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Efficient quantum circuit for singular-value thresholding
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A singular-value thresholding (SVT) operation is a fundamental core module of many mathematical models
in computer vision and machine learning, particularly for many nuclear norm minimizing-based problems. A
quantum SVT (QSVT) algorithm was proposed in Phys. Rev. A. 96, 032301 (2017) to solve an image-classification
problem. This algorithm runs in O[log2 (pq)], an exponential speed improvement over the classical algorithm,
which runs in O[poly(pq)]. In this paper, we design a scalable quantum circuit for a QSVT. The quantum circuit
is designed with O[log2(pq/ε)] qubits and O[poly log2 (1/ε)] quantum gates in terms of error O(ε). We also
show that a high-probability and high-fidelity output can be obtained in one iteration of the quantum circuit. The
quantum circuit for a QSVT implies a tempting possibility for experimental realization on a quantum computer.
Finally, we propose a small-scale quantum circuit for a QSVT. We numerically simulate and demonstrate the
performance of this circuit, verifying its capability to solve the intended SVT.
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I. INTRODUCTION

Quantum computing has been shown to perform signifi-
cantly better than classical computing at certain computational
tasks, especially in the emerging interdisciplinary field of
quantum machine learning [1–4]. To show its superiority,
remarkable quantum algorithms help a range of classical al-
gorithms achieve a speedup increase [5–12]. Shor’s algorithm
for factoring and Grover’s algorithm for search are typical
algorithms that can achieve exponential and quadratic speed
increase, respectively [5,6]. In 2009, Harrow, Hassidim, and
Lloyd (HHL) proposed an algorithm for solving linear systems
of equations [10]. This algorithm offers an exponential speed
over its classical counterparts by calculating the expectation
value of an operator associated with the solution of the linear
equation under certain circumstances. Considering that a linear
system is the center of various areas in science and engineering,
the HHL algorithm guarantees widespread applications [13–
15]. Inspired by the idea of the HHL algorithm, other fruitful
quantum machine learning algorithms are proposed [16–20].
Moreover, experimentalists aim to implement the HHL al-
gorithm on a quantum computer. Therefore, research on the
numerical theoretical simulation and experimental realization
of the algorithm has recently emerged [21–24].

In many mathematical models in computer vision and
machine learning, there is a fundamental core module known
as singular-value thresholding (SVT). In particular, the SVT
method has been widely adopted to solve many nuclear
norm minimizing (NNM) -based problems, such as matrix
completion, matrix denoising, and robust principal component
analysis (RPCA). Therefore, the SVT method can be applied to
many applications, such as image extraction, image coloriza-
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tion, image denoising, image inpainting, and motion capture
date recovery. However, NNM usually requires the iterative
application of singular value decomposition (SVD) for SVT,
and the computational cost of SVD may be too expensive to
handle data with high dimension, e.g., high-resolution images.
To speed up the process of SVT, we proposed a quantum
SVT (QSVT) algorithm that can execute the SVT operator
exponentially faster than its classical counterparts. The QSVT
algorithm is used as a subroutine to accelerate an image
classifier support matrix machine (SMM) [25].

In this article, we conduct a more specific discussion regard-
ing the algorithm, and we design a quantum circuit for a QSVT
that can be applied on a universal quantum computer. And the
scalable quantum circuit requires O[log2(pq/ε)] qubits and
O[poly log2 (1/ε)] quantum gates with error O(ε). Reference
[25] shows that the QSVT algorithm is based on the HHL
algorithm, which consists of two core subroutines, namely
phase estimation and controlled rotation. Phase estimation
outputs the eigenvalues of the input matrix A and decomposes
the input vector |ψA0〉 in the eigenbasis of A. Innovating and
implementing controlled rotation are the key of HHL-based
algorithms. Herein, we add an important missing piece to the
algorithm by developing the detailed circuit of the controlled
rotation via the theoretical function in Ref. [25]. Specifically,
we divide the controlled rotation into two unitary operations.
The first unitary operation is Uσ,τ , which is used to compute
the function of the eigenvalues of A. By implementing the
Newton iteration method, these function values can be stored
in the quantum basis states. The second unitary operation
is Ry , which is used to extract the values in the quantum
basis state to the corresponding amplitudes of the basis states.
Implementing Ry directly affects the probability of obtaining
the final result and the fidelity of actual and ideal final
states. To improve probability and fidelity, we introduce a
parameter α in Ry , which can be computed ahead of quantum
circuit implementation. Moreover, we present an example of a
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small-scale circuit for the algorithm, and we execute the
numerical simulation of the example. The result shows the
capability of the quantum computer to solve the intended SVT,
and the performance of the algorithm is discussed.

Our work has two major contributions. First, we design
a quantum circuit for the QSVT algorithm, which makes it
possible to implement the algorithm on a quantum computer.
Second, by introducing the parameter α, which can be com-
puted ahead of implementing the quantum circuit, in the circuit
design of controlled rotation, high probability and high fidelity
can be obtained. Our work based on the QSVT algorithm may
also inspire the circuit design of other HHL-based algorithms.

