
PHYSICAL REVIEW A 98, 012311 (2018)

Quantum circuits for Toom-Cook multiplication

Srijit Dutta,1 Debjyoti Bhattacharjee,2,* and Anupam Chattopadhyay2

1Department of Computer Science and Engineering, IIT Bombay, India
2School of Computer Science and Engineering, Nanyang Technological University, Singapore

(Received 29 January 2018; published 12 July 2018)

In this paper, we report efficient quantum circuits for integer multiplication using the Toom-Cook algorithm.
By analyzing the recursive tree structure of the algorithm, we obtained a bound on the count of Toffoli gates
and qubits. These bounds are further improved by employing reversible pebble games through uncomputing the
intermediate results. The asymptotic bounds for different performance metrics of the proposed quantum circuit
are superior to the prior implementations of multiplier circuits using schoolbook and Karatsuba algorithms.

DOI: 10.1103/PhysRevA.98.012311

I. INTRODUCTION

Quantum computing has gathered significant attention
by solving certain problems much faster than any known
classical algorithm. In contrast to Boolean logic, quantum
bits (qubits) not only represent the classical 0 and 1 states
but also any complex combination or superposition of both,
leading to a significant speed-up in computing. The Deutsch-
Jozsa algorithm [1] and Shor’s factorization algorithm [2] are
well-known examples demonstrating the power of quantum
computing. This capability gives rise to the bounded-error
quantum polynomial time (BQP) complexity class with an
open quest among computer scientists and mathematicians to
establish the exact relation between BQP and other complexity
classes. In order to accelerate scientific computing using the
capabilities of a quantum computer, efficient quantum circuits
for basic mathematical functions are needed. The efficiency of
a quantum circuit is measured by lower computational space
(number of qubits) and lower computational time (logical
depth). For fault-tolerant, error-protected quantum circuits
to implement the quantum algorithms, it is projected that a
large number of physical qubits are required for every logical
qubit [3]. Naturally, potential solutions to reduce the number
of logical qubits contribute to the overall efficiency of the
quantum circuit.

Multiplication is one of the elementary mathematical op-
erations of arithmetic. Fast long integer arithmetic is at the
very core of many computer algebra systems. In quantum
computing, apart from being used as a block in itself, integer
multiplication is used as a subroutine in many applications,
such as Shor’s integer factorization algorithm and in Newton
iterations for calculating many functions like the inverse [4].

In this paper, we present a quantum implementation of
the Toom-Cook multiplication algorithm [5,6], which can
attain better asymptotic complexity than simple schoolbook
multiplication and the Karatsuba-based integer multiplication
[7]. We further improve these bounds by analyzing pebble
games on complete trees.

*debjyoti001@e.ntu.edu.sg

II. PRIOR WORKS

The problem of multiplication in the quantum domain has
been explored previously. For small numbers, naïve school-
book multiplication works best, with a runtime complexity
O(n2) that also translates to the logical depth in a quantum
circuit realization. Karatsuba multiplication, implemented in
quantum circuits [7], is usually faster when the multiplicands
are longer than 320–640 bits, which also provides asymptotic
improvement in terms of Toffoli cost and Toffoli depth over
schoolbook multiplication. However, the number of qubits re-
quired for Karatsuba-based quantum implementation is higher
than schoolbook multiplication. In the realm of quantum cir-
cuits, so far, the Schönhage-Strassen method (using fast Fourier
transform) and Toom-Cook multiplication algorithm are not
reported, even though it is known from classical implementa-
tions that these algorithms result in better run times when the
operand size is much larger. We primarily focus on the Toom-
Cook multiplication in this work. As reported in our results, this
leads to significant savings of all the performance metrics for an
efficient quantum circuit, clearly outperforming prior works.

The family of Toom-Cook methods is an infinite set of
polynomial algorithms (Toom-2.5, Toom-3, Toom-4, etc.) [8].
Instead of using the more common Toom-3 implementation,
we present the work with Toom-2.5 to avoid a division by 3
required by the former. This leads to reduction in overall circuit
costs, as quantum division is costlier in terms of Toffoli count
and Toffoli depth than simple addition or shift operations. Most
of the higher Toom implementations require a similar division
by constants that are not multiples of 2. The implementation of
such divisions incurs higher quantum costs and therefore we
avoid them.

