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Dynamics of quantum coherence and quantum phase transitions in XY spin systems
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We provide an analysis on the critical property of quantum coherence in XY spin systems based on the quantum
renormalization group theory. We find that the quantum coherence obeys a conservation relation, i.e., the quantum
coherence of a three-block state that is the sum of its reduced state coherence. The quantum coherence of the
whole block state and its reduced state obey similar scaling properties with identical quantum coherence exponent
0.999. This means that the quantum critical behavior of a system may gain from its reduced state. With the unitary
operator approaches, we evaluated the evolutionary characteristics of the large-scale system and illustrate its
behavior with different initial states. The result shows that quantum coherence periodically fluctuates over time.
The period decreases under the system size increasing.
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I. INTRODUCTION

Two homochromous light waves are coherent if they have
the same frequency and a constant phase relationship [1].
Such results also exist in quantum physics, e.g., the electrons
can be used as resources in Young’s double-slit experiment.
The reasons why all particles have wavelike properties can be
explained by quantum superposition principle. It says that if
|ψ1〉, |ψ2〉, . . . are distinct states of a quantum system, then
any superposition |ψ〉 = c1|ψ1〉 + c2|ψ2〉 + · · · = ∑

i ci |ψi〉
should also be another valid quantum state of the system, where∑

i c
2
i = 1 [2,3]. On the one hand, the quantum superposition

principle is directly related to measurement and the results are
expressed by probability. On the other hand, it is the super-
position of the wave function rather than the probability and
that induces interference phenomena. So, quantum coherence
comes from the quantum superposition principle. In recent
years, it has become the core concept in quantum information
processing similar to quantum correlation [4].

The investigation of coherence has a long history. From
Young’s double-slit experiment to quantum optics and then
quantum information science all have had much study. Surely
we could get quantum coherence information with the aid
of quantum state tomography in the past. The matrix of the
state can be got through such measure, and the dynamics
of off-diagonal elements reflects the quantum coherence in
the system. But the quantum state tomography procedure
is complex and tedious [5,6], especially as the nondiagonal
matrix component increases exponentially with an increase of
the system dimension.

In 2014, Baumgratz et al. defined the quantum coherence
from the perspective of quantum resource [7]. They gave two
kinds of quantitative measures for the d-dimensional quantum
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systems, l1 norm coherence and relative entropy coherence.
Meanwhile, Girolami presented another quantum coherence
method using the Wigner-Yanase skew information and it can
be effectively observed in experiment [8]. These pioneering
work lays a theoretical foundation for researchers to quantify
the quantum coherence in the physical system. A great deal
of study [8] also was stimulated by their research [9–18]. For
example, Wang et al. establish “a method to measure coherence
directly using its most essential behavior—the interference
fringes [5].” Ma et al. find how to convert quantum coherence
to quantum correlations [18].

In this study, relating quantum phase transitions, we address
interesting topics on how to use quantum coherence to reflect
quantum critical behavior. Karpat et al. have found some
meaningful result that the local quantum coherence can reveal
the occurrence of the second-order phase transition in the
XY model [19]. But the quantum coherence of a block state
and the dynamics behavior of the model are not discussed.
Especially the following questions still need to answer. Do the
finite-size scaling behaviors of coherence exist in the model?
Can we estimate the accurate correlation length exponent by
quantum coherence? Based on quantum renormalization group
theory, we present some results for the above questions by
investigating the one-dimensional XY model. The nonanalytic
behavior and scaling behavior are also examined. Furthermore,
we show low energy-state dynamics described by the time uni-
tary operator. We investigate the evolution of the system under
different initial states and illustrate how quantum coherence
varies as a function of time.

This paper is organized as follows. In the next section, we
will give an introduction to the quantum coherence. In Sec. III,
the one-dimensional XY systems and the analytical results of
quantum coherence are given. In Sec. IV, the critical behavior,
nonanalytic behavior, and scaling behavior are presented.
In Sec. V, the evolution of this system under the quantum
renormalization group is given. The last section is a summary
of our work.
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II. QUANTUM COHERENCE

Baumgratz et al. [7] proposed l1 norm coherence in 2014.
This quantity meets the general requirement that a valid
measure of quantum coherence should be satisfied. For a
quantum state ρ, the l1 norm coherence measures quantum
coherence in a direct way; it’s defined by the off-diagonal
elements of ρ [7],

QCl1
(ρ) =

∑
i,j
i �=j

|ρi,j |. (1)

This measure is the basic definition in quantifying quantum
coherence in any system. Not only should all the requirements
of a good coherence measure be obeyed, but also it is very easy
to compute.