The remainder of the paper is organized as follows: We give
a brief overview of the QSVT algorithm in Sec. II. Section III
puts forward the quantum circuit for the QSVT and analyzes
the probability and fidelity. We propose an example in Sec. IV,
and we present our conclusions in Sec. V.

II. REVIEW OF QSVT

In this section, we briefly review the QSVT problem and
the key procedure of the QSVT algorithm. More detailed
information can be found in Ref. [25].

A. QSVT problem

SVT is an algorithm based on the SVD of a matrix.
Suppose the input of the SVT is a low-rank matrix A0 ∈ Rp×q

with singular-value decomposition A0 = ∑r
k=1 σkukvT

k , where
r � min (p,q) is the rank of A0, and σk(σ1 > · · · > σr > 0)
are just the singular values of A0, with uk and vk being
the left and right singular vectors. SVT solves the problem
S = Dτ (A0) := ∑r

k=1 (σk − τ )+ukvT
k , where (σk − τ )+ =

max (σk − τ,0) and τ ∈ (0,σ1) [26]. The vectorizations of
the matrices A0 and S are vec(AT

0 ) = ∑r
k=1 σkuk ⊗ vk

and vec(ST ) = ∑r
k=1 (σk − τ )+uk ⊗ vk , which vary as the

quantum states |ψA0〉 = 1/
√

N1
∑r

k=1 σk|uk〉|vk〉 and |ψS〉 =
1/

√
N2

∑r
k=1 (σk − τ )+|uk〉|vk〉, respectively, where N1 =∑r

k=1 σ 2
k and N2 = ∑r

k=1 (σk − τ )2
+. Therefore, the QSVT

algorithm solves the transformed problem vec(ST ) =
Dτ [vec(AT

0 )] [25].

B. QSVT algorithm

Let A = A0A†
0, therefore A = ∑r

k=1 σ 2
k ukuT

k . The QSVT
algorithm is now shown as follows [25]:

Input. A quantum state |ψA0〉, a unitary eiAt0 , and a con-
stant τ .

Output. A quantum state |ψS〉.
Algorithm. S = QSVT(A0,τ ). The procedure of the algo-

rithm can be illustrated as a sequence of the unitary operations:

UQSVT = (Ia ⊗ U†
PE)(UcR ⊗ IB)(Ia ⊗ UPE), (1)

where UPE and UcR are the unitary operations of “phase
estimation” and “controlled rotation,” which are shown in
Eqs. (2) and (3), respectively, and U†

PE represents the inverse
of UPE.

Equation (1) shows that the QSVT algorithm consists of
two core subroutines, namely UPE and UcR.

(i) The first core subroutine UPE is presented as follows:

UPE = UPE(A)

= (F†
T ⊗ IB)

(
T −1∑
τ=0

|τ 〉〈τ |C ⊗ eiAτ t0/T

)
(H⊗t ⊗ IB),

(2)

where register C stores the estimated eigenvalues of
a Hermite matrix A, register B stores the input state
|ψA0〉, F†

T is the inverse quantum Fourier transform, and∑T −1
τ=0 |τ 〉〈τ |C ⊗ eiAτ t0/T is the conditional Hamiltonian evo-

lution [10]. The Hermite matrix A determines on which
eigenspace the quantum algorithm is implemented. Note
that A = A0A†

0, where uk are the eigenvectors of A
and the corresponding eigenvalues are λk = σ 2

k . By tak-
ing a partial trace of |ψA0〉〈ψA0 |, the density matrix
that represents A can be obtained [17]: tr2(|ψA0〉〈ψA0 |) =
1/N1

∑r
k=1 σ 2

k |uk〉〈uk| = A/trA.
(ii) The second core subroutine UcR aims to “extract”

and then “reassign” the proportion of each eigenstate in the
superposition |ψA0〉 = 1/

√
N1

∑r
k=1 σk|uk〉|vk〉. In particular,

UcR helps change the probability amplitude of each basic state
|uk〉|vk〉 from σk to (σk − τ )+ via a transformation (σk − τ )+ =
σk × (

√
σ 2

k −τ )+√
σ 2

k

. Without loss of generality, UcR is defined as

follows: if
√

z > τ ,

|0〉|z〉 →
⎛
⎝γ (

√
z − τ )√
z

|1〉 +
√

1 − γ 2(
√

z − τ )2

z
|0〉

⎞
⎠|z〉;

(3)
otherwise do nothing.

III. QSVT CIRCUIT

In this section, we further study the QSVT algorithm [25]
based on the quantum circuit model. It enables the quantum
computer to solve many NNM-based problems. First, we
describe the overview model of the quantum circuit for the
QSVT. Second, we investigate in depth the realization of
controlled rotation via the quantum circuit, which involves the
computation of Uσ,τ and Ry . In the stage of Uσ,τ , we introduce
Newton’s method and simplify the Newton iteration function in
terms of an intermediate variable zk . We also reduce the number
of Newton iterations with the help of a magic number R. In
the stage of Ry , we introduce an adjustable parameter α, and
we demonstrate that the value of α can be computed ahead of
implementing the quantum circuit to ensure a high-probability
and high-fidelity readout.