When moving to quantum domains, gate sets need to go
beyond classical to create the superposition effect of the inputs.
The standard universal quantum gate library that efficiently
implements fault-tolerant quantum error correction codes is
the Clifford+T library [9,10]. In this library, the cost of
implementing a T gate is sufficiently high to customarily
neglect the cost of other Clifford group gates while determining
the total cost of the quantum circuit. Therefore, the number of T

gates is a metric to judge the cost of a quantum circuit. Also, the
number of qubits used in a quantum circuit is another important

2469-9926/2018/98(1)/012311(6) 012311-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.012311&domain=pdf&date_stamp=2018-07-12
https://doi.org/10.1103/PhysRevA.98.012311

DUTTA, BHATTACHARJEE, AND CHATTOPADHYAY PHYSICAL REVIEW A 98, 012311 (2018)

standard, since the current quantum technologies still struggle
to achieve error-free computation for large counts of qubits. A
study of the space-time trade-off can be performed [11] using
these two metrics. Another metric of importance is the T depth.
T depth is defined as the number of T stages in a quantum
circuit where each such stage consists of one or more T or T†

gates performed concurrently on separate qubits. It is important
to note that an input circuit with continuous parameter gates
[e.g., z rotation gate Rz(θ)] is decomposed using a set of
discrete basis gates, typically from the Clifford+T library.
The exact number of Clifford+T gates needed for such a
continuous parameter gate depends on the desired accuracy,
and the discrete gate set provides only an approximation. In the
context of the current work, we consider T count and T depth
of the circuit to be proportional to the Toffoli count and Toffoli
depth, respectively, by following the Toffoli decomposition
proposed in [12].

III. TOOM-COOK MULTIPLIER

Given two large integers n1 and n2, the Toom-Cook al-
gorithm splits them into k smaller parts of length l. The
multiplication sub-operations are then computed recursively
using Toom-Cook multiplication again until we are able to
apply another algorithm on it for the last stage of recursion,
or until the desired multiplier is reached. The input numbers
are divided into limbs of a given size, each in the form of
a polynomial, and the limb size is used as a radix. Instead
of multiplying the obtained polynomials directly, they are
evaluated at a set of points and the values multiplied together
at those points. Based on the products obtained at those points,
the product polynomial is computed by interpolation. The final
result is then obtained by substituting the radix.

In general, Toom-k runs in �(c(k)ne), where n denotes
input size, k is the number of parts that the input operand
is decomposed into, and e = logk (2k − 1). c(k) is the time
spent on auxiliary additions and multiplications by small
constants. The Karatsuba algorithm [13] is a special case of
Toom-Cook multiplication (Toom-2), where the input operand
is split into two smaller ones. It reduces four multiplications to
three and so operates at �(nlog2 3). In general, Toom-k reduces
k2 multiplications to 2k − 1 ordinary long multiplications
[equivalent to Toom-1 with complexity �(n2)].

A. Implementation details

Let x and y be two n-bit numbers. To proceed with
the Toom-2.5 algorithm, we first decompose x and y into
two and three parts, respectively. Express x = x12i + x0 and
y = y222i + y12i + y0 with i � 1. Typically, i is chosen as
max{� �log2 x�

k
�,� �log2 y�

k
�}, where k = 2.5 in our case. We define

the following four product terms:

P = x0y0, (1)

Q = (x0 + x1)(y0 + y1 + y2), (2)

R = (x0 − x1)(y0 − y1 + y2), (3)

S = x1y2. (4)

Then the product xy is evaluated as

xy = A23i + B22i + C2i + D, (5)

A = S, (6)

B = −P + 1
2Q + 1

2R, (7)

C = 1
2Q − 1

2R − S, (8)

D = P. (9)

