maximum tolerable
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FIG. 3. Secret key rates of squeezed-state CV-MDI QKD protocol
against coherent attack in the extremely asymmetric cases (TBC = 0)
with direct reconciliation. The protocol with practical modulation
variances VA = VB = 5.04 and imperfect reconciliation efficiency
β = 96.9% is considered. The block lengths from left to right curves
are N = 1010 (green dot-dashed line), 1011 (blue dot line), 1012 (red
dashed line), and ∞ (black solid line), respectively. The discretization
parameter, excess noises, and security parameters are chosen as in the
case of ideal modulation.

channel loss can reach approximately 0.64 dB (black solid
line), which shows a distance between practical and ideal cases.
The practical performance can be optimized using squeezed
states with higher squeeze factor [67].

What’s more, for given distances, we plot the secret key
rate vs the block size when both ideal and practical parameters
are given (Fig. 4). The channel losses are 0.2 dB, 0.4 dB, and
0.5 dB, respectively. When the block length reduces, the secret
key rate decreases rapidly and one cannot generate secret key
when the block length is smaller than 1010 under the practical
parameters.

B. Reverse reconciliation protocol

Similar to the direct reconciliation case, the protocol’s
performance under reverse reconciliation can be illustrated
using the same method. The smooth maximum entropy is
the same with that of the direct reconciliation case, while the
leakage information is different.

Both ideal cases and practical cases are taken into con-
sideration and the parameters we choose are the same with
those of the direct reconciliation cases. Here large variances
VA = VB = 105 are chosen first to illustrate the performance
of ideal modulation (Fig. 5), then the practical variances VA =
VB = 5.04 are exploited to show the realistic performance
(Fig. 6). N = 1010, N = 1011, N = 1012, and the asymptotic
regime are considered here as well. For a realistic performance
of fiber loss 0.2 dB/km, the total loss can be up to 6.5 dB
in the ideal condition and 3.6 dB in the practical condition,
corresponding to 32.5 km and 18 km, respectively. Hence the
reverse reconciliation cases could be feasible in metropolitan
range communications.
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FIG. 4. Secret key rates vs block size for the extremely asym-
metric case (TBC = 0) with direct reconciliation. The solid lines
are under the ideal condition where modulation variances VA =
VB = 105 and perfect reconciliation efficiency β = 1. The dot-dashed
lines are under the practical condition where practical modulation
variances VA = VB = 5.04 and imperfect reconciliation efficiency
β = 96.9%. From left to right, the transmittance of the quantum
channel corresponds to loss of 0.2 dB (black line), 0.4 dB (red line),
and 0.5 dB (green line), respectively.

Figure 7 shows the relation between block size and secret
key rate in the extremely asymmetric circumstance. It illus-
trates that it is in principle possible to generate secret keys for
block sizes of 107 − 1012 in the reverse reconciliation case,
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FIG. 5. Secret key rates of squeezed-state CV-MDI QKD protocol
against coherent attack in the extremely asymmetric case (TBC = 0)
with reverse reconciliation. The protocol is under ideal modulation
variances VA = VB = 105 and perfect reconciliation efficiency β = 1.
The block lengths from left to right curves correspond to N = 1010

(green dot-dashed line), 1011 (blue dot line), 1012 (red dashed
line), and ∞ (black solid line), respectively. Here the discretization
parameter is set to d = 13, the excess noise to ε1 = ε2 = 0.002, and
the overall security parameter is smaller than 10−20.
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FIG. 6. Secret key rates of squeezed-state CV-MDI QKD protocol
against coherent attack in the extremely asymmetric case (TBC = 0)
with reverse reconciliation. The protocol is under practical modulation
variances VA = VB = 5.04 and imperfect reconciliation efficiency
β = 96.9%. The block lengths from left to right curves are N = 1010

(green dot-dashed line), 1011 (blue dot line), 1012 (red dashed line),
and ∞ (black solid line), respectively. The discretization parameter,
excess noises, and security parameters are chosen as in the case of
ideal modulation.

depending on channel losses and the required level of security,
which is easier to achieve than the direct case.