The overview of the circuit for solving the QSVT is shown
in Fig. 1. A solution of the QSVT with error O(ε) can
then be obtained. We omit the ancilla |τ 〉 in the following
register presentation because it remains the same during the
procedure of the quantum circuit. The detailed quantum circuit
is presented as follows.

(i) Prepare the quantum registers in the state

|ψ1〉 = |0〉|0〉L|0〉C∣∣ψA0

〉B
, (4)
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FIG. 1. Overview of the quantum circuit for solving the trans-
formed SVT. Wires with “/” represent the groups of qubits. The norms
of the quantum states are omitted for convenience.

where the input matrix A0 has been prepared quantum mechan-
ically as a quantum state |ψA0〉 stored in the quantum register
B. The number of qubits in the register B is b = O[log2(pq)].

(ii) Perform the unitary operation UPE(A) on the state
|0〉C |ψA0〉B . Recall |ψA0〉 = 1/

√
N1

∑r
k=1 σk|uk〉|vk〉, where

|uk〉 are the eigenstates of A, and σ 2
k are the corresponding

eigenvalues. As shown in Ref. [25], we have the state

|ψ2〉 = 1√
N1

|0〉|0〉L
r∑

k=1

σk

∣∣σ 2
k

〉C |uk〉|vk〉B. (5)

Let the efficient condition number of A be κ , such that
σ 2

k ∈ [1/κ,1]. The number of qubits in the register C is n =
O(log2κ).

(iii) The unitary Uσ,τ converts the eigenvalues |σ 2
k 〉 stored

in the register C to the intermediate result |yk〉 stored in the
register L, where yk = (1 − τ/σk)+ ∈ [0,1). The state is

|ψ3〉 = 1√
N1

|0〉
r∑

k=1

σk|yk〉L
∣∣σ 2

k

〉C |uk〉|vk〉B. (6)

According to the ideas of Ref. [27], Newton iteration can be
used to realize Uσ,τ (see Sec. III A). The number of qubits in
the register L and the ancilla |τ 〉 are both d = O(log2κ).

(iv) To realize R: |0〉|yk〉 �→ (yk|1〉 +
√

1 − y2
k |0〉)|yk〉, i.e.,

to “extract” the value of yk in register L to the amplitude of
the ancilla qubit, we introduce a unitary Ry with parameter α

(see Sec. III B) to approximate R:

Ry |0〉|yk〉 = [sin(ykα)|1〉 + cos(ykα)|0〉]|yk〉, 0 < yk < 1.

(7)

Subsequently, Ry is applied to the ancilla qubit on the top
of the circuit and controlled by the register L. We obtain the
state

|ψ4〉 = 1√
N1

r∑
k=1

σk[sin(ykα)|1〉

+ cos(ykα)|0〉]|yk〉L
∣∣σ 2

k

〉C |uk〉|vk〉B. (8)

(v) Uncompute the registers L, C, and B, and remove the
register L and C, to obtain

|ψ5〉 = 1√
N1

r∑
k=1

σk[sin(ykα)|1〉 + cos(ykα)|0〉]|uk〉|vk〉B.

(9)

FIG. 2. A quantum circuit of the unitary Uσ,τ .

(vi) Measure the top ancilla bit. If the result returns to 1,
then the register B of the system collapses to the final state,

|ψŜ〉 = 1√
Nα

r∑
k=1

σksin(ykα)|uk〉|vk〉B, (10)

where Nα = ∑r
k=1 σk

2sin2 (ykα).
In summary, the procedure of the quantum circuit can be

illustrated as follows:

ŨQSVT = (IaLa ⊗ U†
PE)(Ia ⊗ U†

σ,τ ⊗ IB)(Ry ⊗ IaCB)

× (Ia ⊗ Uσ,τ ⊗ IB)(IaLa ⊗ UPE). (11)

A. Computation of Uσ,τ

We now deal with the detailed quantum circuit of the unitary
Uσ,τ , that is, we deal with the function of the eigenvalues

σ 2
k of A : yk = (1 − τ/

√
σ 2

k )
+

∈ [0,1). Here Newton iteration

is introduced to compute yk = 1 − τ/

√
σ 2

k for σk > τ . To
simplify the quantum circuit design of Uσ,τ , an intermediate

variable zk is introduced such that zk = z(σ 2
k ) = 1/

√
σ 2

k and
yk = y(zk) = 1 − τzk . Therefore, Newton iteration can be just

used to compute the simplified function zk = z(σ 2
k ) = 1/

√
σ 2

k .
From above, a quantum circuit of the unitary Uσ,τ can be
designed as shown in Fig. 2.

Specifically, the detailed quantum circuit design of Uσ,τ can
be divided into two parts. The first part is the rightmost unitary
yk = 1 − τzk as shown in Fig. 2, and the second part is the
leftmost Newton iterations.

Obviously, the first part can be simply realized via the
quantum circuits for addition and multiplication, which have
been studied in Refs. [28,29]. The corresponding quantum
circuit is shown in Fig. 3. The number of qubits is O(d) and
the number of quantum operations for implementing addition
and multiplication is O(d2).