Note that only four multiplications are required for com-
putation of the product. Also, each of these multiplications
consists of numbers of size smaller than the original problem
size (bit-width). Each smaller multiplication is between one
number of bit-width n/2 and another of bit-width n/3. Since
this method is applied in recurrence the second time for our
analysis, we consider that the smaller limbs formed from the
number which was split into three parts originally is now split
into two parts and vice versa. So after two steps, we get 16
smaller problems of size n/6 each. Thus, we obtain the basic
recurrence for the number of steps T (n):

T (n) = 16T

(
n

6

)
. (10)

All additions (the intermediate ones as well as the final ones)
are performed by separate adders which have bounded cost.

B. Gate count analysis

For gate count analysis, we consider only the Toffoli count
required by the quantum circuit or subcircuit. This is because
the other used gates [NOTs, controlled-NOTs (CNOTs)] do not
contribute to the T count of the circuit, considering the
Clifford+T library. The designed circuit maps (x,y,0,0) �→
(x,y,g,xy), where g denotes some garbage output resulting
as computation of A,B,C, and D. The product is copied
after the computation and the circuit is then run backwards
(uncomputed) to set the garbage outputs back to 0.

In our circuit implementation, the Cuccaro adder is used
[14]. For addition of two n-bit numbers, the Cuccaro adder
requires 2n − 1 Toffoli gates. It is also established that the
cost An, for an in-place adder adding two n-bit numbers, is
bounded by 2n Toffoli gates.

Let Tn,n denote the multiplication call to a Toom-2.5 circuit
for calculating product to two n-bit numbers and T Cn denote
the number of Toffoli gates required for implementing Tn,n.
First, we need to calculate P,Q,R, and S. This requires four
recursive calls to Tn

2 , n
3
. For calculating the intermediate sums

required as input for Tn
2 , n

3
, we need four n/2 bit adders and

six n/3 bit adders. This also includes uncomputation of the
intermediate garbage results, i.e., the qubits used for storage
of intermediate results are returned to their initial states. The
output of each Tn

2 , n
3

is a 5n/6 bit number. Finally, for computing
A,B,C, and D, four 5n/6 adders are required. As already
stated earlier, in evaluation of Tn

2 , n
3

we assume that the n/2 bit
number is split into three parts and vice versa. By performing

012311-2

QUANTUM CIRCUITS FOR TOOM-COOK MULTIPLICATION PHYSICAL REVIEW A 98, 012311 (2018)

FIG. 1. Recursion tree structure of the Toom-2.5 implementation.

similar analysis, we get evaluation of Tn
6 , n

6
, in terms of which

the recursive relation is provided:

T Cn = 16T Cn/6 + 40An/6 + 22An/3 + 4An/2 + 4A5n/6

(11)

= 16log6 nT C1 + 40
(
An

6
+ 16A n

36
+ · · ·)

+ 22
(
An

3
+ 16A n

18
+ · · ·) + 4

(
An

2
+ 16A n

12
+ · · ·)

+ 4
(
A 5n

6
+ 16A 5n

36
+ · · ·). (12)

The base case is the multiplication of two 1 bit numbers which
can be done by a Toffoli gate. Therefore, T C1 = 1. Each of
the summations of the adder gate counts have log6n terms.
On evaluating the summations using geometric progression
and doubling the cost to account for the aforementioned
uncomputation, we get

T Cn = 2

(
16log6 n + 23.2n

[(
16

6

)log6 n

− 1

])
(13)

= 2nlog6 16 + 46.4n(nlog6(16/6) − 1) � 49nlog6 16. (14)

Note that all operations used in the circuit design are imple-
mented using only adders and shifts, without any separate
multiplication and division blocks.

