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Photon-assisted quantum state transfer and entanglement generation in spin chains
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We propose a protocol for state transfer and entanglement generation between two distant spin qubits (sender
and receiver) that have different energies. The two qubits are permanently coupled to a far-off-resonant spin
chain, and the qubit of the sender is driven by an external field, which provides the energy required to bridge
the energy gap between the sender and the receiver. State transfer and entanglement generation are achieved via
virtual single-photon and multiphoton transitions to the eigenmodes of the channel.
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I. INTRODUCTION

Faithful transfer and distribution of quantum states between
two distant sites are of vital importance for various architec-
tures of quantum information processing (QIP), which rely on
the interconnection of different processors and memories. The
use of photons as mediators is not an easy task for QIP schemes
with matter-based “quantum hardware” such as trapped ions or
atoms, spins in solid-state systems, electrons in quantum dots,
Josephson junctions, etc. [1]. In this respect, qubit chains have
been proposed as quantum channels and entanglers [2], so that
information can be stored, transferred, and processed utilizing
the same quantum hardware, thereby avoiding the need for
reliable interfaces between photonic and matter qubits.

The typical scenario is usually formulated in terms of spin
qubits and pertains to two distant terminal qubits, which are
connected to the ends of a spin chain that acts as a quantum
channel. The main task is then to find Hamiltonians, which
ensure the faithful transfer of an arbitrary qubit state or the
entanglement generation between the two terminal qubits, at
a well-prescribed time. Such types of problems have attracted
considerable attention over the past decade or so, and many
protocols have been proposed [3–6]. Depending on whether
external control is required for the transfer of the state (besides
the initialization and the readout processes, which are always
present), one can distinguish between passive and active
schemes. Passive schemes do not require any external control
to perform their task, and they typically involve a judicious
engineering of the couplings in the entire system (terminal
qubits + channel) [7–12]. The engineering of the couplings
aims at a commensurate linear or quadratic spectrum, which
in view of the centrosymmetry of the system ensures the
ideally perfect transfer of states between the terminal qubits.
In general, however, faithful (not perfect) state transfer does
not require such an extensive engineering and can be achieved
by adjusting only the couplings of the terminal qubits to
the channel [13–16]. Active state-transfer schemes rely on a
judicious sequence of operations and/or measurements that are
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applied individually or collectively on the qubits of the system
[17–24]. The same principles and techniques can be exploited
for the generation of entanglement between the terminal qubits
[11,14,25–29].

The majority of the proposed protocols for state transfer and
entanglement generation pertains to resonant terminal qubits
(i.e., for terminal qubits that have the same energy), which from
a practical point of view requires simultaneous control of both
qubits. Small deviations from this rule have been considered
only in the context of weak imperfections (i.e., static diagonal
disorder) that perturb the otherwise ideal performance of the
protocols (e.g., see Refs. [29–32]). None of the aforementioned
protocols, however, is designed to work for detuned terminal
qubits, that is, for terminal qubits that have different energies.
Hence, their performance deteriorates as the energy difference
between the terminal qubits becomes comparable to or larger
than the couplings to the channel [30–32]. To the best of our
knowledge, for the time being, state transfer and entanglement
generation between two terminal qubits of different energies
remain open questions.

Our aim in this work is to propose a faithful state-transfer
scheme, which provides an answer to this question. The
proposed scheme pertains to detuned terminal qubits (i.e.,
terminal qubits with different energies), which are permanently
coupled to a far-off-resonant qubit-chain channel. The qubit
of the sender is driven by an external field, which allows
the transfer of the state from the sender to the receiver at a
prescribed time, when the photon energy (or multiple of it)
matches the corresponding energy difference (hence the term
photon-assisted transfer). The transfer is mediated by virtual
excitation of the channel’s modes. Tuning the amplitude of
the driving and the photon frequency, one can control the
number of photons involved in the process, while by adjusting
the duration of the driving one can achieve entanglement
generation between the terminal qubits. Although a single-
photon process, if possible, would be preferable in many cases,
our results provide a solution for any number of photons, and
the pertinent conditions are discussed.

From a formal point of view, this tunability stems from
the fact that the driving essentially renormalizes the coupling
of the sender’s qubit to the first qubit of the channel. In the
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FIG. 1. Schemetic representation of the two equivalent systems under consideration. (a) Two distant detuned spin qubits, the sender and
the receiver, are permanently coupled to a far-off-resonant spin chain, which is initially prepared in its ground (vacuum) state. The qubit of the
sender is initially prepared in a qubit state |ψ〉 and it is driven by an external field. (b) Employing the Jordan-Wigner transformation, the system
pertains to the transfer of a single excitation between two detuned discrete states, via a far-off-resonant array of N coupled empty states. Note
the energy difference between the sender and the receiver (i.e., ωs �= ωr) for both (a) and (b).

past, such dynamical renormalization has been investigated in
the contexts of coherent destruction of tunneling [33,34] and
photon-assisted mesoscopic transport [35,36]. Moreover, there
have been studies on the fast preparation of quantum states
[37] and the control of decoherence [38]. In the framework
of QIP, the coupling renormalization has been exploited for
temporal controlled suppression of couplings between adjacent
qubits, so as to achieve directional transfer of quantum states
and the generation of entanglement in qubit chains [39,40].
By contrast, here we demonstrate how to use the dynamical
renormalization not for suppression, but rather for activation
of an indirect coupling between the spatially separated terminal
qubits, thereby facilitating the faithful transfer of quantum in-
formation between them, which would not have been possible
by means of other known protocols.

