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Toric codes and color codes are two important classes of topological codes. Kubica et al. [A. Kubica et al.,
New J. Phys. 17, 083026 (2015)] showed that any D-dimensional color code can be mapped to a finite number of
toric codes in D dimensions. We propose an alternate map of three-dimensional (3D) color codes to 3D toric codes
with a view to decoding 3D color codes. Our approach builds on Delfosse’s result [N. Delfosse, Phys. Rev. A 89,
012317 (2014)] for 2D color codes and exploits the topological properties of these codes. Our result reduces the
decoding of 3D color codes to that of 3D toric codes. Bit-flip errors are decoded by projecting on one set of 3D
toric codes, while phase-flip errors are decoded by projecting onto another set of 3D toric codes. We use these
projections to study the performance of a class of 3D color codes called stacked codes.
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I. INTRODUCTION

Three-dimensional (3D) color codes [1], like toric codes
[2,3], are topological quantum codes defined on 3D lattices.
One important advantage of the 3D color codes is that they
can have a transversal non-Clifford gate [1], unlike the toric
codes. To achieve universal fault-tolerant quantum computa-
tion with toric codes, we need to use magic-state distillation,
which can lead to large overheads. Avoiding such techniques
through 3D color codes along with code switching opens
up the possibility of reduced overheads. However, it must
be noted that the stabilizers of the 3D color codes are of
comparatively larger weight than toric codes, making them
somewhat impractical. Nonetheless, it is hoped, in the final
analysis, that the benefits due to reduced overheads could offset
these limitations. Further, recent work in asymmetric error
models [4–6] indicates that asymmetric codes could be more
useful for specific channels. All of these reasons motivate us to
study the 3D color codes and understand their structure more
thoroughly.

Although somewhat different at first sight, toric codes and
color codes are very closely related. Assuming translation and
scale invariance, Yoshida showed that many classes of codes
can be classified using the geometry of logical operators [7].
These results imply that 2D color codes are equivalent to 2D
toric codes. Independently, Bombin et al. also showed that local
translation-invariant stabilizer codes, including color codes,
can be mapped to a finite number of copies of the toric code
on the square lattice [8].

Approaching these relations between toric codes and color
codes from a different vantage point, Delfosse proposed yet
another mapping between color codes and toric codes [9].
Motivated by the problem of efficiently decoding 2D color
codes, and exploiting the CSS structure of the color codes, he
showed that 2D color codes can be projected onto copies of
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toric codes. Unlike the previous results [7,8], this does not
explicitly address the problem of local equivalence.

It is natural to study whether similar results hold for codes
in higher spatial dimensions. The central result of our paper is a
mapping from 3D color codes to 3D toric codes. By exploiting
the topological properties of color codes, we establish a
mapping between 3D color codes and 3D toric codes. This
mapping generalizes the work of Delfosse. The results in [9]
are proved using the machinery of chain complexes derived
from hypergraphs. We take a somewhat simpler approach
and do not explicitly make use of chain complexes based on
hypergraphs.

The closest work related to ours in 3D is that of Kubica
et al. [10], who showed, among other things, that the 3D color
code can be mapped to three copies of 3D toric codes. There
are some important differences between our work and that of
[10]. Our results give a different mapping from the color code
to the toric codes. They show that 3D color codes are locally
equivalent to 3D toric codes. Our map, on the other hand, does
not establish a unitary equivalence. We project the X errors and
Z errors onto different sets of toric codes, unlike [10] which
employs just one set of toric codes. These projections are local
in that local errors on the color code are projected to local
errors on the toric codes. Furthermore, our map also preserves
the CSS structure of the color code.