Let us turn to the second part. A method for solving

z(σ 2
k ) = 1/

√
σ 2

k has been presented in Ref. [30]. It provides

the quantum circuit for the initial state |z(0)
k 〉 = |2	 w−1

2 
〉, where
w ∈ N and 21−w > x > 2−w, and it presents the idea for

FIG. 3. Quantum circuit for computing yk = 1 − τzk . The black
strip on the right side of the rectangle represents a unitary operation,
and the black strip on the left represents the inverse of the correspond-
ing unitary operation.
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FIG. 4. A quantum circuit of one Newton iteration for computing g(z(i)
k ).

solving the iteration function in terms of an abstraction of an
elementary module. Here we perform additional research on
the Newton method. Concretely, we give the detailed quantum
circuit of the Newton iteration in terms of basic elementary
gates, and we introduce a different initial state that helps to
reduce the iteration steps.

Applying the Newton method to the function f (zk) =
1/z2

k − σ 2
k , we can obtain the iteration function

z
(i+1)
k = g

(
z

(i)
k

) = z
(i)
k − f

(
z

(i)
k

)
f ′(z(i)

k

) = z
(i)
k −

(
z

(i)
k

)−2 − σ 2
k

−2
(
z

(i)
k

)−3

= 1

2

[
3z

(i)
k − σ 2

k

(
z

(i)
k

)3
]
, (12)

where i = 1,2, . . . ,s.
The detailed quantum circuit of g(z(i)

k ) is presented in Fig. 4.
Inevitably, four extra quantum registers are needed for the
inverse of the unitary operators, and one more ancilla register is
needed for storing the output z

(i+1)
k in each iteration g(z(i)

k ). As
the circuit of the iteration is composed of basic operations (i.e.,
addition, multiplication, and shift operations), each iterative
step requires O(n + d) qubits and O[poly(n + d)] quantum
operations, where the degree of the polynomial is no more
than 3 according to Refs. [28,29].

With indispensable ancilla registers, a quantum circuit for
computing z

(s)
k after s Newton iterations is designed as in Fig. 5.

Therefore, the number of qubits for implementing the Newton
iteration is O(n + sd), and the number of quantum operations
is O[s · ploy(n + d)].

As in Fig. 5, after each iteration, at least one extra register
is needed for storing the intermediate output z

(i)
k . Therefore,

after s iterations, s − 1 garbage registers are produced.
To reduce the number of iterations, we choose a magic

number R in Ref. [31] rather than the initial state in Ref. [30].
The magic number R produces the first approximation of
the initial state by X = R − (X � 1), which follows the

IEEE 754 floating-point format [32]. It helps Newton’s
method run only one or two iterations and output a more
precise approximation (see Appendix A). Then the number
of qubits for implementing the Newton iteration can be
reduced to O(n + d), and the number of quantum operations
can be reduced toO[poly(n + d)]. The corresponding quantum
circuit is shown in Fig. 6.

Now we turn to the error analysis of the quantum circuit of
the unitary Uσ,τ . It consists of two parts. The first is the error es

caused by Newton’s iteration, the second is the roundoff error
ês caused by truncating the result of each iteration to d qubits
of accuracy before passing it to the next iteration.

According to Eq. (12), we have

g
(
z

(i)
k

) − 1√
σ 2

k

= 1

2

[
3z

(i)
k − σ 2

k

(
z

(i)
k

)3] − 1√
σ 2

k

= −1

2

⎛
⎝z

(i)
k − 1√

σ 2
k

⎞
⎠

2√
σ 2

k

(
z

(i)
k

√
σ 2

k + 2
)
.

(13)

The last quantity is nonpositive for z
(i)
k � 0. Similar to the

equation in Ref. [30], the error es satisfies

es :=
∣∣∣∣∣∣z(s)

k − 1√
σ 2

k

∣∣∣∣∣∣ = 1

2
e2
s−1

√
σ 2

k

(
z

(s−1)
k

√
σ 2

k + 2
)

� 3

2

√
σ 2

k e2
s−1 � 2

3
√

σ 2
k

(
3

2

√
σ 2

k e0

)2s

. (14)

The initial error e0 satisfies
√

σ 2
k e0 � 1/8 for the initial state

derived from the magic number R [31], which is better than

FIG. 5. A quantum circuit for computing z
(s)
k with s iterations.
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FIG. 6. A quantum circuit for computing the initial state z
(0)
k . X

is presented as initial z
(0)
k , which follows the IEEE 754 floating-point

format.√
σ 2

k e0 � 1/2 for the traditional initial state |z(0)
k 〉 = |2	 w−1

2 
〉
[30].