Furthermore, due to the presence of external driving, the
problem of state transfer acquires new aspects pertinent to the
validity of the rotating-wave approximation (RWA) [41–43].
This approximation has not been of relevance for the state-
transfer protocols that have been discussed in the literature so
far, but it plays a central role in the protocol under considera-
tion. The present theoretical framework is rather general and
goes beyond the RWA. Hence, it allows us to investigate the
conditions under which such an approximation can be applied
in the context of the system under consideration. These condi-
tions are of particular importance for a potential realization of
the proposed protocol in various physical platforms.

The paper is organized as follows. After a brief description
of the system, Sec. II provides the detailed formal framework
for the problem under consideration. Section III contains the
bulk of the numerical results, with the detailed discussion of the
interplay of the various parameters that determine the evolution
of the system. A summary with concluding remarks is given
in Sec. IV.

II. THEORETICAL FRAMEWORK

Given that various physical realizations of qubits are cur-
rently pursued worldwide [1], our results will be presented in
a generic theoretical framework. Our qubits represent generic
two-level systems, and for the convenience of exposition we

will also use the term spin as it provides a simple physical
picture of the network. The system under consideration is
depicted in Fig. 1(a). Two distant qubits labeled by 0 and
N + 1 (to be referred to hereafter as the sender and the receiver)
are permanently coupled to a quantum channel consisting of
a chain of N permanently coupled spins, while the qubit of
the sender is driven by an external field. The evolution of the
channel is governed by an XX spin-chain Hamiltonian, and by
applying the Jordan-Wigner transformation, the problem can
be formulated in terms of free spinless fermions [5,6,9]. In this
picture, the “down” and “up” states of a spin are viewed as
empty and singly occupied fermion states, i.e.,

|↓〉 ≡ |0〉, |↑〉 ≡ |1〉. (1)

Hence, the generic basis states for a qubit are {|0〉,|1〉}, and the
equivalent system is depicted in Fig. 1(b).

A. Hamiltonian

The full Hamiltonian of the system is

H = H0 + Hd + Hc + V, (2)

whereH0 is the unperturbed Hamiltonian of the sender and the
receiver, Hc refers to the channel, V describes the interaction
between the sender-receiver qubits and the channel, while Hd

describes the driving of the qubit of the sender. More precisely,
we have

H0 = h̄ωsâ
†
s âs + h̄ωrâ

†
r âr, (3a)

Hc =
N∑

i=1

h̄ωcâ
†
i âi +

N−1∑
i=1

h̄κ(â†
i âi+1 + â

†
i+1âi), (3b)

V = h̄gs(â
†
s â1 + â

†
1âs) + h̄gr(â

†
N âr + â†

r âN ), (3c)

Hd = Vd

2
f (t) cos(ωt)â†

s âs. (3d)

The creation (annihilation) operator â
†
i (âi) creates (annihilates)

an excitation at the ith site of the channel, with energy h̄ωc.
The corresponding operators for the sender and the receiver
are denoted by â

†
s (âs) and â

†
r (âr), and the energies are h̄ωs
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and h̄ωr , respectively. Throughout this work, we are interested
in detuned terminal qubits, with the corresponding energy
difference denoted by ωr,s := ωr − ωs. The coupling between
adjacent sites in the chain is denoted by κ , while the sender
and the receiver are coupled to the two outermost sites with
couplings gs and gr, respectively. We assume a pulsed driving,
with amplitude Vd, while f (t) is the pulse shape and ω is the
frequency of the driving field.

The driving term can be treated through the unitary trans-
formation H̃(t) = W(t)(H(t) − ih̄∂t )W†(t) [36,39,44], with
W(t) := exp [ih(t)â†

s âs] and

h(t) := Vd

2h̄

∫ t

0
f (t ′) cos(ωt ′)dt ′. (4)

The new Hamiltonian is then H̃ = H0 + Hc + Ṽ , where

Ṽ = h̄(g̃sâ
†
s â1 + g̃râ

†
N âr + H.c.), (5a)

with

g̃s := gse
ih(t), and g̃r := gr. (5b)

In practice, we are interested in smooth pulses of some
duration τ that rise and and drop slowly. Hence, the pulse
shape satisfies f (0) = 0, f (∞) = 0 (where the limit t → ∞ is
attained for times t 
 τ ), as well as the adiabaticity condition∣∣∣∣dfdt

∣∣∣∣ � ω|f (t)|. (6)

Under these conditions, one readily obtains a rather simple
form for the function h(t) that enters Eqs. (5), namely

h(t) � Vd

2h̄ω
f (t) sin(ωt) := z(t) sin(ωt). (7)

In the following analysis, the profile of the pulse is chosen so
that its maximum value is 1. Hence, the maximum amplitude
of the drive is given by z0 := Vd/(2h̄ω).

B. Equations of motion

At time t = 0 the qubit of the sender is prepared in the state

|ψ〉s = α|0〉s + β|1〉s, (8)

which has to be transferred to the qubit of the receiver after a
prescribed time, say T > τ . The channel is initially prepared
in its ground state with zero excitations |0〉c := |01, . . . ,0N 〉,
while the qubit of the receiver is in the state |0〉r . Hence, the total
initial state of the system is |	(0)〉 = |ψ〉s ⊗ |0〉c ⊗ |0〉r. For
later convenience, we introduce the zero-excitation state of the
entire system |0〉 := |0〉s ⊗ |0〉c ⊗ |0〉r. The single-excitation
subspace of the Hilbert space is spanned by the states {|1〉j },
where

|1〉j := â
†
j |0〉, for j = 0,1, . . . ,N + 1.