In general, our numerical simulation results show that
the protocol can tolerate at most 2.5 dB channel loss with
direct reconciliation and 6.5 dB channel loss with reverse
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FIG. 7. Secret key rates vs block size for the extremely asym-
metric case (TBC = 0) with reverse reconciliation. The solid lines are
under the ideal condition that modulation variances VA = VB = 105

and perfect reconciliation efficiency β = 1. The dot-dashed lines are
under the practical condition that practical modulation variancesVA =
VB = 5.04 and imperfect reconciliation efficiency β = 96.9%. From
left to right, the transmittance of the quantum channel corresponds
to loss of 1 dB (black line), 2 dB (red line), and 3 dB (green line),
respectively.
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reconciliation against coherent attacks in the extremely asym-
metric scenario. Meanwhile, the secret key rate is reduced
considering the practical squeezing parameter and imperfect
reconciliation efficiency. Finite-size effect is also discussed
apart from asymptotic regime. When the block size is of
the order of 107–1012, one can achieve high secret key rates
depending on the channel loss; thus it is practical on the
metropolitan scale with current technologies.

IV. CONCLUSION

In this paper, we present a composable security anal-
ysis for squeezed-state CV-MDI QKD against general co-
herent attacks. Its security analysis is derived based on the
entanglement-based scheme and a version of state-independent
entropic uncertainty relation is exploited to give a lower
bound on the conditional smooth min-entropy by trusting
Alice’s and Bob’s devices. Finite-size effect is also taken into
consideration, and we use two independent entangling cloner
attacks to simulate the performance of the method in both
direct and reverse reconciliation cases. The simulation results
show that, in extremely asymmetric scenarios, the protocol
can tolerate 2.5 dB and 0.64 dB channel losses under ideal and
practical conditions with direct reconciliation, and 6.5 dB and
3.6 dB channel losses under ideal and practical conditions with
reverse reconciliation. An interesting extension to this paper
would be to further add the energy test to remove the trusted
source assumption.
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APPENDIX A: ESTIMATION OF tq AND t p

IN MEASUREMENT STAGE

The usage of tq and tp in Eq. (3) in the main text is to
ensure that the discreted data between Alice and Bob have
strong correlation after states passing through channels. In
order to guarantee the difference between the data collected
by Alice and Bob is small enough, one possible solution is to
rescale one of two communicated parties’ data such that the
second moments of Alice’s and Bob’s amplitude and phase
measurement match.

Suppose Alice and Bob randomly choose amplitude strings
{XA,XB} of length m and phase strings {PA,PB} of length j to
estimate parameters tq and tp, respectively. Here the estimation
of tq is demonstrated as an example and that of tp can be
calculated using the same method.

First, considering the scenario where there is no rescaled and
discretization processes in the measurement phase, theoreti-
cally the average value of amplitude measurement outcomes
both in Alice’s and Bob’s sides can be estimated by

Ê(QA) = 1

m

m∑
i=1

Qi
A, Ê(QB) = 1

m

m∑
i=1

Qi
B, (A1)

and the variance of amplitude measurement outcomes both in
Alice’s and Bob’s sides can be written as

σ̂ (QA) = 1

m

m∑
i=1

(
Qi

A − Ê(QA)
)2

(A2)

and

σ̂ (QB) = 1

m

m∑
i=1

(
Qi

B − Ê(QB)
)2

. (A3)

After taking the rescaled process into account, the estima-
tors of new date Q̃A should satisfy the following forms:

Ê(Q̃A) = 1

m

m∑
i=1

Q̃i
A, (A4)

σ̂ (Q̃A) = 1

m

m∑
i=1

[
Q̃i

A − Ê(Q̃A)
]2

. (A5)

In order to match the variances of Alice’s and Bob’s
measurement data, the values of Eqs. (A3) and (A5) should
be the same. When the discretization process is done, the
parameter tq can be estimated by

tq =
√√√√∑m

i=1

(
Xi

B − Ê(XB)
)2

∑m
i=1

(
Xi

A − Ê(XA)
)2 , (A6)

where Ê(·) is the estimator of the average value of measured
data. Therefore, parameter tp can be written using the same
estimation method, which reads

tp =
√√√√∑j

i=1

(
P i

B − Ê(PB)
)2

∑j

i=1

(
P i

A − Ê(PA)
)2 . (A7)