Our projection maps, like [9], are also motivated using the
problem of decoding 3D color codes. A consequence of our
results is that decoding 3D color codes can be reduced to the
decoding of 3D toric codes. We apply our results to study the
performance of stacked (color) codes. These are a different
class of 3D color codes [11]. Here we study the performance
of these codes. These codes are studied because they are
amenable to a two-dimensional architecture for fault-tolerant
quantum computation. Other codes similar to stacked codes
were proposed by Jones et al. [12] and Bravyi et al. [13]. We
obtained a threshold of 13.3% for bit-flip errors, but we did not
observe a threshold for phase-flip errors in stacked codes. Our
results have immediate application in the decoding of gauge
color codes as well.
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In this context, we note that a gauge color code in 3D was
studied in [14]. One of the implications of this study is that
the same decoder used therein can also be used to decode the
phase-flip errors of the 3D color code [15]. For the bit-flip
errors of the 3D color code, the decoder proposed in [14] could
be used, but it will be suboptimal as the stabilizers of gauge
color code are a subset of the stabilizers of the underlying 3D
color code. The stacked codes that we study are different from
the codes studied in [14].

The paper is structured as follows. In Sec. II, we give a brief
review of 3D toric codes and color codes. In the next section, we
present the central result of the paper showing how to project a
3D color code onto a collection of 3D toric codes and propose
a decoding scheme for color codes. We then conclude with a
brief discussion and outlook for further research. We assume
that the reader is familiar with stabilizer codes [16,17].

II. PRELIMINARIES

A. 3D toric codes

We briefly review 3D topological codes. A 3D toric code
is defined over a cell complex (denoted �) in 3D. We assume
that qubits are placed on the edges of the complex. For each
vertex v and face f , we define stabilizer generators as follows:

Av =
∏

e∈ι(v)

Xe and Bf =
∏

e∈∂(f )

Ze, (1)

where ι(v) is the set of edges incident on v and ∂(f ) is the
set of edges that constitute the boundary of f . When there are
periodic boundary conditions, the stabilizer generators Av and
Bf are constrained as follows:∏

v

Av = I and
∏

f ∈∂(ν)

Bf = I, (2)

where ν is any 3-cell and ∂(ν) is the collection of faces that form
the boundary of ν. If � has boundaries, then the constraints
have to be modified accordingly. Additional constraints could
be present depending on the cell complex.

Sometimes it is useful to define the (3D) toric codes using
the dual complex. We denote the dual of � by �∗. Qubits
are placed on the faces of the dual complex. The stabilizer
generators for a 3-cell ν and an edge e in the dual complex are
defined as

Aν =
∏

f ∈∂(ν)

Xf and Be =
∏

f :e∈∂(f )

Zf , (3)

where ∂(ν) is the boundary of ν and ∂(f ) the boundary of f .
Phase-flip errors on the toric code are detected by the

operators Av . Phase-flip errors can be visualized as paths or
strings on the lattice. The nonzero syndromes always occur in
pairs. The bit-flip errors, on the other hand, are detected by the
operators Be. They are better visualized in the dual complex.
Since qubits are associated to faces in the dual complex, an X

error can be viewed as a surface obtained by the union of faces
(with errors) and the (nonzero) syndrome as the boundary of
the surface. Also note that since the boundary of each face
is a cycle of trivial homology, the syndrome of X errors is a
collection of cycles of trivial homology in �∗.

B. 3D color codes

Consider a complex with 4-valent vertices and 3-cells that
are 4-colorable. Such colored complexes are called 3-colexes
[1]. A 3D color code is a topological stabilizer code constructed
from a 3-colex. The stabilizer generators of the color code are
given as

BX
ν =

∏
v∈ν

Xv and BZ
f =

∏
v∈f

Zv, (4)

where ν is a 3-cell andf a face. It turns out that for each 3-cell ν,
we can define a (dependent) Z stabilizer as BZ

ν = ∏
v∈ν Zv . A

3-colex complex defines a stabilizer code with the parameters
[[v,3h1]], where h1 is the first Betti number of the complex
[1,18].