Based on the aforementioned convention, the states of the
sender and the receiver correspond to j = 0 and j = N + 1,
respectively. Hence, the initial state of the system can be
expressed as

|	(0)〉 = α|0〉 + β|1〉s, (9)

where by definition |1〉s := â
†
s |0〉, i.e., the subscript s denotes

the position of the excitation.
Since the Hamiltonian preserves the number of excitations,

we need to consider only the zero- and single-excitation
subspaces of the total Hilbert space. Then the system evolves in
time as |	(t)〉 = Û (t)|	(0)〉 = α|0〉 + β

∑
j Aj (t)|1〉j , where

Û(t) = T exp

[
1

ih̄

∫ t

0
H̃(t ′)dt ′

]
is the (time-ordered, T ) evolution operator. Clearly, only
the states in the single excitation subspace {|1〉j } evolve in
time with the corresponding amplitudes Aj (t) ≡ j 〈1|Û (t)|1〉s,
while the vacuum (or ground) state |0〉 remains unchanged. The
amplitudes A0 and AN+1 refer to the qubits of the sender and
the receiver, while the amplitudes Aj with 1 � j � N refer to
the channel.

In the interaction picture [42], the equations of motion for
the amplitudes read

i
dAj

dt
= G


j−1e
i(ωj −ωj−1)tAj−1 + Gje

i(ωj −ωj+1)tAj+1, (10a)

where ω0 = ωs, ωN+1 = ωr, and ωj = ωc for all 1 � j � N ,
and the couplings are given by

Gl =

⎧⎪⎨⎪⎩
gse

ih(t) if l = 0,

gr if l = N,

κ if 1 � l � N − 1,

0 otherwise.

(10b)

The set of Eqs. (10), together with Eq. (7), fully describes the
evolution of the system for smooth pulses and can be solved nu-
merically using standard techniques. However, further insight
into the physics of the system can be obtained by applying the
Jacobi-Anger expansion so that to rewrite the coupling for the
driven qubit as

G0 = g̃s = gs

∞∑
n = −∞

Jn(z)einωt :=
∞∑

n = −∞
g(n)

s einωt , (11)

where Jn is the nth-order Bessel functions of the first kind,
and z = z0f (t). This expansion shows that no RWA has been
applied in Eqs. (10), and all possible n-photon transitions to the
channel contribute in the transfer of the state from the sender
to the receiver.

This point becomes clearer if one adopts an alternative, yet
fully equivalent, point of view. Diagonalizing the Hamiltonian
for the channel, one obtains a new Hamiltonian, which de-
scribes the transfer of the state from the sender to the receiver,
through a band of states pertaining to the eigenmodes of the
channel (see Appendix A). A schematic representation of the
system in the new picture is given in Fig. 2.

The corresponding equations of motion are given by

i
dAs

dt
=

N∑
k=1

∞∑
n=−∞

g̃
(n)
s,k (t)e−i(ωk,s−nω)tAk, (12a)

i
dAr

dt
=

N∑
k=1

g̃r,ke
−iωk,r tAk, (12b)
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FIG. 2. Schematic representation of the system under considera-
tion. (a) After diagonalization of the Hamiltonian of the channel, the
system of Fig. 1(b) reduces to the transfer of an excitation between
to detuned levels, via virtual excitation of a far-off-resonant band of
empty states, pertaining to the eigenmodes of the channel. In general,
the coupling of the sender to the kth eigenmode involves absorption
or emission of n photons, for all possible n = 0,1,2, . . .. Adjusting
the strength of the driving z0 and the photon frequency ω, one can
control the n-photon transition(s) that dominate the dynamics. (b)
Eliminating the modes of the channel adiabatically, one obtains an
effective two-level system pertaining to the shifted states of the sender
and the receiver. The standard ν-photon Rabi model is obtained when
the RWA is valid.

i
dAk

dt
=

∞∑
n′=−∞

g̃
(n′)
s,k ei(ωk,s−n′ω)tAs + g̃r,ke

iωk,r tAr, (12c)

where ωk,x := ωk − ωx for x ∈ {s,r}. The amplitude Ak refers
to the mode with momentum k, while g̃

(n)
s,k and g̃r,k are the

couplings of the sender and the receiver to this mode (see
Appendix A for the related expressions). It is clear now that
the transfer of the state is mediated by the excitation of the
channel with the emission and absorption of n photons [see
Fig. 2(a)]. The extension of the summations from −∞ to ∞
shows that the present formalism so far does not involve the
RWA and includes all possible n-photon transitions, real and
virtual. Which ones will turn out to be dominant is determined
by the coupling strengths g̃s(r),k and the photon energy h̄ω, with
respect to the energy separation of the band from the sender
and the receiver.

As shown in Appendix A, for a given driving z(t), the
coupling of the sender to the kth eigenomode via n-photon
absorption (or emission) is proportional to the nth-order Bessel
function, i.e., |g̃(n)

s,k | ∝ |Jn(z)|. Throughout this work, we focus
on moderate to weak amplitudes of driving, corresponding
to 0 � z0 < 4. As depicted in Fig. 3, |Jn(z)| � 1 for all
z � 0, while for a given value of z(t), the values of the
Bessel functions of different orders n may differ by orders
of magnitude. These observations suggest that by adjusting
the amplitude of the driving z0, one can control the n-photon
transition(s) that dominate the dynamics of the system within
the prescribed time of the transfer. Effects of weaker couplings
are expected to become important for larger timescales and
can be neglected. As will be seen below, for the values of z0

under consideration, our results are well explained in terms of
few-photon transitions (i.e., 0 � n � 5).