As shown in Ref. [30], the truncation error ês satisfies

ês := |ẑ(s) − z(s)| � 21−d
(

3
2

)s
. (15)

To sum up, with the initial state in Ref. [30], the number of
the iteration steps is s = O(log2d). Then the error caused by
the unitary Uσ,τ is∣∣∣∣∣∣z(s)

k − 1√
σ 2

k

∣∣∣∣∣∣ � es + ês �
2

3
√

σ 2
k

(
3

4

)2s

+ 21−d

(
3

2

)s

� 2

3
√

σ 2
k

(
3

4

)d

+ 21−d2log2d+1

� 2
√

κ

3

(
3

4

)d

+ 22−dd. (16)

And with the initial state in Ref. [31], the number of iteration
steps is s = 1 or 2. Then the errors caused by the unitary Uσ,τ

are ∣∣∣∣∣∣z(1)
k − 1√

σ 2
k

∣∣∣∣∣∣ � e1 + ê1 � 2

3
√

σ 2
k

(
3

16

)2

+ 21−d

(
3

2

)

� 3
√

κ

27
+ 3

2d
(17)

and∣∣∣∣∣∣z(2)
k − 1√

σ 2
k

∣∣∣∣∣∣ � e2 + ê2 � 2

3
√

σ 2
k

(
3

16

)4

+ 21−d

(
3

2

)2

� 27
√

κ

215
+ 9

2d+1
, (18)

respectively.

B. Computation of Ry

A sequence of rotations about the y axis can be used to
implement the unitary Ry [27], where Ry(2θ )|0〉 = sin θ |1〉 +
cos θ |0〉. Here we introduce a parameter α, which can be used
to improve the probability and accuracy of obtaining the final
state (see Sec. III D). Assume that we have obtained a d-qubit

state |yk〉 �= |θ〉. Consider the binary representation of θ : θ =
0.θ1 · · · θd = ∑d

j=1 θj 2−j ,(θj ∈ {0,1}). We have

Ry(2αθ ) = e−iαθY =
d∏

j=1

e−iYαθj /2j =
d∏

j=1

Rθj

y (21−jα)

= Rθ1
y (α)Rθ2

y (α/2) · · · Rθd

y (α/2d−1), (19)

FIG. 7. Quantum circuit of the unitary Ry .

where Y is the Pauli Y operator. The quantum circuit of Ry is
shown in Fig. 7.

C. Complexity analysis

We now analyze the space and time resources required for
the whole quantum circuit. The numbers of qubits in register
B, C, and L are b = O[log2(pq)], n = O(log2κ), and d =
O(log2κ), respectively. Ancilla qubits in the computation of
Uσ,τ take up the most space in the quantum circuit, and the
number of ancilla qubits is O(n + d). Typically, the condition
number κ is taken as κ = O(1/ε). Therefore, the total number
of qubits required in the quantum circuit is O[log2(pq/ε)].

Turning to the time cost, the phase estimation requires
O(n2) operations and one call to the controlled-A black box
[1]. The number of quantum gates in the computation of Uσ,τ

is O[poly(n + d)], and the number of gates in the computation
of Ry is O(d). Therefore, the total number of gates required in
the quantum circuit is O[poly log2 (1/ε)].

In summary, the number of qubits required by the circuit
is O[log2(pq/ε)] and the number of quantum operations used
by the circuit is a low degree polynomial in log2 (1/ε).

D. Probability and fidelity analysis

We now analyze the probability of obtaining the final result
and the fidelity of the ideal and actual outputs. Equations (1)
and (11) show that the quantum circuit ŨQSVT is a unitary
approximation of the quantum algorithm UQSVT. Without loss
of generality, we assume that there is no error in any step
of UQSVT and ŨQSVT. Therefore, the unitary Ry in ŨQSVT

dominates the probability and the fidelity in the quantum
circuit.

The probability of obtaining the final result |ψŜ〉 in Eq. (10)
can be calculated via Eq. (9):

P (α) = Nα

N1
=

∑r
k=1 σ 2

k sin2 (ykα)∑r
k=1 σ 2

k

. (20)

The fidelity of the actual and ideal final results can be
calculated via the inner product of the output |ψŜ〉 and the
theoretical output |ψS〉 = 1/

√
N2

∑r
k=1 (σk − τ )+|uk〉|vk〉 =

1/
√

N2
∑r

k=1 σkyk|uk〉|vk〉:

F (α) = 〈ψŜ |ψS〉 = 1√
N2Nα

r∑
k=1

σ 2
k yksin(ykα)

=
∑r

k=1 σ 2
k yksin(ykα)√∑r

k=1 σ 2
k y2

k × ∑r
k=1 σ 2

k sin2 (ykα)
. (21)

Typically, α can be obtained by the method in Ref. [33] such
that ykα ≈ sin−1(yk). Therefore, the probability of obtaining
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FIG. 8. Example quantum circuit for solving the SVT. U† represents the inverse of all the operations before of Ry . Each simplified unitary
eiAt0/2j

(j = 1,2,3) in the figure represents the operation eiAt0/2j ⊗ In.

the final result is

P1 ≈
∑r

k=1 σ 2
k y2

k∑r
k=1 σ 2

k

. (22)

And the fidelity of the output approximates to 1. But the method
in Ref. [33] involves quantum circuits for exponentiation
computations and the results in excessive time and space
consumptions.