We can also define the color code in terms of the dual com-
plex. Now qubits correspond to 3-cells, X-stabilizer generators
to vertices, and Z-stabilizer generators to edges of �∗,

BX
v =

∏
ν:v∈ν

Xν and BZ
e =

∏
ν:e∈ν

Zν. (5)

We quickly review some relevant colorability properties of
3-colexes. The edges of such a 3-colex can also be 4-colored:
the outgoing edges of every 3-cell can be colored with the
same color as the 3-cell. We can color the faces based on
the colors of the 3-cells. A face is adjacent to exactly two
3-cells. A face adjacent to 3-cells colored c and c′ is colored
cc′. This means that the 3-colex is 6-face-colorable. In view of
the colorability of the 3-colex, we refer to a c-colored 3-cell as
c-cell without explicitly mentioning that it is a 3-cell. Likewise,
we can unambiguously refer to the cc′-colored faces as cc′-cells
or cc′-faces, c-colored edges as c-edges, and c-colored vertices
as c-vertices. We denote the i-dimensional cells of a complex
� as Ci(�) and the i-dimensional cells of color c as Cc

i (�).

III. PROJECTING A 3D COLOR CODE ONTO
3D TORIC CODES

In this section, we state and prove the central result of the
paper, namely, 3D color codes can be projected onto a finite
collection of 3D toric codes. A more precise statement will
be given later. First, we give an intuitive explanation and then
proceed to prove it rigorously.

A. Intuitive explanation through the decoding problem

The main intuition behind the projection of color codes onto
toric codes is that any such mapping should preserve the error-
correcting capabilities of the color code and enable decoding.
From the point of view of a decoder, the information available
to it is simply the syndrome information. In a topological
code, this syndrome information can be represented by the
cell complex. Our main goal is to preserve the syndrome
information on the 3-colex while translating it into a different
cell complex.

In a 3-colex, qubits reside on the vertices, while the checks
correspond to faces and volumes. If we look at the dual com-
plex, the qubits correspond to 3-cells which are tetrahedrons;
the X-type checks to vertices and the Z-type checks to edges.
Due to this correspondence, we often refer to the boundary of a
qubit or a collection of qubits wherein we mean the boundary
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FIG. 1. We can recover the boundary of a tetrahedron from the
edges by reconstructing the faces and then combining the faces.
From each projection πc, we recover a face. The faces from all the
projections give the boundary of the tetrahedron.

of the 3-cells which correspond to those qubits in the dual
complex.

We address the bit-flip and phase-flip errors separately.
Suppose that an X error occurs. Since the qubits correspond
to volumes, error correction is equivalent to (i) identifying the
boundary which encloses the qubits in error and (ii) specifying
whether the erroneous qubits lie inside or outside the boundary.
The second step is necessary because the qubits with errors
have the same boundary as the qubits without errors. In the
case of bit-flip errors, the syndrome information is present on
the edges; this is clearly not the boundary of a volume. The
question then arises of how do we recover the boundary of the
erroneous qubits when we appear to be in possession of some
partial information about the boundary.

To see how we might solve this problem, let us assume
that there is just one bit-flip error; see Fig. 1 for illustration.
This causes all six edges of the tetrahedron to carry nonzero
syndromes. While these edges are contained in the boundary
of the tetrahedron, it is not the surface we are looking for. One
way to recover the boundary of the tetrahedron is as follows.
Imagine we deleted one vertex of the tetrahedron; then we
would also be deleting three of the four faces of the tetrahedron
and we would end with just one face. All of the edges of
this remaining face carry nonzero syndromes. These edges are
precisely the boundary of that face. Similarly, by deleting other
vertices of the tetrahedron (separately), we would be able to
recover all the faces of the tetrahedron. Since the union of
these faces constitutes the boundary of the erroneous qubit,
we are able to recover the boundary of the error. However,
error correction is not complete. Both the single qubit in error
and the collection of the qubits without error have the same
boundary. To complete error correction, we also need to choose
which of these sets of qubits are in error. We can decide on
the volume which contains a fewer number of qubits. In the
present case, we would choose the qubit in error completing the
error correction. Let us identify the key ideas in the previous
procedure:

(i) We construct a collection of complexes obtained by
deleting c-vertices of tetrahedrons.

(ii) Then, in each complex, from the edges carrying nonzero
syndrome, we recover part of the boundary of the erroneous
qubits.

FIG. 2. We can recover the boundary of a tetrahedron from
the vertices by first recovering the edges in the boundary of the
tetrahedron. From each projection πcc′ , we recover an edge. With the
edges recovered, we can proceed, as illustrated in Fig. 1, to recover
the boundary of the tetrahedron.