C. Effective two-level system (TLS)

The proposed schemes for state transfer and entanglement
generation rely on setting the detuned terminal qubits to be far
off resonant from the channel. In this limit, the numerical sim-
ulations presented in the following section can be interpreted
in the framework of an effective TLS.

We are interested in combinations of parameters such that
the following conditions are satisfied:

|g̃r,k| � |ωr,k|, (13a)

|g̃s,k| � |ωs,k − nω|, (13b)

| min{ωk} − ωs| 
 ω, (13c)

gs|Jn∗ (z0)|T � 1. (13d)

Inequality (13c) implies that there is a large energy gap between
the sender and the band of the modes, and one needs a large
number of photons (say n = n∗ ∼ 10) to bridge the gap and
come close the band. The corresponding coupling strengths
|g̃(n∗)

s,k | ∝ gs|Jn∗ (z)| are very weak for the driving amplitudes of
interest. For instance, the behavior depicted in Fig. 3 suggests
that depending on z, the value of |J10(z)| can be at least four
orders of magnitude smaller than most of (if not all) Bessel
functions of order n � 5. Hence, for time scales T that satisfy
inequality (13d), the dynamics of the system are expected to be
dominated by transitions involving n � 5 photons. The precise
number of photons for the dominant transitions depends on
the amplitude of the driving and the photon frequency (this
point will become clear below). In any case, however, when
condition (13b) is satisfied for the dominant n, one may expect
a negligible excitation of the modes of the channel during the
evolution.

Under these conditions, the equations for the channel can
be eliminated adiabatically, yielding two equations of the form
(see Appendix B)

i
dAs

dt
� −S0(t)As − �0(t)Ar, (14a)

FIG. 3. Logarithmic plot of |Jn(z)| as a function of a, for different
values of the order z. For Bessel functions with negative n, one may
recall the identity J−n(z) = (−1)nJn(z).
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i
dAr

dt
� −S1(t)Ar − �1(t)As, (14b)

which describe the evolution of a TLS (consisting of the sender
and the receiver), under the action of a pulsed driving that
is included in �0(1)(t). The explicit forms of S0(1) and �0(1)

are given in Appendix B. When there is ν-photon resonance
between the qubits of the sender and the receiver, i.e., for

ωr � ωs + νω (15)

with ν � n∗, one can apply the RWA to obtain the standard
Rabi model with shifts

S0 �
∑

k

(gs,k)2

ωk,r
, S1 �

∑
k

(gr,k)2

ωk,r
,

and Rabi frequencies

�
(ν)
0 = �

(ν)
1 �

∑
k

g̃
(ν)
s,k g̃r,k

ωk,r
. (16)

The case of gs = gr is of particular interest, because it
implies S0 � S1. In this case, for �

(ν)
0 ,�

(ν)
1 
 |S0 − S1| (see

related discussion at the end of Appendix B), the problem can
be solved analytically obtaining [41]

As(t) � cos[(t)], (17a)

Ar(t) � i sin[(t)], (17b)

with the pulse area given by

(t) := 0

∫ t

0
dt ′Jν[z(t ′)], (17c)

0 :=
∑

k

(−1)k−1(gs,k)2

ωk,r
, (17d)

and gs,k given by Eqs. (A3) and (A1). Hence, the evolution
of the TLS at time t is fully determined by the pulse area
(t), and it is independent of the shape of the pulse. These
equations indicate that different logical gates can be applied
between the sender and the receiver, by adjusting the couplings
and the duration of the pulse [1]. For instance, when the
system evolves for time T 
 τ and (T ) = π/2, then the
state of the combined system at the end of the evolution is well
approximated by

|	(T )〉 = |0〉s ⊗ |0〉c ⊗ |ψ〉r. (18)

In this case, the input state has been transferred from the
sender to the receiver. Similarly, if the input state is |ψ〉 = |1〉
and (T ) = π/4, we expect the final state to be close to the
maximally entangled state

|	(T )〉 = 1√
2

(|1〉s ⊗ |0〉r + i|0〉s ⊗ |1〉r) ⊗ |0〉c. (19)

In closing this section, we would like to emphasize that
the above analytic expressions for the amplitudes and the final
states are valid only for �

(ν)
0 ,�

(ν)
1 
 |S0 − S1|. If this condition

is violated, and the effective TLS is still valid, the expressions

for As(r)(t) are not given by Eqs. (17), while their evolution
may depend on the details of the pulse shape [41]. Moreover,
in order to prepare the system at states (18) and (19), one has
to freeze the dynamics at time t = T , i.e., to set �

(ν)
0 ,�

(ν)
1 = 0.

In view of Eqs. (A6), (A3), and (5b), the coupling g̃
(ν)
s,k does

not tend to 0, when f (t) → 0. This is because the pulse shape
f (t) appears in the exponent of Eq. (5b). Hence, the system
keeps evolving after the end of the pulse and its quantum
state changes, but as will be seen in the following section, the
dynamics are very weak and they do not significantly affect
the performance of the protocol.

III. SIMULATIONS

The majority of the state-transfer and entanglement-
generation protocols that have been discussed in the literature
so far are designed to work for resonant sender and receiver,
i.e., for ωr,s = 0. As depicted in Fig. 4, the performance
of three different well-studied protocols becomes worse for
increasing values of ωr,s relative to gs. Moreover, we see that
none of the three protocols is capable of transmitting reliably
any qubit state between the sender and the receiver when
ωr,s � gs, in the sense that the lower bound on the fidelity
is almost equal to the classical threshold (if not smaller). The
results presented in the following subsection demonstrate that
the present protocol is capable of faithful state transfer and
entanglement generation between the detuned terminal qubits,
provided that the corresponding energy difference matches a
multiple of the photon energy, i.e., ωr,s = νω for ν > 0. In this
case, the photon essentially provides the energy required to
bridge the energy gap between the terminal qubits.