C. Space-time trade-offs

The recursive nature of the problem gives rise to an inherent
tree structure as shown in Fig. 1. The size of a node is
representative of the problem size at that level. For example, the
root level denotes the complete problem (n-bit multiplication).
According to the recursion presented in Eq. (10), each node will
have 16 children nodes denoting a smaller problem [(n/6)-bit
multiplication]. For the Toom-2.5 circuit with an input of size n

at any level x in the tree, there are 16x nodes of size n6−x , each
for a total cost of n(16

6)x at level x (level numbering starting at
0 from root). So, the space cost Qorig of the complete tree is

Qorig = n

N−1∑
0

(16

6

)x

(15)

= n
(16/6)log6 n − 1

(16/6) − 1
(16)

= O[n(8/3)log6 n] = O(n1+log6 (8/3)) (17)

≈ O(n1.547), (18)

where the tree height N = log6 n.
The reversible pebble game [15] is a combinatorial game

played on rooted directed acyclic graphs (DAGs). Each pebble
represents some amount of space. The rules are similar to
those used in the pebble game to model irreversible compu-
tation, except that we simply cannot remove pebbles by a
reversibility constraint. There is a reverse computation for each
corresponding computation performed, implying that during
the game, the pebbles may still be removed but it is subject to
the same conditions as applied during placing the pebbles. We
use this reversible game to obtain better asymptotic bounds
in the number of qubits (space) to implement the Toom-2.5
algorithm.

We want to find a level in the recursion tree such that the size
of each node’s subtree is approximately equal to the sum of the
size of all nodes at that level chosen and above. Once all the
nodes in the chosen level have been computed, we uncompute
all the subtrees below it. This is performed to minimize space—
the size of these subtrees is chosen to be approximately equal
to the remaining size of the tree above them. Let the required
height be k from the leaves of the tree. The cost of all height k

subtrees is

n

N−1∑
N−k

(
16

6

)x

.

Therefore, the cost of a single height k subtree is

n

16N−k

N−1∑
N−k

(
16

6

)x

= n

6N−k

k−1∑
0

(
16

6

)x

.

We want this to equal the cost of all nodes above the kth level:

n

N−k−1∑
0

(
16

6

)x

= n

6N−k

k−1∑
0

(
16

6

)x

. (19)

Simplifying, we obtain a bound that k � N
2−log16 6 . This is since

k � N and (16
6)

N−k � 16k

6N . Using the above technique, the
qubit count is now optimized and bounded by Qopti:

Qopti = O

[
n

(
8

3

) 1
2−log16 6 log6 n]

≈ O(n1.404). (20)

The time complexity of a quantum circuit is effectively equal
to the depth of the circuit in terms of Toffoli gates. Each node
in the computation tree shown in Fig. 1 at level k must be
computed sequentially. At the kth level, the number of subtrees
STk and corresponding depth Dk is defined as follows:

STk = 16(1− log 16
2 log 16−log 6) log6 n

, (21)

Dk = n

6(1− log 16
2 log 16−log 6) log6 n

, (22)

STk ∗ Dk = n

(
8

3

)(1− log 16
2 log 16−log 6) log6 n

≈ n1.143. (23)

The product STk ∗ Dk gives an overall depth for computing the
entire kth level of the recursion tree.

012311-3

DUTTA, BHATTACHARJEE, AND CHATTOPADHYAY PHYSICAL REVIEW A 98, 012311 (2018)

FIG. 2. The quantum circuit for computing integer multiplication results using the Toom-2.5 algorithm. The compute blocks are then run
backwards (uncomputed) to set the garbage outputs (g) back to 0 (not shown in the figure).

The method proposed above is most efficient if both the
numbers to be multiplied are approximately of the same bit-
width. In case one of them is much bigger than the other, it
is better if the bigger number is repeatedly divided into three
parts in each turn, until the smaller parts of both the numbers are
roughly the same size. Following this method, the asymptotic
computational complexity can be shown to be more efficient
than that of the alternating Toom-2.5 method adopted.

The circuit of the described implementation is shown in
Fig. 2. It describes the circuit for Tn,n that multiplies x

(decomposed into x0,x1) and y (decomposed into y0,y1,y2).
All symbols and variables mentioned hold the same meanings
as described in the analysis above. The adder, subtractor, and
shifting blocks are represented as “Adder,” “Sub,” and “Shift,”
respectively. The Tn

2 , n
3

blocks denote Toom-2.5 subcircuits of
smaller bit-width.