(iii) Then we combine the boundary pieces found in (ii) to
recover the boundary of the erroneous qubits.

(iv) Finally, we decide whether the interior or the exterior
set of qubits enclosed by the boundary are in error.

Step (ii) is key to making the connection with the 3D toric
codes. This step is identical to the correction of the X-type
errors in 3D toric codes.

A similar idea will lead us to the procedure for decoding
the phase-flip errors; see Fig. 2. In this case, the syndromes
that detect the phase-flip errors correspond to the vertices in
the dual complex. Suppose now that there is a single phase-
flip error. The vertices of the erroneous tetrahedron will carry
the syndrome information about the error. Now we seem to
have even less information about the boundary of the erroneous
tetrahedron than before. However, we can recover the boundary
by the following procedure. Delete any pair of vertices of the
tetrahedron. We will be left with one edge and two vertices. We
can first identify the edge as a piece of the boundary that we are
looking for. Deleting all six possible pairs of vertices, we are
able to recover the six edges which are in the boundary of the
tetrahedron. Now the problem is identical to the one we solved
for correcting bit-flip errors. We summarize the key steps:

(i) We construct new complexes from the original complex
by deleting pairs of vertices of each tetrahedron.

(ii) Then we recover the edges which are in the boundary
of the erroneous qubits.

(iii) At this point, the problem is the same as the problem of
decoding bit-flip errors, which can be solved using the previous
procedure.

In correcting the Z-type errors, the connection to the toric
codes happens in (ii). This is precisely the process used to
decode Z-type errors in 3D toric codes.

The procedures we outline are heuristic and somewhat
imprecise; they need a rigorous justification as to correctness
and efficiency. We also need to consider the cases where the
boundary recovery procedure can fail. We now turn to address
these issues in the next section.
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B. 3-colexes, duals, and minors

As we saw in the previous section, our approach to decoding
color codes leads us to duals and minors of complexes. So we
begin by studying the properties of the 3-colexes and their
minors. First we state some properties of the dual of a 3-colex.
Since they are immediate from the properties of the 3-colex,
we omit the proof. For the rest of the paper, we assume that �

is a 3-colex.
Lemma 1. Let � be a 3-colex. Then the dual complex �∗ is

4-vertex-colorable, 6-edge-colorable, 4-face-colorable.
Every qubit in the 3-colex is identified with a tetravalent ver-

tex incident on four 3-cells which are 4-colorable. Therefore,
in the dual complex, every qubit corresponds to a tetrahedron
whose vertices are of different colors. Similarly, the four faces
of each tetrahedron are also of different colors. (Follows from
Lemma 1.) Let us denote the minor complex of �∗, i.e., the
complex obtained by deleting all the vertices of color c, by
�∗\c. We denote this operation as πc so that

πc(�∗) = �∗\c. (6)

The resulting structure �∗\c is a well-defined complex. Clearly,
its vertices and edges are a subset of the parent complex �∗.
The structure of the faces and 3-cells is not so obvious. A face
in �∗ that is incident on a c-vertex will not survive in �∗\c.
Therefore, only the c-faces of �∗ which are not incident on a
c-vertex will be faces of �∗\c. The 3-cells of �∗\c are formed
by merging all the tetrahedrons that are incident on a c-vertex.

We can now extend the action of πc to the individual cells
of �∗; there is some freedom on how to extend as long as
we retain the information needed for error correction. We are
primarily interested in extending πc so that it captures the
information about (i) the qubits, (ii) the errors on them, and
(iii) the associated syndrome.