For the sake of concreteness, we have chosen a Gaussian
pulse profile for the driving of the form

f (t) = exp

[
− (t − t0)2

2τ 2

]
, (20)

FIG. 4. Performance of three different faithful state-transfer
schemes for increasing detuning between the sender and the receiver,
forN = 3. The plotted fidelity isFmin (see main text). Scheme A refers
to the protocol of Refs. [7,8], scheme B to the protocol of Ref. [15],
and scheme C to the protocol of Ref. [13]. In all of the cases, the
sender is on resonance with the chain, while the receiver is detuned
by ωr,s. The horizontal dashed line marks the classical threshold of
2/3. Similar behavior is obtained for other values of N � 2, while
for a given value of the ratio ωr,s/gs, the fidelity drops slowly with
increasing N .
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where t0 > 5τ is the center of the pulse. The main dynamics
of the system are expected to take place for times t ∈ [t0 −
4τ,t0 + 4τ ], where the main part of the Gaussian is located.

A. Single-photon resonance

Consider first the case of terminal qubits whose energy
difference matches the energy of a single photon; i.e., we have
ωr = ωs + ω. The dynamics of the system for N = 2 and N =
3 spins in the channel are summarized in Figs. 5 and 6, where
the populations of the sender (|As|2), of the receiver (|Ar|2),
and of the channel (1 − |As|2 − |Ar|2) are plotted as functions
of time. In the case of continuous harmonic driving [i.e., for
f (t) = 1] the main part of the population oscillates back and
forth between the terminal qubits [see black and blue curves
in Figs. 5(a) and 6(a)], while the modes of the channel are
scarcely populated. The dynamics are in very good agreement
with the dynamics of the effective TLS as given by Eqs. (17)
[see dashed green curves]. The oscillations are slightly out
of phase due to the omission of rapidly rotating terms in the
RWA. This is a well-known effect, which is associated to the
Bloch-Siegert shift when the neglected counter-rotating terms
are small perturbations to the dynamics in the framework of
RWA [43,44]. This small phase difference is not expected to
play a significantly role in the transfer of the state. Indeed,
when the driving becomes pulsed, and the pulse duration is
adjusted so that (T ) = π/2, we find that about 90% of the
population has been transferred from the sender to the receiver
at the end of the pulse [see Figs. 5(c) and 6(c)]. Moreover,
when (T ) = π/4 at the end of the pulse, the population is
distributed almost equally between the two terminal qubits [see
Figs. 5(b) and 6(b)]. In either of the two cases, however, the
final population of the receiver is below the ideal theoretically
expected values, that is, 1 in the former case and 1/2 in the latter
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FIG. 5. State transfer and entanglement generation mediated by a
chain of N = 2 spin qubits. Numerical solution of Eqs. (10) for con-
tinuous [f (t) = 1] harmonic driving (a) and pulsed harmonic driving
[(b), (c)]. Parameters of the system: ωc − ωs = 22.0gs, ωr − ωs =
2.0gs, gr = 1.0gs, κ = 6.0gs, ω = 2gs, and z0 = 2.0. Parameters of
the pulse: gst0 = 300 and (T ) = π/4; gsτ = 25.45 (b); (T ) =
π/2; gsτ = 50.90. The dashed green curve refers to Eq. (17b). Time
is in units of g−1
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(b); (T ) = π/2; gsτ = 65.11. The dashed green curve refers to
Eq. (17b). Time is in units of g−1

s .

[corresponding to Eqs. (18) and (19), respectively]. There are
mainly two reasons for these deviations.

First, a close inspection of Figs. 5(a) and 6(a) reveals that
when the driving is continuous the oscillations are not complete
(i.e., the blue curves are always slightly below 1 and the black
curves are slightly above 0). These findings suggest that for
the parameters of the figures, the dynamics of our system
are well approximated by a driven TLS where the photon
energy does not match precisely the difference of the shifted
energies, i.e., ωs − S0 �= ωr − S1 − ω. Indeed, if there was
exact resonance, then the solutions of the amplitudes would
be given by Eqs. (17), and as depicted in Figs. 5(a) and 6(a),
the oscillations would be complete (see dashed green curve).

Second, as depicted in the insets of Figs. 5 and 6, the
populations exhibit oscillations after the end of the driving [i.e.,
for times t > t0 + 4τ where f (t) � 0]. The larger oscillations
stem from the fact that the terminal qubits are considered to
be permanently coupled to the channel; i.e., gs and gr do not
vanish when the driving is over, and one has to switch them
off separately. This is part of the so-called readout process
and is present in almost every state transfer or entanglement
generation protocol in spin chains. The additional wiggles
[mainly present in the inset of Fig. 5(b)] are due to the
counter-rotating terms, which are present in the equations of
motion (10). The fact that the dynamics do not freeze when
the external driving of the sender is over implies that the
precise state of the receiver depends on the time T � t0 + 4τ ,
at which one decides to switch off the couplings gs and gr.
However, our numerical simulations suggest that the amplitude
of these oscillations is very small, and thus the performance
of our protocol is reliable irrespective of the chosen time T .
To confirm this fact, we have to quantify the performance of
our protocol in the cases of state transfer and entanglement
generation.
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As is the case for many other state-transfer protocols, the
performance of our protocol depends on the qubit state to be
transferred, and we are interested in reliable measures that
are independent of the input state. To this end, two fidelity
measures have been used widely in the literature, namely the
average-state fidelity and the minimum fidelity, which in the
absence of disorder are given by