III. MODEL DESCRIPTION AND QUANTUM
RENORMALIZATION GROUP

The Hamiltonian of a one-dimensional XY model reads [20]

H = J/4
N∑

i=1

[
(1 + γ )σx

i σ x
i+1 + (1 − γ )σy

i σ
y

i+1

]
, (2)

where J is the exchange interaction, γ is the anisotropy
parameter, and σ τ (τ = x,y) are standard Pauli operators at site
i. To keep the symmetry of the system and use majority rule,
we select three sites as one block. Such three-site blocks can
be viewed as one site in renormalized subspace. A schematic
diagram can be seen in Fig. 1.

After separating the whole systems, the Hamiltonian can
be divided as the block Hamiltonian HB and interacting
Hamiltonian HBB , respectively,

HB = J/4
N/3∑
L

[
(1 + γ )

(
σx

L,1σ
x
L,2 + σx

L,2σ
x
L,3

)

+ (1 − γ )
(
σ

y

L,1σ
y

L,2 + σ
y

L,2σ
y

L,3

)]
, (3)

HBB = J/4
N/3∑
L

[
(1 + γ )σx

L,3σ
x
L+1,1 + (1 − γ )σy

L,3σ
y

L+1,1

]
.

(4)

The eigenvalues and eigenstates of the corresponding Lth
block are

d1 = d2 = d3 = d4 = 0,

d5 = d6 = J
√

2γ 2 + 2

2
,

FIG. 1. A schematic description of QRG for three sites as one
block.

d7 = d8 = −J
√

2γ 2 + 2

2
,

|ψ1〉 = 1√
2

(−|001〉 + |100〉),

|ψ2〉 = 1√
γ 2 + 1

(−|000〉 + γ |101〉),

|ψ3〉 = 1√
2

(−|011〉 + |110〉),

|ψ4〉 = 1√
γ 2 + 1

(−γ |010〉 + |111〉),

|ψ5〉 = 1

2
√

1 + γ 2
(
√

1 + γ 2|001〉 +
√

2|010〉

+
√

1 + γ 2|100〉 +
√

2γ |111〉),
|ψ6〉 = 1

2
√

1 + γ 2
(
√

1 + γ 2|011〉 +
√

2|101〉

+
√

1 + γ 2|110〉 +
√

2γ |000〉),
|ψ7〉 = 1

2
√

1 + γ 2
(−

√
1 + γ 2|001〉 +

√
2|010〉

−
√

1 + γ 2|100〉 +
√

2γ |111〉),
|ψ8〉 = 1

2
√

1 + γ 2
(
√

1 + γ 2|011〉 −
√

2|101〉

+
√

1 + γ 2|110〉 −
√

2γ |000〉). (5)

To get the critical properties of the system at absolute zero,
we eliminate the excited state by integrals and only retain the
ground-state parts. The projection operator is built for this aim.
The relation between the original Hamiltonian and the effective
Hamiltonian is associated by the projection operator, which is
constructed by the two lowest eigenstates,

T =
N/3∏
i=1

T L =
N/3∏
i=1

(|⇑〉L〈ψ | + |⇓〉L〈ψ |), (6)

where 〈⇑ |,〈⇓ | are renamed states of each block to represent
the effective site degrees of freedom. |ψ〉 is the ground
state corresponding to the eigenvalue − J

√
2γ 2+2
2 . The effective

Hamiltonian is defined by

Heff = T †HT = H 0
eff + H 1

eff = T †HBT + T †HBBT . (7)

The form of effective Hamiltonian are similar to the original
Hamiltonian,

Heff = J ′/4
N/3∑
L

[
(1 + γ ′)σx

Lσ x
L+1 + (1 − γ ′)σy

Lσ
y

L+1

]
, (8)

here the renormalized couplings are

J ′ = J
3γ 2 + 1

2 + 2γ 2
, γ ′ = γ 3 + 3γ

3γ 2 + 1
. (9)

Following the renormalization equation, the nontrivial fixed
point (critical point) γc can be gotten by solving γ ′ = γ . After
some algebra, we can get the nontrivial fixed point γc = 0 and
the trivial fixed point γ = 1. When γ = 0, the system is in
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the spin-fluid phase. When 0 < γ � 1, the system is in the
Ising-like phase.