A vertex that is not colored c will be mapped to a vertex in
�∗\c. An edge that is not incident on a c-vertex will be mapped
to an edge in �∗\c. Edges that are incident on a c-vertex can be
thought of as being mapped to the empty set. A c-face in �∗
will continue to be a face in �∗\c as it is not incident on any
c-vertices. A 3-cell has exactly 4 faces and, on the deletion of
a c-vertex, just the c-face in its boundary will be left in �∗\c.
A 3-cell in �∗ corresponds to a qubit, so we can interpret the
c-face in its boundary as the qubit in �∗\c. Since every face
is shared between two 3-cells, there exist two distinct cells
ν1 and ν2 such that πc(ν1) = πc(ν2). The following equations
summarize the preceding discussion:

πc(v) = v if v ∈ C0(�∗) \ Cc
0(�∗), (7a)

πc(e) = e if e ∈ C1(�∗) \ Ccc′
1 (�∗), (7b)

πc(f ) = f if f ∈ Cc
2(�∗), (7c)

πc(ν) = f c
�ν = ∂ν ∩ Cc

2(�∗), ν ∈ C3(�∗), (7d)

where f c
�ν is the unique c-face in ν. From these relations, we

can write the boundary of a 3-cell as

∂(ν) =
∑

c

πc(ν) =
∑

c

f c
�ν, (8)

where the summation is carried addition modulo 2. The
boundary of a collection of 3-cells can be extended linearly.

Some relevant properties of the minor complexes are con-
sidered next. They concern both the structure and coloring
properties of the minor complexes.

Lemma 2. Let � be a 3-colex and c ∈ {r,b,g,y}. Then the
minor complex �∗\c has only c-colored faces and dd ′-edges,
where d,d ′ ∈ {r,b,g,y} \ {c}.

Proof. Suppose that we delete the vertices colored c in �∗\c;
this leads to the deletion of the edges and faces that are incident
on these vertices. On any c-colored vertex, only the c-colored
faces are not incident. Any face colored with c′ ∈ {r,b,g,y} \ c

is incident on some c-vertex. This leads to deletion of all but one
face of each tetrahedron incident on any c-colored vertex. The
remaining face is colored c. Thus, �∗\c contains only c-colored
faces. Since only d,d ′-vertices are present in �∗\c, the edges
connecting them are colored dd ′. �

Lemma 3. The 3-cells of �∗\c can be indexed by the c-
vertices of �∗ and the boundary of a 3-cell νv ∈ C3(�∗\c) is
the sum of c-faces of tetrahedrons incident on v.

Proof. The deletion of a c-vertex causes all the tetrahedrons
incident on it to be combined into one single 3-cell in �∗\c.
Since the four vertices of each tetrahedron are different colors,
two tetrahedrons can be merged only if they are incident on
the same c-vertex. Thus two distinct c-vertices lead to distinct
3-cells. Hence, the 3-cells of �∗\c can be indexed by the c-
vertices of �∗. The deletion of the c-vertex v creates a 3-cell
and leaves behind a c-face for every tetrahedron incident on v.
These c-faces enclose the 3-cell formed by merging the qubits
incident on v; therefore, they must form its boundary. Denote
by νv such a 3-cell. Then, its boundary ∂(νv) is given by

∂(νv) =
∑
ν:v∈ν

∂(ν)
(a)=

∑
ν:v∈ν

f c
�ν +

∑
ν:v∈ν

∑
i �=c

f i
�ν (9)

(b)=
∑
ν:v∈ν

f c
�ν, (10)

which is precisely the sum of c-faces of tetrahedrons incident
on v. Note that (a) follows from Eq. (8), while (b) is due to the
fact that every c′-face incident on v is shared between exactly
two qubits incident on v causing the second summation to
vanish. �

Let �∗\cc′
denote the minor of �∗ obtained by deleting all

vertices colored c and c′. We assume that c �= c′ for the rest of
the paper. Denote this operation as πcc′ . Then we have

πcc′ (�∗) = �∗\cc′
. (11)

Note that the order of deletion of vertices does not matter, and
therefore we have

πcc′ (�∗) = πc′c(�∗). (12)

As in the case of �∗\c, the vertices and edges of �∗\cc′
are

a subset of �∗\c and can be easily identified. The faces and
3-cells are not so obvious. The faces of �∗\cc′

are not faces in
the parent complexes �∗ or �∗\c. We need to define the faces
and 3-cells of �∗\cc′

. We make one small observation before
defining them.