F̄ = 1

2
+ |Ar|2

6
+ |Ar|

3
(21)

and

Fmin = |Ar|2, (22)

respectively. The former involves an average over all possible
qubit states |ψ〉s, whereas the latter is the lower bound on the
fidelities that can be achieved for all possible |ψ〉s. As far as
the entanglement generation is concerned, the performance of
our scheme at any time t > 0 can be quantified in terms of
the concurrence C [42] of the reduced density matrix for the
terminal qubits at the particular time of interest. One readily
obtains

ρ(t) = |As|2|1,0〉〈1,0| + |Ar|2|0,1〉〈0,1| + AsA


r |1,0〉〈0,1|

+A

sAr|0,1〉〈1,0| + (1 − |As|2 − |Ar|2)|0,0〉〈0,0|,

where for the sake of brevity we have set |1,0〉 ≡ |1〉s ⊗ |0〉r,
and the concurrence is given by

C(t) = 2|As(t)||Ar(t)|. (23)

All of the above measures are time dependent and their
evolution for the parameters of Figs. 5 and 6 is shown in
Figs. 7(a) and 7(b). As expected, at the end of the pulse, the
fidelities and the concurrence exhibit small oscillations around
some central values, which are considerably larger than the
amplitude of the oscillations. Hence, the proposed protocol
achieves faithful state transfer and entanglement generation
irrespective of the precise time (after the end of the driving),
at which the user decides to switch off the couplings gs and
gr. Analogous results and dynamics have been obtained in the
case of single-photon resonance for various combinations of
z0 and N .

B. Multiphoton resonance

The protocol also works when the energy difference of the
terminal qubits is a multiple of the photon energy, i.e., the
resonance condition (15) is satisfied for some ν > 1. In this
case, we have multiphoton-assisted processes, and the time
evolution is analogous to the evolution depicted in Figs. 5,
6, 7(a), and 7(b). For instance, in Figs. 7(c) and 7(d), we
plot the evolution of the aforementioned measures in the case
of two-photon resonance, and for z0 = 3. Clearly, the overall
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FIG. 7. State transfer and entanglement generation mediated by a chain of N spin qubits. The average fidelity F̄ (red), the minimum fidelity
Fmin (black), and the concurrence (blue) are plotted as functions of time for N = 2 [(a), (c)] and N = 3 [(b), (d)]. (a) Single-photon resonance
(ν = 1) and other parameters as in Fig. 5. (b) Single-photon resonance (ν = 1), and other parameters as in Fig. 6. (c) Two-photon resonance
(ν = 2), z0 = 3, gsτ = 41.42 for (T ) = π/4, and gsτ = 82.85 for (T ) = π/2. Other parameters as in Fig. 5. (d) Two-photon
resonance (ν = 2), z0 = 3, gsτ = 53.1 for (T ) � π/4, and gsτ = 106.2 for (T ) � π/2. Other parameters as in Fig. 6. The fidelities
correspond to (T ) � π/2 and the concurrence for (T ) � π/4. Time is in units of g−1

s .
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performance is slightly worse than for the single-photon case
shown in Figs. 7(a) and 7(b), and the dynamics are about
1.6 times slower (compare the durations). By increasing κ ,
|ωc − ωs|, and |ωc − ωr|, the performance of the protocol can
be improved, at the expense of even slower dynamics.

Analogous results are expected for resonance with ν � 3
photons, but as one can infer from the relative absolute values of
the Bessel functions depicted in Fig. 3, in this case the dynamics
will be considerably slower.

IV. CONCLUDING REMARKS

We have presented a protocol for photon-assisted state
transfer and entanglement generation between two distant
(spin) qubits. The two terminal qubits have different energies,
and are permanently coupled to an XX chain of N far-off-
resonant spins, which is prepared in its ground (vacuum)
state. The qubit of the sender is driven by an external pulsed
harmonic field, and the process (state transfer or entanglement
generation) is mediated by virtual excitation of the eigenmodes
of the channel. The performance of our protocol has been
investigated for various combinations of parameters, and the
results presented here are a representative sample of our
findings. We have shown that the present scheme allows for
faithful state transfer and entanglement generation, when the
energy difference between the terminal qubits ωr,s is equal to
or a multiple of the photon energy ω. Hence, we have shown
that it can perform reliably under conditions that go beyond the
operational conditions of other related protocols, i.e., when the
energy difference is comparable to or larger than the couplings.
For the sake of completeness as well as to account for possible
scenarios where multiphoton processes may be preferable, the
present formalism has been kept rather general, and our results
apply to any number of photons. In principle, however, for a
given energy difference ωr,s one can tune the amplitude of the
driving Vd and the photon frequency ω, so that the operation
of our protocol is mediated by a single photon (i.e., ωr,s � ω).

A key feature of the present protocol is that its operation
relies solely on the external driving of the sender’s qubit, while
keeping all other couplings and energies constant. This may be
an advantage for certain implementations of QIP, because one
does not have to control a large number of qubits. Moreover,
at the end of the driving, the dynamics are frozen to a large
extent, which facilitates the readout process in a potential
implementation. This is in contrast to other protocols (e.g.,
Refs. [7,8,13,15]), where the transferred (or generated) state is
localized at the receiver’s site only for a small period of time
and the readout process has to be fast.

During the evolution of the system the channel is hardly
populated, a behavior which is reminiscent of the stimu-
lated Raman adiabatic passage (STIRAP) [19,45]. There are,
however, fundamental differences between our scheme and
STIRAP. First, by contrast to STIRAP, the operation of our
scheme does not involve a dark state. Second, STIRAP requires
the application of multiple pulses, whereas in our scheme only
the qubit of the sender is driven. The scarce population of
the channel is a common feature of all the adiabatic state-
transfer schemes, including those of Refs. [13,14,16], and
makes such protocols very robust against imperfections in
the channel (including decoherence, dissipation, and disorder).