Displacement

Alice Bob

Charlie

FIG. 8. EB scheme of the squeezed-state CV-MDI QKD protocol
with Eve’s attacks. After two channels, mode A2 becomes A′ and
mode B2 becomes B ′. QM is the quantum memory.
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APPENDIX B: DERIVATION OF COVARIANCE MATRICES

Considering the EB version of the squeezed-state CV-
MDI QKD protocol, Eve’s attacks can be modeled by two
independent entangled-cloner attacks (shown in Fig. 8 and sup-
posing modes E2 and E3 are independent for simplification),
where channelAC and channelBC are replaced by two BS with
transmittances T1 and T2, respectively. The covariance matrices
of two BS can be written as

S
A(B)
BS =

( √
T1(2)

√
1 − T1(2)

−√
1 − T1(2)

√
T1(2)

)
, (B1)

After passing two channels, modeA2 becomes A′, and mode
B2 becomes B ′, and the following relationships of quadratures
hold:

Â′ =
√

T1Â2 +
√

1 − T1Ê2 (B2)

and

B̂ ′ =
√

T2B̂2 +
√

1 − T2Ê3. (B3)

Then Charlie applies Bell detection of the measured states.
Modes A′ and B ′ are combined with a balanced beam splitter
with output modes C and D. Therefore, we can get modes C

and D as

Ĉ = 1√
2

(Â′ − B̂ ′) = 1√
2

(
√

T1Â2 −
√

T2B̂2)

+ 1√
2

(
√

1 − T1Ê2 −
√

1 − T2Ê3) (B4)

and

D̂ = 1√
2

(Â′ + B̂ ′) = 1√
2

(
√

T1Â2 +
√

T2B̂2)

+ 1√
2

(
√

1 − T1Ê2 +
√

1 − T2Ê3). (B5)

Before Charlie makes a Bell measurement to the C and D

modes, the whole state ρA1CDB1 can be described by the 8×8
covariance matrix γA1CDB1 , given by

γA1CDB1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

VAI2

√
1
2T1

(
V 2

A − 1
)
σz

√
1
2T1

(
V 2

A − 1
)
σz 0I2√

1
2T1

(
V 2

A − 1
)
σz

[
1
2T1(VA + χ1) + 1

2T2(VA + χ2)
]
I2

[
1
2T1(VA + χ1) − 1

2T2(VA + χ2)
]
I2

√
1
2T2

(
V 2

B − 1
)
σz√

1
2T1

(
V 2

A − 1
)
σz

[
1
2T1(VA + χ1) − 1

2T2(VA + χ2)
]
I2

[
1
2T1(VA + χ1) + 1

2T2(VA + χ2)
]
I2 −

√
1
2T2

(
V 2

B − 1
)
σz

0I2

√
1
2T2

(
V 2

B − 1
)
σz −

√
1
2T2

(
V 2

B − 1
)
σz VBI2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(B6)

where ε1 and ε2 in χ1 = 1/T1 − 1 + ε1, χ2 = 1/T2 − 1 + ε2

are the excess noises of the corresponding channels.
The measurement results xC and pD are announced by

Charlie in a public channel so that Bob can displace mode
B1 to B ′

1, whose relationships of quadratures read

B̂ ′
1x = B̂1x + gĈx =

(
B̂1x − g

√
T2

2
B̂2x

)
+ g

√
T1

2
Â2x

+ g√
2

(
√

1 − T1Ê2x −
√

1 − T2Ê3x) (B7)

and

B̂ ′
1p = B̂1p + gD̂p =

(
B̂1p + g

√
T2

2
B̂2p

)
+ g

√
T1

2
Â2p

+ g√
2

(
√

1 − T1Ê2p +
√

1 − T2Ê3p). (B8)

Hence the covariance matrix γA1B1
′ of the state ρA1B1

′ can be
written as Eq. (16) in the main text.

APPENDIX C: DERIVATION OF DISCRETE
SHANNON ENTROPY

A continuous variable can always be approximated as a
discrete variable with finite resolution digital discretization,

and the smaller the discreted unit is, the closer the discrete
variable is to the continuous variable.