This enables us to compute the correlation length critical
exponent ν defined as ξ ∼ |γ − γc|−ν , i.e.,

ν = log3
dγ ′

dγ

∣∣∣∣
γ=γc

. (10)

From the analytical solution at the thermodynamic limit,
the critical points of the Heisenberg XY model are γc = 0. The
correlation length critical exponents are ν = 1 accordingly.
The divergent critical property of the correlation length implies
that the QRG measure can catch the long-distance critical
behavior which is independent of the model details [21].

The ground-state density matrix is given by

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 1
4 −

√
2

4k
0 1

4 0 0 −
√

2γ

4k

0 −
√

2
4k

1
2k2 0 −

√
2

4k
0 0 γ

2k2

0 0 0 0 0 0 0 0

0 1
4 −

√
2

4k
0 1

4 0 0 −
√

2γ

4k

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −
√

2γ

4k

γ

2k2 0 −
√

2γ

4k
0 0 γ 2

2k2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where k =
√

1 + γ 2.
According to the definition of quantum coherence, we can easily get the l1 norm coherence of ρ,

QCl1
(ρ) =

√
2/k + 1/2 + (

√
2|γ |)/k + |γ |/k2. (12)

If we trace the first, second, or the third block spin separately, and then we derive the reduced density matrix,

ρ13 = 1

4(γ 2 + 1)

⎛
⎜⎜⎝

2 0 0 2γ

0 γ 2 + 1 γ 2 + 1 0
0 γ 2 + 1 γ 2 + 1 0

2γ 0 0 2γ 2

⎞
⎟⎟⎠, (13)

ρ12 = 1

4(γ 2 + 1)

⎛
⎜⎜⎜⎜⎝

γ 2 + 1 0 0 −γ
√

2γ 2 + 2

0 γ 2 + 1 −
√

2γ 2 + 2 0

0 −
√

2γ 2 + 2 2 0

−γ
√

2γ 2 + 2 0 0 2γ 2

⎞
⎟⎟⎟⎟⎠, (14)

ρ23 = 1

4(γ 2 + 1)

⎛
⎜⎜⎜⎜⎝

γ 2 + 1 0 0 −γ
√

2γ 2 + 2

0 2 −
√

2γ 2 + 2 0

0 −
√

2γ 2 + 2 γ 2 + 1 0

−γ
√

2γ 2 + 2 0 0 2γ 2

⎞
⎟⎟⎟⎟⎠. (15)

Following the l1 norm coherence, we obtain the coherence
of ρ13, ρ12, and ρ23 as

QCl1
(ρ13) = 1

2
+ |γ |

γ 2 + 1
,

QCl1
(ρ12) = Cl1 (ρ23) =

√
2

2
√

γ 2 + 1
+

√
2|γ |

2
√

γ 2 + 1
. (16)

It is interesting to find that there exists a relation between
Eq. (12) and Eq. (16),

QCl1
(ρ) = QCl1

(ρ13) + QCl1
(ρ12) + QCl1

(ρ23). (17)

IV. RENORMALIZED QUANTUM COHERENCE

A. The critical behavior of quantum coherence

In this section, we study the behavior of quantum coherence
with the increase of system size. To give more intuitive results,
we replace γ with g, i.e., g = (1 + γ )/(1 − γ ). Such a way
can help us to deduce the result and to compare with Ref. [20].
We have plotted quantum coherence of ρ123, ρ13, and ρ12

versus g at different QRG steps in Fig. 2 . As seen from
Fig. 2, the plots of quantum coherence will become more
pronounced atgc = 1 (γ = 0) as the number of QRG increases.
The gc = 1 (γ = 0) is the critical point and the quantum
coherence shows nonanalytic behavior in this point. In the
thermodynamic limit, the QPT in the XY model separates
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FIG. 2. Quantum coherence of ρ123, ρ13, and ρ12 as a function of g

at different QRG iteration steps. Black solid line means 0th QRG step,
red dashed line means 1st QRG step, green dotted line means 3rd QRG
step, and blue dot-dashed line means 5th QRG step. The meaning of
the term “step” is discussed in the appendix. All the parameters are
dimensionless.