IV. RESULTS AND DISCUSSIONS

Table I presents the asymptotic results of implementation
of various multiplication methods, while Table II provides
the exact constants involved. The naïve multiplication method
suggested in [7] allows implementation with the lowest number

TABLE I. Asymptotic performance analysis of the quantum
implementation of various multiplication methods.

Method QC TC TD

Naïve [7] O(n) O(n2) O(n2)
Naïve improved [16] O(n) O(n2) O(n log n)
Karatsuba [7] O(n1.427) O(nlog2 3) O(n1.158)
Toom-2.5 O(n1.404) O(nlog616) O(n1.143)
Const. Mult. [17] O(n) O(n2) O(n)

QC: Qubit count, TC: Toffoli count, TD: Toffoli depth.

of qubits asymptotically but fares badly in terms of Toffoli
count and depth.

In [16], the implementation of logarithmic depth adders
has been provided. The naïve (shift-add) multiplier can be
improved in depth by using the logarithmic depth adder as
a submodule. The n-bit adder has a depth of order O(log n),
and thus the multiplier shall have a depth of O(n log n).
However, for both the “in-place” and “out-of-place” adders
described in [16], extra ancilla are required for intermediate
computation. Also, the Toffoli count is greater compared to the
Cuccaro adder. Thus, the multiplier developed by extension,
though optimized in depth, will have greater asymptotic Toffoli
and qubit count, equal to O(n2). In Table I, we provide
the asymptotic complexity of such a multiplier. However, in
the absence of an explicit design, we are unable to provide
the exact constants involved in the cost metrics and hence
the naïve improved method mentioned in Table I is excluded
from Table II. Toom-2.5 requires less number of qubits than
Karatsuba [7]. Toom-2.5 outperforms both the naïve and
Karatsuba methods in terms of Toffoli count as well as Toffoli
depth, highlighting the efficiency of the proposed method.

Pavlidis et al. [17] presented a depth-optimized multiplier
for multiplication by a constant only. Therefore, it is unfair to be
directly compared with our implementation and the Karatsuba

TABLE II. Cost of quantum implementation of multiplication.

Method QC TC TD

Naïve [7] 4n + 1 4n2 − 3n 4n2 − 4n + 1

Karatsuba [7] n(3
2)

log2 n

2−log3 2 42nlog2 3 n(3
2)

(1− 1
2−log3 2) log2 n

Toom-2.5 n(8
3)

log6 n

2−log16 6 49nlog6 16 n(8
3)

(1− 1
2−log16 6) log6 n

Const. Mult. [17] 3n + 1 4n(n + 1) 8n

012311-4

QUANTUM CIRCUITS FOR TOOM-COOK MULTIPLICATION PHYSICAL REVIEW A 98, 012311 (2018)

100 200 300 400 500

Input Size (bits)

0

2

4

6

8

10

12

T
o

ff
o

li
C

o
u

n
t

10 5

Karatsuba
Toom-2.5
Naive
Const

1 5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

T
o

ff
o

li
D

ep
th

Input Size (bits)

Karatsuba
Toom−2.5
Naive
Const

(a) (b) (c)

100 200 300 400 500
0

5000

10000

15000

n
o

. o
f

q
u

b
it

s

Input Size (bits)

Karatsuba
Toom−2.5
Naive
Const

FIG. 3. Comparison of the quantum multiplier implementations based on (a) Toffoli count, (b) Toffoli depth, and (c) number of qubits.

multiplication implementations presented in [7]. It has a Toffoli
depth of 8n, a cost of 4n(n + 1), and qubit count of 3n + 1.