However, our protocol is fundamentally different from the ones
in Refs. [13,14,16], because it involves external driving of the
sender’s qubit, thereby allowing for state transfer and entangle-
ment generation between terminal qubits that differ in energy
(ωr,s �= 0). It is only in the case of resonant terminal qubits (i.e.,
for ωr,s = 0) where there is no need of driving. Indeed, in this
case the resonance condition (15) is satisfied for ν = 0 photons,
which means that state transfer and entanglement generation
can be achieved without the assistance of photons. Hence, for
resonant terminal qubits the driving can be ignored, and one can
readily confirm that the present scheme becomes practically
equivalent to the adiabatic schemes of Refs. [13,14].

In general, our protocol becomes slower as we increase the
number of spins in the channel N , because its operation relies
on the virtual occupation of the channel. As we increase N ,
this condition requires larger energy differences between the
terminal qubits and the channel, which result in a reduction
of the Rabi frequency in the effective TLS. In practice, the
characteristic timescale of decoherence is expected to deter-
mine the values of N for which the protocol is attractive in the
framework of a given physical implementation. For instance,
consider a spin-based solid-state QIP architecture, where the
qubit is the spin of an electron in GaAs quantum dot. Typically,
the exchange coupling in such a system is gs ∼ 0.2 meV, while
the scale of the coherence (or the lifetime of the dot states them-
selves) is T 


2 ∼ 20 ns [46,47]. Hence, T 

2 ∼ 968g−1

s , whereas
the timescales required for state transfer and entanglement
generation between five dots with our protocol areT ∼ 600g−1

s
in the case of single-photon resonance. The frequency of the
driving falls in the microwave regime, i.e., ω ∼ gs ∼ 48 GHz.
These estimates are improved considerably, if one considers
spin coherences of the order of 1–100 μs, as suggested in
Ref. [47]. For the time being, related experiments have been
restricted to a small array consisting of three tunnel-coupled
quantum dots [35]. These experiments have demonstrated the
coherent oscillation of a charge between the two outermost
dots, through the observation of Landau-Zener-Stückelberg
interference. It is well known, however, that the transfer of the
charge (excitation) does not necessarily imply the transfer of
the associated spin state (which in addition to bit information
carries phase information). Given the aforementioned deco-
herence times, the present results suggest that for the scheme
of Ref. [35], the transfer of spin states, and the generation of
entanglement are within reach of the current technology for
arrays up to five dots.

The present results suggest that photons can provide new
techniques for state transfer and entanglement generation
in spin chains, which do not require any engineering, gate
sequences, or measurements. The protocol discussed in this
work is certainly not unique, and there may be other photon-
assisted protocols which perform better. There are still many
questions to be addressed before one decides on the usefulness
of photon-assisted protocols, such as their performance in the
presence of disorder, their applicability for various types of
polarized and unpolarized spin chains [16], and the exploitation
of possible ways for speeding up the transfer of the state
and the generation of entanglement. Finally, all of the results
and discussion in this work pertain to parameters where the
RWA is valid. If the RWA is not valid but the TLS is still
a good approximation, then we have a TLS driven by terms

012304-8



PHOTON-ASSISTED QUANTUM STATE TRANSFER AND … PHYSICAL REVIEW A 98, 012304 (2018)

involving many harmonics of the driving frequency (see also
discussion in Appendix B). In that case, the optimal pulse
duration may be obtained numerically by applying standard
optimization techniques where the interesting question is
whether such optimization will lead to meaningful results,
with the possibility of faithful state transfer and entanglement
generation.

APPENDIX A: DIAGONALIZATION OF THE
HAMILTONIAN FOR THE CHANNEL

The Hamiltonian (3b) can diagonalized by introducing the
operators ĉk = ∑N

i=1 Lk,i âi , [13,22], with

Lk,i :=
√

2

N + 1
sin

(
ikπ

N + 1

)
. (A1)

Hence, we have

Hc =
N∑

k=1

h̄ωkĉ
†
kĉk, (A2a)

Ṽ =
N∑

k=1

h̄[g̃s,kâ
†
s ĉk + g̃r,kâ

†
r ĉk + H.c.] (A2b)

with new coupling g̃s,k := gs,ke
ih(t), g̃r,k := (−1)k−1gr,k , and

gx,k := gxLk,1, for x ∈ {r,s}. (A3)

The eigenfrequencies are given by

ωk = 2κ cos

(
kπ

N + 1

)
+ ωc. (A4)

Equation (A4) defines the so-called “magnon” excitation
energy. The interaction (A2b) shows that the creation (annihi-
lation) of a particle in the Fermi state associated with the sender
(or receiver) is accompanied by the destruction (creation) of
magnons at different momenta, with different probabilities that
are determined by the coupling coefficients.