two different phases, the Ising-like phase where the quantum
coherence is 3, 1, and 1, and the spin-fluid phase where the
quantum coherence is 1.9142, 0.5, and 0.7071, respectively. As
opposed to entanglement, for 0 � g < 1 and g > 1 quantum
coherence does not fall to 0 but approaches a stable value.

B. Nonanalytic behavior and scaling behavior

We have shown how to scale a large size system into a three-
block state by the QRG procedure. Therefore, the coherence
in the three-block state is the whole coherence in the finite-
dimensional system. Every part contains the N/3 spin. Similar
to entanglement and quantum correlation, the block coherence
also can catch the critical point. From Refs. [20,22–25] we
know that the correlation length will diverge at the critical
point. The entanglement or quantum correlation shows scaling
behavior at the critical point. This brings up the question of
whether the quantum coherence will show the scaling property.

In Fig. 3, we plot the first derivative of the quantum
coherence |dQC/dg|max as a function of g. The derivative of
three kinds of quantum coherence diverges as QRG increases,
which indicates that the second-order QPT happened at this
point. The scaling behavior can be found in the next figure.

The scaling behavior of the logarithm of |dQC/dg|max

versus the logarithm of system size ln(N ) can be found in Fig. 4.
The quantum coherences of ρ123, ρ13, and ρ12 all manifest
scaling behavior near the quantum phase transition point. The
finite-size scaling law is |dQC/dg|max ∼ N0.999. The critical
exponents are associated with the correlation length exponent
ν. At the critical point, the correlation length exponent ν

reflects the behavior of correlation length ξ by ξ ∼ (g − gc)−ν .
For the nth QRG iteration the correlation length changes to
ξn ∼ (gn − gc)−ν , which causes an expression | dgn

dg
|gc

∼ N1/ν

in terms of ν and the number of sites in each block [21]. It is
exactly the reciprocal of the correlation length exponent, i.e.,

FIG. 3. The first derivative of the quantum coherence of ρ123, ρ13,
and ρ12 as a function of g at different QRG iteration steps. Black solid
line means 0th QRG step, red dashed line means 1st QRG step, green
dotted line means 3rd QRG step, and blue dot-dashed line means 5th
QRG step. All the parameters are dimensionless.

θ = 1/ν[21]. Figure 4 displays θ ≈ 0.999, which is consistent
with the exact result θ ≈ 1.

Apparently, the three critical exponents are identical. These
results demonstrate that the critical exponent of ρ123 can be
gotten through states ρ13 and ρ12 in the thermodynamic limit.
On one hand, coarse graining in the renormalization group is
beneficial to us; on the other hand, it can assist us in solving
many complicated problems if such conservation relation
exist. We may get the results of the whole system through
investigating its reduced density matrix and then reduce the
computational complexity and increase convenience.

V. EVOLUTION OF QUANTUM COHERENCE

Dynamics depicts how a quantum state evolves over time.
From the above Hamiltonian, the eigenvalues and eigenstates
of the model are derived and thus, the density matrix of

2 4 6 8 10 12 14

ln(N)

0

2

4

6

8

10

12

ln
|d

Q
C

/d
g|

m
ax

QC
123

QC
13

QC
12

|dQC
12

/dg|
max

~N0.999

|dQC
123

/dg|
max

~N0.999

|dQC
13

/dg|
max

~N0.999

FIG. 4. Logarithm of the absolute value of the maximum
ln |dQC123/dg|max, ln |dQC13/dg|max, and ln |dQC12/dg|max vs the
logarithm of the chain size ln(N ).
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this system ρ = ∑
i exp(−Ei)|ψi〉〈ψi | is obtained. Under the