Here, we introduce a method to compute α ahead of
implementing the QSVT quantum circuit to avoid extra circuits
involved in Ref. [33]. To ensure high probability and high
fidelity, we introduce function G of α:

G(α) =
√

P (α) × F (α)

=
√

Nα

N1
× 1√

N2Nα

r∑
k=1

σ 2
k yksin(ykα)

=
∑r

k=1 σ 2
k yksin(ykα)√∑r

k=1 σ 2
k × ∑r

k=1 σ 2
k y2

k

, (23)

and to find α that maximizes G(α), i.e., to solve the problem
arg maxα G(α). This problem is transformed to solve the
following equation:

G′(α) =
∑r

k=1 σ 2
k y2

k cos(ykα)√∑r
k=1 σ 2

k × ∑r
k=1 σ 2

k y2
k

= 0. (24)

A series of methods, such as gradient descent, Newton’s
method, and evolutionary algorithms, can be used to solve
Eq. (24). Given that the problem to be solved is not convex,
these iterative algorithms can only output a locally optimal
solution. Taylor’s series can also be used to solve this problem
and obtain an approximate solution.

Instead of using the aforementioned methods, we select
an “intuitive” method to compute an approximate solution α̃

for this problem. Recalling that yk = (1 − τ/σk)+, we have
y1 > y2 � · · · � yr as σ1 > σ2 > · · · > σr > 0. The period
of cos (ykα) is 2π/yk , thereby satisfying 2π/y1 < 2π/y2 �
· · · � 2π/yr . We now consider the case in which the value α

satisfies y1α ∈ [0,π/2], therefore 0 � cos(y1α) < cos(y2α) �
· · · � cos(yrα).

Equation (24) shows that
∑r

k=1 σ 2
k y2

k cos(ykα) = 0. There-
fore,

σ 2
1 y2

1 cos(y1α) = −σ 2
2 y2

2 cos (y2α) − · · ·
− σ 2

r y2
r cos (yrα) � 0, (25)

and considering cos(y1α) ∈ [0,1], we obtain the approximate
solution α̃ = π

2y1
= π

2(1−τ/σ1) . Note that α̃ is close to being opti-

mal when
∑r

k=1 σ 2
k y2

k cos(ykα) is dominated by σ 2
1 y2

1 cos(y1α),
because in this case the derivative is approximately zero. That
is, α̃ is most effective when σ1 dominates most of the singular
values.

Although the approximate solution is not the optimal
solution, it has two advantages. First, it has a simpler expression
and can be computed more efficiently compared with iterative
algorithms. Second, this “intuitive” solution is only based on
the maximized singular value of A0, i.e., prior knowledge
of A0 is only the maximum singular value σ1 instead of all
singular values of A0 compared with Taylor’s series method
(see Appendix B). In Appendix C, we perform two experiments
to analyze the probability and fidelity. The first experiment
shows that α̃ is likely to be a good solution to ensure high
probability and fidelity. The second experiment shows how the
input matrix and the hyperparameter τ impact the probability
and fidelity readout.

IV. EXAMPLE

In this section, we design and implement a numerical
simulation experiment of a small-scale QSVT circuit and
analyze the results. The purpose for this example is to illustrate
the algorithm and for potential experimental implementation
using currently available resources.

We demonstrate a proof-of-principle experiment of the
QSVT algorithm shown in Fig. 8. This simple quantum circuit
solves a meaningful instance of the problem, that is, to perform
the SVT on a 2 × 3 dimension matrix A0. For the numerical
example, we select different inputs of A0 all satisfying that
the singular values of A0 are σ1 = 2,σ2 = 1. Matrix A0 is
selected such that the eigenvalues of A are 4 and 1, which can
be exactly encoded with three qubits in register C. Without
loss of generality, let τ = 1/2. This allows us to optimize the
subroutine Uσ,τ (in Fig. 1) without involving register L and
ancilla qubits |τ 〉. The input state of register B is a normalized
quantum state |ψA0〉.

The initial quantum system is |0000b〉. Phase estima-
tion generates the states that encode the eigenvalues of A
in register C, and subsequently the system is in the fol-
lowing superposition: 1√

5
(2|0100〉|u1〉|v1〉 + |0001〉|u2〉|v2〉).

The mapping of the operator Uσ,τ is |100〉C �→ |110〉C
and |001〉C �→ |100〉C , where the outputs |110〉 and |100〉
can be interpreted as the encodings 23(1 − τ/σ1) = 6 and
23(1 − τ/σ2) = 4, respectively. After the Uσ,τ operator, the

012308-6



EFFICIENT QUANTUM CIRCUIT FOR SINGULAR-VALUE … PHYSICAL REVIEW A 98, 012308 (2018)

system becomes 1√
5
(2|0110〉|u1〉|v1〉 + |0100〉|u2〉|v2〉). Then

we use |23(1 − τ/σk)〉 in register C as the control register to
execute a sequence of Pauli Y rotations Ry on the ancilla qubit
|0〉 with α = π

2/(1−τ/σ1) = 2.0944. Taking the inverse of all the
operations before Ry , and measuring the ancilla qubit to be |1〉,
the system becomes

1√
Nα

|1000〉(1.9999|u1〉|v1〉 + 0.8660|u2〉|v2〉), (26)

where Nα = 4.7495.
The theoretical result is as follows:

1√
N2

2∑
k=1

(σk − τ )|1000〉|uk〉|vk〉

= 1√
10

|1000〉(3|u1〉|v1〉 + |u2〉|v2〉). (27)

We then compute the probability and the fidelity according
to Eqs. (20) and (21). The probability of measuring the ancilla
qubit to be 1 is P (α) = 0.9499, and the fidelity is F (α) =
0.9962.