Assuming that the variable x belongs to the interval x ∈
[a,b], whose probability density function is denoted by p(x),
we divide this interval into n continuous intervals with same
length δ, where δ = b−a

n
. According to the mean value the-

orem of integrals, there is a value xi in each interval xi ∈
[a + (i − 1)δ,a + iδ], where i = 1,2, . . . ,n, and xi should
satisfy

pi = p(xi)δ =
∫ a+iδ

a+(i−1)δ
p(x)dx, (C1)

where pi is the probability in each interval. Therefore, the
discrete Shannon entropy H (xδ) can be derived by

H (xδ) = −
n∑

i=1

pi log2 pi

= −
n∑

i=1

p(xi)δ log2 [p(xi)δ]

= −
n∑

i=1

p(xi)δ log2 p(xi) − (log2 δ)
n∑

i=1

p(xi)δ

= −
n∑

i=1

p(xi)δ log2 p(xi) − log2 δ. (C2)
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Here we use the relation
∑n

i=1 p(xi)δ = 1. The limit of H (xδ)
as δ approaches zero goes toward the entropy of continuous
variable, which reads

limδ→0 Hn(xδ) = lim
δ→0

[
−

n∑
i=1

pn(xi)δ log2 pn(xi) − log2 δ

]

= −
∫ b

a

p(x) log2 p(x)dx − lim
δ→0

(log2 δ)

�= h(x) + H (δ), (C3)

where h(x) = − ∫ b

a
p(x) log2 p(x)dx denotes the differential

entropy and H (δ) = − lim
δ→0

(log2 δ).

Now consider a normal distribution

g(x) = 1√
2πσ

exp

(
− x2

2σ 2

)
, (C4)

with variance σ 2. The differential entropy of a normal distri-
bution reads

h(x) = −
∫

g(x) log2 [g(x)]

= −
∫

dx g(x)

(
− x2

2σ 2
+ 1

2
log2(2πσ 2)

)

= 1

2
+ 1

2
log2(2πσ 2)

= log2(
√

2πeσ 2). (C5)

Supposing another continuous variable y ∈ [a,b], the re-
lationships

∫
p(y)dy = 1 and

∫
p(x/y)dx = 1 hold, where

p(x/y) is the conditional probability density function of x

given y. Then

H (xδ/yδ) = −
∑

j

p(yj )δ
∑

i

p(xi/yj )δ log2[p(xi/yj )δ]

= −
∑

j

p(yj )δ
∑

i

p(xi/yj )δ log2[p(xi/yj )]

− log2 δ, (C6)

and the limit of H (xδyδ) as δ approaches zero reads

lim
δ→0

H (xδ/yδ) = h(x/y) + H (δ), (C7)

where h(xy) is the conditional entropy of x given y, which
reads

h(x/y) = −
∫∫

p(y)p(x/y) log2 p(x/y)dx dy. (C8)

Hence the mutual information I (xδ : yδ) between discrete
variables xδ and yδ , as approaches zero, can be approximated,

lim
δ→0

I (xδ : yδ) = lim
δ→0

[H (xδ) − H (xδ/yδ)]

= h(x) − log2 δ − (h(x/y) − log2 δ)

= I (x : y), (C9)

where I (x : y) is the mutual information between continuous
variables x and y. Therefore, if the length of intervals δ is small

enough, we can always regard the continuous variable mutual
information I (x : y) as the approximation of the discrete one.

APPENDIX D: SYMMETRIC CASES UNDER
TWO CORRELATED MODE ATTACKS AND THE

COMPARISON WITH THE PLOB BOUND

In the main text, the performance of squeezed-state CV-
MDI QKD under coherent attacks has been discussed focusing
on the extremely asymmetric cases (TBC = 0). However, in the
calculation of security key rate, all of the effects caused by the
channel are usually treated as Eve’s contribution. The optimal
attack strategy provides the maximum information for Eve to
reduce the security of the protocol to the greatest extent, so it
is important to study the protocol under more general attack
strategies.