Schrödinger picture, the evolution is described by unitary
operator U (t) = e−iH t . If we choose ρ0 = ∑

i pi |ψ0〉〈ψ0| as
the initial state, then the final state is

ρt =
∑

i

piU (t)|ψ0〉〈ψ0|U †(t) = U (t)ρ0U
†(t). (18)

The expression U (t) in this model is defined as

U (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1

2k2 0 0 U2(t) 0 U6(t) U2(t) 0

0 U10(t) U3(t) 0 U8(t) 0 0 U1(t)

0 U3(t) η2

2k2 0 U3(t) 0 0 U5(t)

U2(t) 0 0 U9(t) 0 U4(t) U7(t) 0

0 U8(t) U3(t) 0 U10(t) 0 0 U1(t)

U6(t) 0 0 U4(t) 0 η3

2k2 U4(t) 0

U2(t) 0 0 U7(t) 0 U4(t) U9(t) 0

0 U1(t) U5(t) 0 U1(t) 0 0 η4

2k2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where η1 = 2U12(t) + γ 2(U14(t) + U13(t)),η2 = 2U11(t)γ 2

+ U17(t) + U16(t)), η3 = 2U12(t) + U14(t) + U13(t), η4 =
2U11(t) + γ 2(U17(t) + U16(t)), U1(t) =

√
2γU17(t)−√

2γU16(t)
4k

,

U2(t) =
√

2γU14(t)−√
2γU13(t)

4k
, U3(t) =

√
2U17(t)−√

2U16(t)
4k

,U4(t) =√
2U14(t)−√

2U13(t)
4k

, U5(t) = −2γU11(t)+γU17(t)+γU16(t)
2k2 , U6(t) =

−2γU12(t)+γU14(t)+γU13(t)
2k2 , U7(t) = −U15(t) + U14(t)+U13(t)

4 ,

U8(t) = −U18(t) + U17(t)+U16(t)
4 ,U9(t) = U15(t) + U14(t)+U13(t)

4 ,

U10(t) = U18(t)+U17(t)+U16(t)
4 ,U11(t) = e−d4t i ,U12(t) = e−d2t i ,

U13(t) = e−d7t i , U14(t) = e−d5t i , U15(t) = e−d3t i/2, U16(t) =
e−d8t i ,U17(t) = e−d6t i ,U18(t) = e−d1t i/2.

(1) We first take ψ0 = |000〉 as the initial state; the density
matrix reads

ρ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Under the unitary time evolution operator, the density
matrix of the system becomes

ρt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ 2
6 0 0 ξ1 0 ξ4 ξ1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−ξ1 0 0 ξ3 0 −ξ2 ξ3 0
0 0 0 0 0 0 0 0
ξ4 0 0 ξ2 0 ζ ξ2 0

−ξ1 0 0 ξ3 0 −ξ2 ξ3 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

where ξ1 =
√

2 sin( ξ5
2 )(g−1)2i

2k(g+1) ,ξ2 =
√

2(sin(ξ5)−2 sin( ξ5
2 ))(g−1)2i

4k3(g+1)2 ,ξ3 =
sin(ξ5/2)2(g−1)2

ξ8
, ξ4 = e−ξ9/2ξ 2

7 (g−1)ξ6

2k2(g+1) , ξ5 = √
2Jkt,ξ6 = 1

k2 +
e−ξ9/2(g−1)2

ξ8
+ eξ9/2(g−1)2

ξ8
,ξ7 = eξ9/2 − 1,ξ8 = 2k2(g + 1)2,ξ9 =√

2Jkti,ζ = e−ξ9 ξ 4
7 (g−1)2

4k4(g+1)2 .

The analytic expression of the quantum coherence of
Eq. (21) is

QCl1
(ρt ) = 4|ξ1| + 4|ξ2| + 2|ξ3| + 2|ξ4|. (22)

Figure 5 displays the evolution of quantum coherence under
different QRG steps. We notice that the quantum coherence
oscillates over time. It is clear that the fluctuations have a
period T that one can understand from Eq. (22). As iterations of
QRG increase, the oscillation of the quantum coherence versus
the time will enhance. The maximum value for each curve
increases gradually, and finally will keep stable as the QRG
steps become larger than 5. Figure 5 also shows that the period
T decreases as the size of the system increases. Moreover, the
conservation property of every quantum coherence still exists
in this case.