The Clifford+T quantum gate library has garnered much
interest in the implementation of fault-tolerant quantum cir-
cuits [18]. As mentioned in [19,20], the cost of a Toffoli gate is
higher compared to the NOT and CNOT gates. The Toffoli gate
may be decomposed using Clifford+T gates, which makes
cost metrics associated with Toffoli gates important. Therefore,
Toffoli count and Toffoli depth are used as the performance
metrics to begin with. The cost of mapping a Toffoli gate
to the Clifford+T fault-tolerant library is upper bounded by
7× Toffoli count and 3× Toffoli depth [12]. Therefore, fault-
tolerant implementation of the proposed multiplication method
would have at most 7× Toffoli count and 3× Toffoli depth of
the values mentioned in Table I. It is further possible to improve
these values by the optimization techniques proposed in [9,12].

Figure 3(a) presents a comparison of the Toffoli count
required by the various methods for variation in the bit-width
of the inputs. The naïve multiplication method performs better
in terms of total Toffoli cost at smaller input sizes (<300 bits)
but is outperformed by the Karatsuba and Toom algorithms at
higher bit-widths.

Figure 3(c) shows the variation in the qubit requirements by
the different implementations across a range of input sizes. In
this case the shift-and-add method (naïve) outperforms both the
recursive algorithms as it increases linearly. However, this low
space requirement leads to a higher depth, as demonstrated in
Fig. 3(b) in a logarithmic scale. Both Toom-2.5 and the Karat-
suba implementations perform much better in this respect.

We also present a bound on the CNOT counts of the
considered implementations. In the proposed Toom-2.5 circuit
shown in Fig. 2, CNOT gates are present in the Cuccaro adders
and copy blocks. It can be seen from [14] that the number of
CNOT gates in an n-bit adder can be bounded by 5n. Proceeding
similarly as the Toffoli count analysis, we get an exactly similar
recurrence relation as presented in the Gate Count Analysis in
Sec. III. LetCCn denote the number of CNOT gates inTn,n. Also,
let Acn denote the number of CNOT for an in-place n-bit adder:

CCn = 16CCn/6 + 40Acn/6 + 22Acn/3 + 4Acn/2 + 4Ac5n/6

(24)

= 16log6 nCC1 + 40
(
Acn

6
+ 16Ac n

36
+ · · ·)

+ 22
(
Acn

3
+ 16Ac n

18
+ · · ·) + 4

(
Acn

2
+ 16Ac n

12
+ · · ·)

+ 4
(
Ac 5n

6
+ 16Ac 5n

36
+ · · ·) + COPYcnot (25)

where COPYcnot denotes the number of CNOTs used in the
two copy blocks. However, the number of CNOT gates arising
out of the copy blocks is of the order O(n) and is dominated
by the terms of order nlog6 16. CC1 = 0 because the 1-bit
multiplier consists of just one Toffoli gate:

CCn ≈ 2

(
58n

[(
16

6

)log6 n

− 1

])
(26)

= 116n(nlog6(16/6) − 1) � 116nlog6 16. (27)

By similar analysis, the CNOT count of the Karatsuba multiplier
can be bounded by 100nlog2 3. For the naïve method, controlled
adders are considered as described in [7]. Each such adder has
2n CNOTs and the multiplier uses n − 1 such adders. Thus,
the total CNOT count is 2n2 − 2n. For the constant multiplier
in [17], 2n CNOT gates are employed. These observations are
summarized in Fig. 4.

In [20], it has been established that the T gate is at least 6
times costlier compared to the CNOT gate, which emphasizes
the importance of T count and T depth. However, with
increasing circuit size, the cost of CNOT may take a dominant
role if we follow the analysis in terms of upper and lower
bounds [19]. From that perspective, the study of overall cost
is important. As we found for the case of multipliers, the
CNOT count of the Toom-2.5 multiplier grows at slightly
lower rate compared to that of the Karatsuba multiplier with
increasing input size. Considering the fact that the Toffoli count
of the Toom-2.5 multiplier already outperforms Karatsuba

100 200 300 400 500
Input Size (bits)

10 0

10 2

10 4

10 6

10 8

C
N

O
T

 C
o

u
n

t

Karatsuba
Toom-2.5
Naive
Const

1

FIG. 4. Variation in CNOT counts across different implementa-
tions with increasing input size.