According to Ref. [66], the covariance matrix of two
correlated modes E2 and E3 measured by Eve (Fig. 8) has
the following form:

γE2E3 =
(

VE2I2 G

G VE3I2

)
, (D1)

where G is the correlation term. Supposing VE2 = VE3 = VE ,
to achieve maximum correlation between Eve’s modes, G is

chosen as
√

V 2
E − 1σz due to the uncertainty principle, and the

final covariance matrix of ρA1B1
′ under the two correlated mode

attack model is given by

γA1B1
′ =

⎛
⎝ VAI2

√
T

(
V 2

A − 1
)
σz√

T
(
V 2

A − 1
)
σz [T (VA − 1) + 1 + T e′]I2

⎞
⎠.

(D2)

The equivalent excess noise e′ reads

e′ = 1 + 1

T1
[2 + T2(ε2 − 2) + T1(ε1 − 1) − CE]

+ 1

T1

(√
2

g

√
VB − 1 −

√
T2

√
VB + 1

)2

, (D3)

where CE = 2
T1

√
(1 − T1)(1 − T2)〈E2xE3x〉 is the noise con-

tribution of x quadrature induced by the correlation of Eve’s
two modes and CE = − 2

T1

√
(1 − T1)(1 − T2)〈E2pE3p〉 is the

corresponding noise contribution of p quadrature.
If one of T1 and T2 is equal to zero, corresponding to the

extremely asymmetric case (discussed in our main text), the
contribution of the two modes’ correlation in Eve’s attack
disappears, and the independent entangling cloner attack and
two correlated mode attack are equivalent in this situation.
Therefore, the model of the two independent entangling
cloner attack can simplify our numerical simulation in the
main text.

Under correlated mode attacks, the secret key rate formula
is the same as that in the main text [Eq. (10)], but compared
with independent entangling cloner attacks, the cases that both
T1 and T2 are not equal to zero will increase the leakage
information and then decrease the key rate in the two correlated
mode attack model. Typically, in the symmetric case, where the
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FIG. 9. Comparison of the secret key between the independent
entangling cloner attacks model and correlated mode attacks model in
the symmetric case. The ideal case is under ideal modulation variances
VA = VB = 105 and perfect reconciliation efficiency β = 1. The
practical case is with practical modulation variances VA = VB = 5.04
and imperfect reconciliation efficiency β = 96.9%. The solid lines are
the secret key rates under two independent entangling cloner attacks
models. The dashed lines are the secret key rates under two correlated
mode attacks models.

relay is located in the middle of Alice and Bob, we compare the
results between two independent entangling cloner attacks and
the two correlated mode attacks in Fig. 9, and the discussion
is under the asymptotic regime.

It can be seen that, in the symmetric case, which is the
worst case for the two correlated mode attacks (because the
correlation term CE reaches the maximum value), this corre-
lated attack model will slightly degrade the performance of
the protocol. Moreover, the more asymmetric the protocol, the
smaller the impact of the correlated attack on the secret key rate.

In experiment, the covariance matrices can be obtained by
data statistics, so there is no need to assume which model Eve’s
attack strategy belongs to before the protocol starts. If Eve’s
attack is stronger than the model we give in our simulation, the
correlation between Alice and Bob’s data will decline, so the
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FIG. 10. Comparison of the secret key between the extremely
asymmetric results and the PLOB bound. Our protocol is under
ideal modulation variances VA = VB = 105 and perfect reconciliation
efficiency β = 1. The red solid line is the bound of secret key capacity
of asymmetric CV-MDI-QKD. The green dot-dashed line and the blue
dashed line are the secret key rates of CV-MDI-QKD with squeezed
states in direct and reverse reconciliation cases, respectively.

estimation of max-entropy will increase, causing the decrease
of the min-entropy. Moreover, Alice and Bob need to sacrifice
more keys to do the error correction in classical postprocessing
process, and it will leak more information to Eve. Therefore, if
the two correlated mode attack is exploited by Eve, the secret
key rate can still be calculated using Eq. (10) and it will not
influence the security analysis of the protocol, but the secret
key rate will decrease.

We also compare the extremely asymmetric results with
the PLOB bound [68] shown in Fig. 10, which is the secret-
key capacity of the lossy channel. It can be seen that, even
though there is still a gap between the secret key rate of
our protocol and the key capacity bound above, the final key
rate can be improved using current technologies, such as the
photon subtraction method [69–71] and the adding trusted
noise method [43,72].
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