1

2

3

Q
C

(t
) 12

3

0.5

1

Q
C

(t
) 13

0 5 10 15 20 25 30
t

0

0.5

1

Q
C

(t
) 12

FIG. 5. Quantum coherence of the XY model as a function of t

when J=1, g= 0.9, and ρ0 = |000〉〈000|. The black solid line means
0th QRG step, red dashed line means 1st QRG step, green dotted line
means 2nd QRG step, blue dot-dashed line means 3rd QRG step, and
purplish red cross markers mean 4th QRG step. All the parameters
are dimensionless.
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1.8
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2.5
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3

0.41

0.6

0.8

1

Q
C

(t
) 13

0 5 10 15 20t
0.6

0.8

1

Q
C

(t
) 12

FIG. 6. Quantum coherence of the XY model as a function of
t when J=1, g= 0.9, and ψ0 = (|100〉 + |010〉 + |001〉)/√3. The
black solid line means 0th QRG step, red dashed line means 1st QRG
step, green dotted line means 2nd QRG step, blue dot-dashed line
means 3rd QRG step, and purplish red cross markers mean 4th QRG
step. All the parameters are dimensionless.

(2) We next consider the three-qubit W state ψ0 = (|100〉 +
|010〉 + |001〉)/√3 as the initial state. The analytical results
of quantum coherence are not given here for the tedious
expressions. Figure 6 shows the numerical simulation results.
We can see that the quantum coherence still demonstrates the
periodic oscillation property with time. The performance of
quantum coherence is not the same as the ψ0 = |000〉 case.
The difference is that the maximum value will be attained only
after the 2nd QRG step. The periodic oscillations of QC(t)123,
QC(t)13, and QC(t)12 are identical for every QRG iteration
steps. This property again proves that the reduced density
matrix may represent the whole system.

VI. SUMMARY

To sum up, we have studied the low-energy-state dynamic of
quantum coherence in the anisotropic XY spin system by using
QRG theory. The critical property of the model is obtained
through renormalization of the spin chain. We have derived
the analytical expressions of quantum coherence for the block
state and its reduced state. The divergent characteristic of the
first derivative of quantum coherence was accompanied by
the scaling behavior near the quantum phase transition point.
We also find that the block state and the reduced state both
display similar scaling properties with identical coherence
exponents 0.999. This implies that we may get the composite
system results by its reduced density matrix. Furthermore, by

considering the dynamical factor, we study the evolution of
the XY model in low-energy states. The dynamical factor of
the model could reveal the fingerprint of the quantum critical
property for an infinite-size system. The analysis of quantum
coherence in the XY systems may not only promote insight
into its critical behavior but may also be applied to quantum
information processing.
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APPENDIX

We have derived the renormalized equation γ ′ = γ 3+3γ

3γ 2+1 .

This equation can be solved by iteration, such as if we begin
from γ0, and then get γ1 = γ ′

0, after that we get γ2 = γ ′
1 from

γ1, etc. The sequence of {γ0,γ1,γ2,γ3, . . . γn} produces the
flow of the renormalization group. This sequence represents
a continuous manipulation of spin on an infinite chain and
converts it into a new effective spin [26]. The scale of the
system is rescaled with factor b = 3 in each operation. In this
way, the coherence of the system also changed with different
γ . For example, the coherence is

QCl1
(ρ13) = 1

2
+ |γ |

γ 2 + 1
,

QCl1
(ρ12) = Cl1 (ρ23) =

√
2

2
√

γ 2 + 1
+

√
2|γ |

2
√

γ 2 + 1
; (A1)

in 0th renormalization, the coherence is

QCl1
(ρ13) = 1

2
+ |γ 3 + 3γ |(3γ 2 + 1)

(γ 3 + 3γ )2 + (3γ 2 + 1)2
,

QCl1
(ρ12) = Cl1 (ρ23) =

√
2(3γ 2 + 1)

2
√

(γ 3 + 3γ )2 + (3γ 2 + 1)2

×
(

1 +
∣∣∣∣γ

3 + 3γ

3γ 2 + 1

∣∣∣∣
)

(A2)

in 1st renormalization, and so on.
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