012311-5

DUTTA, BHATTACHARJEE, AND CHATTOPADHYAY PHYSICAL REVIEW A 98, 012311 (2018)

at large input sizes, the proposed design is clearly more
efficient.

V. CONCLUSION

Designing an efficient quantum circuit with low resource
requirements and faster run time is an important challenge
with significant repercussions across several domains,

such as scientific computing and security. In this work,
we reported an efficient quantum circuit for integer
multiplication based on the Toom-Cook algorithm. We
provide design results and techniques for lowering the
resource requirements. In terms of asymptotic complexity,
the presented implementation outperforms the state-of-the-art
results for multiple performance metrics.

[1] D. Deutsch and R. Jozsa, Proc. R. Soc. London, Ser. A 439, 553
(1992).

[2] P. W. Shor, in Proc. of the IEEE 35th Annual Symposium on
Foundations of Computer Science (IEEE, New York, 1994),
pp. 124–134.

[3] E. T. Campbell, B. M. Terhal, and C. Vuillot, Nature (London)
549, 172 (2017).

[4] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli,
in 2017 Design, Automation & Test in Europe Conference
& Exhibition (DATE) (IEEE, New York, 2017), pp. 470–
475.

[5] A. L. Toom, Soviet Mathematics Doklady, 3, 714 (1963).
[6] S. A. Cook and S. O. Aanderaa, Trans. Am. Math. Soc. 142, 291

(1969).
[7] A. Parent, M. Roetteler, and M. Mosca, 12th Conference on

the Theory of Quantum Computation, Communication and
Cryptography, {TQC} 2017, June 14-16, 2017, Paris, France,
edited by M. M. Wilde (Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018), Vol. 73.

[8] D. E. Knuth, The Art of Computer Programming (Pearson
Education, New York, 1997), Vol. 2.

[9] M. Amy, D. Maslov, and M. Mosca, IEEE Trans Comput.-Aided
Design Integr. Circuits Syst. 33, 1476 (2014).

[10] A. G. Fowler, A. M. Stephens, and P. Groszkowski, Phys. Rev.
A 80, 052312 (2009).

[11] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler, INTE-
GRATION 47, 284 (2014).

[12] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler, in Proc.
of the IEEE 46th International Symposium on Multiple-Valued
Logic (ISMVL) 2016 (IEEE, New York, 2016), pp. 150–155.

[13] A. Karatsuba and Y. Ofman, Sov. Phys. Dokl. 7, 595 (1963).
[14] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton,

arXiv:quant-ph/0410184.
[15] C. H. Bennett, SIAM J. Comput. 18, 766 (1989).
[16] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, Quantum

Inf. Comput. 6, 351 (2006).
[17] A. Pavlidis and D. Gizopoulos, Quantum Inf. Comput. 14, 649

(2014).
[18] Y. S. Weinstein, Phys. Rev. A 87, 032320 (2013).
[19] D. Maslov, Quantum Inf. Comput. 16, 1096 (2016).
[20] V. V. Shende and I. L. Markov, Quantum Inf. Comput. 9, 461

(2009).

012311-6

https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1090/S0002-9947-1969-0249212-8
https://doi.org/10.1090/S0002-9947-1969-0249212-8
https://doi.org/10.1090/S0002-9947-1969-0249212-8
https://doi.org/10.1090/S0002-9947-1969-0249212-8
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1016/j.vlsi.2013.08.002
https://doi.org/10.1016/j.vlsi.2013.08.002
https://doi.org/10.1016/j.vlsi.2013.08.002
https://doi.org/10.1016/j.vlsi.2013.08.002
http://arxiv.org/abs/arXiv:quant-ph/0410184
https://doi.org/10.1137/0218053
https://doi.org/10.1137/0218053
https://doi.org/10.1137/0218053
https://doi.org/10.1137/0218053
https://doi.org/10.1103/PhysRevA.87.032320
https://doi.org/10.1103/PhysRevA.87.032320
https://doi.org/10.1103/PhysRevA.87.032320
https://doi.org/10.1103/PhysRevA.87.032320