Our results may motivate experimentalists to verify this
result by implementing the quantum circuit with the ability
to address six or more qubits and execute basic quantum gates
on their setups.

V. CONCLUSIONS

Nowadays, the quantum circuit model is the most popular
and developed model for universal quantum computation. We
investigated further the QSVT algorithm that we proposed
in Ref. [25] by providing the possibility to implement the
algorithm on a quantum computer via the circuit model.
The scalable quantum circuit is presented, in which the key
subroutine of the controlled rotation is designed by introducing
Newton’s method and an adjustable parameter α. We simplified
the Newton iteration function in terms of an intermediate
variable, and we reduced the number of Newton iterations with
the help of a magic initial state. Then we analyzed the space-
time complexity of the designed quantum circuit, which shows
that the number of qubits and gates required in the quantum
circuit is O[log2(pq/ε)] and O[poly log2 (1/ε)], respectively.
Moreover, we provided two methods to compute the value of
α to ensure a high-probability and high-fidelity readout, and
we conducted numerical experiments. The numerical results
show that under different inputs, our method can output high
probability and high fidelity in one iteration of the quantum
circuit. Furthermore, we present a small-scale circuit as an
example to verify the algorithm. We hope that our research
motivates experimentalists to conduct new investigations in
quantum computation.
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APPENDIX A: INITIAL STATE
OF THE NEWTON’S METHOD

For the single-precision floating-point format, the magic
number is chosen as a hexadecimal constant 0x5f 375a86,
and for the double-precision floating-point format, the
magic number can be chosen as a hexadecimal constant
0x5f e6ec85e7de30da. As mentioned in Sec. III A, both magic
numbers follow the IEEE 754 floating-point format. The test
in Ref. [31] shows that the relative error can be around 0.00175
after 1 Newton iteration, and reduce to around 4.65437e − 004
after 2 Newton iterations. Therefore, our quantum circuit
only needs one or two iterations to get the high-precision
approximation of zk with the help of the magic initial state.

APPENDIX B: TAYLOR’S SERIES METHOD

Using Taylor’s series method to solve Eq. (24), we have

G′(α) = 0

⇒
r∑

k=1

σ 2
k

(
y2

k − y4
k α

2

2!
+ y6

k α
4

4!
− · · ·

+ (−1)n
y2n+2

k α2n

(2n)!
+ o

(
y2n+3

k α2n+1)) = 0. (B1)

If the second-order approximation is selected, then

r∑
k=1

σ 2
k

(
y2

k − y4
k α

2

2
+ o

(
y5

k α
3
)) = 0

⇒
r∑

k=1

σ 2
k

(
y2

k − y4
k α

2

2

)
≈ 0

⇒ α ≈
√

2
∑r

k=1 σ 2
k y2

k∑r
k=1 σ 2

k y4
k

. (B2)

If the fourth-order approximation is selected, then

r∑
k=1

σ 2
k

(
y2

k − y4
k α

2

2
+ y6

k α
4

4!
+ o

(
y7

k α
5
)) = 0

⇒
r∑

k=1

σ 2
k

(
y2

k − y4
k α

2

2
+ y6

k α
4

4!

)
≈ 0

⇒ α ≈
√

b − √
b2 − 4ac

2a
, (B3)

where a = 1
24

∑r
k=1 σ 2

k y6
k , b = 1

2

∑r
k=1 σ 2

k y4
k , c = ∑r

k=1

σ 2
k y2

k .
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FIG. 9. Singular-value distributions of the 120 matrices.

APPENDIX C: NUMERICAL SIMULATIONS

1. Initialization

Recall that the applications of the SVT are mainly based
on videos or pictures. Thus, we select 120 different inputs of
matrix A(i)

0 (i = 1,2, . . . ,120), which are derived from random
pictures. These matrices have been preprocessed in terms of
the condition number and the 2 normalization. The efficient
condition number κ of the matrix A(i) = A(i)

0 A(i)†
0 is set to 106,

therefore only the singular values in the range of [1/1000,1]
are taken into account. The 2 normalization ‖A(i)

0 ‖2 is set
to 1, therefore the largest singular value σ

(i)
1 of each matrix

is equal to 1. (Alternatively, the Frobenius norm can also
be used to normalize these matrices.) The dimensionality of
these matrices ranges from 200 × 300 to 2621 × 3995, and
the rank of these matrices ranges from 55 to 668. The singular
value distributions of the 120 matrices A(i)

0 are shown in
Fig. 9. Typically, the largest singular value dominates most
of the singular values, and only a few principal singular values
of the matrix A(i)

0 are large, while the rest of the singular
values are very small. In the following experiments, all the
singular values of the 120 matrices are computed, and the
probability and fidelity are then derived by Eqs. (20) and (21),
respectively.

a. Experiment (1)