In the interaction picture [42], the equations of motion for
the amplitudes read

i
dAs

dt
=

∑
k

g̃s,k(t)ei(ωs−ωk)tAk, (A5a)

i
dAr

dt
=

N∑
k=1

g̃r,ke
i(ωr−ωk)tAk, (A5b)

i
dAk

dt
= g̃


s,ke
−i(ωs−ωk)tAs + g̃r,ke

−i(ωr−ωk)tAr. (A5c)

Applying the Jacobi-Anger expansion, one obtains Eqs. (12),
where

g̃
(n)
s,k (t) := gs,kJn(z). (A6)

APPENDIX B: REDUCTION TO AN EFFECTIVE TLS

Formal integration of Eq. (12c) yields

Ak(t) = −i

∞∑
n′=−∞

∫ t

0
dt ′g̃(n′)

s,k (t ′)ei(ωk,s−n′ω)t ′As(t
′)

−ig̃r,k

∫ t

0
dt ′eiωk,r t

′
Ar(t

′). (B1)

When conditions (13) are satisfied, the amplitudes As(t ′) and
Ar(t ′) will not change much during the time the exponents in
Eq. (B1) experience many oscillations. Assuming further that
f (t) changes in time sufficiently slowly [recall Eq. (7)] so that∣∣∣∣dJn′ (t)

dt ′

∣∣∣∣ � |Jn′(t ′)||ωk,s − n′ω| (B2)

for all of the values of n′ that dominate the dynamics and for
all t ′ ∈ [0,t], we can evaluate g̃

(n′)
s,k , As(t ′), and Ar(t ′) at time

t ′ = t .
Hence, we have

Ak(t) � −
∞∑

n′=−∞
g̃

(n′)
s,k (t)

[
ei(ωk,s−n′ω)t − 1

ωk,s − n′ω

]
As(t)

−g̃r,k

[
eiωk,r t − 1

ωk,r

]
Ar(t). (B3)

This expression is substituted back in Eqs. (12a) and (12b).
When conditions (13) are satisfied, one can neglect terms of
the form e±i(ωk,s−nω)t , and e±iωk,r t , obtaining Eqs. (14) with

S0 �
∑

k

∑
n,n′

g̃
(n)
s,k g̃

(n′)
s,k

ωk,s − n′ω
ei(n−n′)ωt , (B4a)

S1 �
∑

k

(g̃r,k)2

ωk,r
, (B4b)

�0 �
∑

k

∑
n

g̃
(n)
s,k g̃r,k

ωk,r
e−i(ωr,s−nω)t , (B4c)

�1 �
∑

k

∑
n′

g̃
(n′)
s,k g̃r,k

ωk,s − n′ω
ei(ωr,s−n′ω)t , (B4d)

and (g̃r,k)2 = (gr,k)2 in the expression for S1. The RWA has not
been applied in the derivation of these expressions. As a result,
the summations extend from −∞ to ∞, while some of them
are time dependent. It is worth noting here that throughout this
work we are interested in 0 � z0 � 4 and | min{ωk} − ωs| 

ω. Hence, we can ignore the divergence of S0 and �1 for n′
and k such that ωk,s = n′ω. This is because the sender and the
eigenmodes are well separated in energy, and the denominators
in S0 and �1 may vanish only for large values of n′ (see
related discussion in Sec. II C). At the same time, however, the
enumerator is also very small because |g̃(n′)

s,k | ∝ |Jn′(ζ )| → 0,
as we increase n′ (see Fig. 3). In practice, the eigenmodes
of the channel are expected to acquire a finite lifetime, as a
result of their coupling to the environment, and there will be
no divergence.
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The above expressions for S0(1) and �0(1) can be inserted in
Eqs. (14), to obtain the dynamics of the effective TLS beyond
RWA. However, when the ν-photon resonance condition is
satisfied [see Eq. (15)], one can apply the RWA. The above
expressions can be simplified farther and become time indepen-
dent, thereby leading to the standard Rabi model with pulsed
driving. We briefly describe here this reduction.

A close inspection of the expression for S0(t) shows that for
n �= n′ the various terms in the summations oscillate rapidly
at frequencies |n − n′|ω, where |n − n′| � 1. Similarly, for
n �= ν, the terms in the summations of �0(1)(t) oscillate rapidly
at frequencies |n − ν|ω, where |n − ν| � 1. As long as we are
interested in the dynamics of the TLS on timescales T 
 ω−1,
we can approximate S0(t) and �0(1)(t) in Eqs. (14) by their
time-average values. The terms associated with the resonance
are expected to dominate the time average, whereas all of
the remaining fast oscillating terms are expected to cancel
out, thereby yielding a negligible contribution. More precisely,
assuming without loss of generality that ωr,s > 0 and ωk,s > 0,
the terms that will survive pertain to n = n′ = ν. Hence, in the
denominators we will have ωk,s − n′ω � ωk,r, while all of the
rapidly oscillating terms are neglected. Hence, we obtain

S0 �
∑

k

(gs,k)2

ωk,r
, (B5)

�
(ν)
0 = �

(ν)
1 �

∑
k

g̃
(ν)
s,k g̃r,k

ωk,r
, (B6)

with g̃
(ν)
s,k given by Eq. (A6). In the derivation of these expres-

sions, we have assumed that Eq. (15) is satisfied. In general,
the RWA is expected to be valid when |νω − ωr,s| � ω,

�
(ν)
0(1) � ω.
In closing, it is worth noting that S0 is not expected to

coincide exactly with S1, even when gs = gr, because S0

involves additional approximations that have not been applied
in S1. Hence, even if the photon energy is such that a multiple
of it matches exactly the energies of the undriven system [i.e.,
condition (15) is satisfied exactly for some ν], one should
expect a detuning between the shifted levels of the driven TLS
and the ν-photon energy νω, which is given by � = S0 − S1.
However, one is close to resonance when �

(ν)
0(1) 
 |�|. Our

simulations suggest that the detuning depends weakly on the
number of qubits in the chain N . On the other hand, the Rabi
frequencies �

(ν)
0 and �

(ν)
1 are always very close to each other,

and they decrease with increasing N , due to the presence of
the term (−1)k−1 in g̃r,k , which causes alternating signs in the
Rabi frequencies.
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