Figure 10 shows that the x axis represents the 120 inputs.
Figures 10(a) and 10(b) show the probability and the fidelity
in terms of different α, which are obtained by Taylor’s method
(shown by the blue dashed line) and our “intuitive” method
(in red, “+”), respectively. The numerical results show that
our “intuitive” method works as well as Taylor’s method.
The probability is almost the same in terms of α̃ obtained by
our method and Taylor’s method. Moreover, fidelity performs
slightly better when our method is used instead of Taylor’s
method. Both methods can help output the high probability
and high fidelity in the context of the 120 different random
inputs.

b. Experiment (2)

We now analyze which properties of the input matrix A(i)
0

and hyperparameter τ impact the probability and fidelity.
Specifically, we select the hyperparameter τ from {0.001,
0.002, 0.005, 0.007, 0.009, 0.01, 0.02, 0.05, 0.07, 0.09, 0.1,
0.2, 0.3, 0.4, 0.5}. Figure 11 shows how the probability and
the fidelity changes with the rank of the input matrices. Here
we pick up the pictures with significant features to show up
the trends. The black dots represent the probability or fidelity
in Figs. 11(a) and 11(b) respectively, and the blue solid lines
represents the 3-order polynomial fit function generated via
cftool in Matlab.

Figure 11 shows that the rank r of the input matrices would
impact the probability and fidelity of the readout, but the
effect is not significant. When τ is small, the probability and
fidelity decrease while the rank of input matrices increases.
As τ become large, the relationship of the probability and
fidelity and the rank become unapparent. We can also see that
the probability is more susceptible to rank than the fidelity.
The results are reasonable. According to Eqs. (20) and (21),
which derive the probability and the fidelity, the rank of the
input matrix would affect the total number of summed items in
the numerator and denominator at the same time. But a large
amount of the items are very small since many singular values
of the input matrix are small. Therefore, the probability and

FIG. 10. Probability and fidelity based on the solutions obtained by Taylor’s method and our method. (a) Probability. (b) Fidelity.
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FIG. 11. Probability and fidelity with the rank of input matrices. (a) Probability. (b) Fidelity.

fidelity may not be significantly affected by the rank of the
matrix.

Figure 12 shows how the probability and the fidelity change
with the hyperparameter τ . Each label τ in the x axis consists

FIG. 12. (a) Fidelity with different input matrices and different τ .
(b) Probability with different input matrices and different τ . (c) The
difference of the probabilities in terms of our method and the normal
method with different input matrices and different τ .

of 120 inputs (i.e., the dimensional of the x axis amounts to
15 × 120). The blue dots in Figs. 12(a) and 12(b) represent
the fidelity and the probability derived by Eqs. (21) and (20),
respectively. The blue dots in Fig. 12(c) represent the difference
between the probabilities derived by our method and the
method in Ref. [33], i.e., �P = P (α) − P1.

As shown in Fig. 12(a), the fidelity is higher than 99.95%
when τ � 0.002. Then the fidelity declines and falls to its
lowest point, at which point it begins to increase, reaching its
highest point at 1 [when σ2 � τ < σ1, the fidelity is F (α) =
σ 2

1 y1/

√
σ 2

1 y2
1 × σ 2

1 = 1 according to Eq. (21)]. The lowest
point among the 120 different matrices is just over 99.55%,
which shows that our method can derive high fidelity even at
the worst case.

As shown in Fig. 12(b), the probability decreases steadily
while τ rises. This trend can be proved by Theorem 1 below.
When τ � 0.02, the probability can be reached to a point
over 95%, and the lowest probability is over 65% among
the 120 different matrices when τ is large. Comparing to
Fig. 12(c), the difference between the probabilities derived by
our method and the method in Ref. [33] increases steadily while
τ rises. When τ � 0.02, the difference is less than 10%. At the
point τ = 0.1, the difference begins to increase rapidly. This
indicates that when τ is large, our methods can derive much
higher probability than the normal method.

The probability of obtaining the final result would affect
the iteration of the quantum circuit. Theorem 1 gives a lower
bound of the probability.

Theorem 1. For a given input matrix A0, the probability
of obtaining the final result is a nonincreasing function of the
hyperparameter τ , and the lower bound of the probability is

Pmin = σ1∑r
k=1 σ 2

k

. (C1)

Apparently, the iteration of the quantum circuit is
O(

∑r
k=1 σ 2

k /σ1).
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Proof. According to Eq. (20) and the value of α̃ = π
2(1−τ/σ1) ,

the probability becomes

P =
∑r

k=1 σ 2
k sin2(ykα)∑r
k=1 σ 2

k

=
∑r

k=1 σ 2
k sin2

[
πσ1
2σk

(σk−τ )+
σ1−τ

]
∑r

k=1 σ 2
k

�= P (τ ). (C2)

Obviously, as σk � σ1 and τ > 0, the function f (τ ) =
πσ1
2σk

(σk−τ )+
σ1−τ

is a nonincreasing function of the hyperparameter τ ,
and as y1α ∈ [0,π/2], which has been assumed in Sec. III D,
the function g(τ ) = sin2(f (τ )) is an increasing function of
f (τ ). Therefore, P (τ ) is a nonincreasing function of τ .
Specifically, when τ satisfies σ2 < τ < σ1, P (τ ) gets the lower
bound shown as in Eq. (C1).
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