Lemma 4. Let � be a 3-colex and c,c′ ∈ {r,b,g,y}. Then,
�∗\cc′

has only dd ′-colored edges, where {d,d ′} = {r,b,g,y} \
{c,c′}.

Proof. Suppose that we delete all the vertices colored c,c′ in
�∗; then, all edges incident on c-vertices and c′-vertices will be
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FIG. 3. Consider the by-edge (in bold) and the tetrahedra (qubits)
incident on it. Since only r-, g-vertices (i.e., red and green) will
survive in �∗\by , each of these surviving vertices will have exactly
two rg-edges (of the tetrahedra incident on the by-edge) incident on
them. Therefore, these rg-edges form a cycle, as shown on the right.
These edges form the boundary of a face in �∗\by . The faces of other
complexes �∗\cc′

are similarly formed.

deleted. Thus only edges between d- and d ′-colored vertices
will remain. These edges are colored dd ′. �

Let e be a cc′-edge e in �∗ and Ve be the qubits containing
e,

Ve = {ν | e ∈ ν}. (13)

Let edd ′
�ν be the unique dd ′-edge in ν. For each of the qubits in

Ve, exactly one dd ′-edge will survive in �∗\cc′
. No two qubits

inVe share the same dd ′-edge. Further, the surviving dd ′-edges
will form a cycle in �∗\cc′

; see Fig. 3 for illustration. This can
be seen as follows. Let Vcc′ (Ve) denote the vertices of Ve that
remain in �∗\cc′

. Every such vertex v is incident on exactly
two qubits of Ve. Therefore, two dd ′-edges are incident on v.
Hence, the dd ′-edges of Ve form a cycle. This cycle is of trivial
homology since it is on the boundary of a 3-cell (formed by
the qubits in Ve). We can associate a face to this cycle such that
it lies entirely in the 3-cell. In other words, to every cc′-edge
in �∗, we can associate a face in �∗\cc′

. The boundary of this
face is the collection of the dd ′-edges belonging to the qubits
incident on e, alternatively,

∂fe =
∑
ν∈Ve

edd ′
�ν . (14)

The qubits incident on distinct cc′-edges e1 and e2 will be
disjoint intersecting in either edges or vertices, so the faces
associated to them, i.e., fe1 and fe2 , will also be disjoint and
intersect in edges or vertices. Therefore, the faces are well
defined. The preceding discussion proves the following result.

Lemma 5. Let � be a 3-colex and c,c′ ∈ {r,b,g,y}. Then
the faces of the minor complex �∗\cc′

are in one-to-one
correspondence with cc′-edges of �∗.

With faces of �∗\cc′
defined, the 3-cells of �∗\cc′

can be
identified. Let v be a c- or c′-vertex. Consider the cc′ edges
incident on v. Each of these edges corresponds to a face in
�∗\cc′

, by Lemma 5. We define the volume enclosed by these
faces, such that it contains v, to be a 3-cell of �∗\cc′

. Since
every such v leads to a 3-cell in �∗\cc′

, we have the following:
Lemma 6. Let � be a 3-colex and c,c′ ∈ {r,b,g,y}. Then,

3-cells of the minor complex �∗\cc′
are in one-to-one corre-

spondence with vertices in Cc
0(�∗) ∪ Cc′

0 (�∗).

We can also extend πcc′ to the cells of �∗, as we did for πc.
Then we can write

πcc′ (v) = v if v ∈ C0(�∗) \ [
Cc

0(�∗) ∪ Cc′
0 (�∗)

]
, (15a)

πcc′ (e) = e if e ∈ Cdd ′
1 (�∗); d,d ′ �∈ {c,c′}, (15b)

πcc′ (ν) = edd ′
�ν = ∂[πc(ν)] ∩ Cdd ′

1 (�∗); ν ∈ C3(�∗), (15c)

where edd ′
∈ν is the unique dd ′-edge in ν. In these equations and

henceforth, we assume d,d ′ ∈ {r,b,g,y} \ {c,c′} and d �= d ′.
None of the faces of �∗\c or �∗ will survive in �∗\cc′

. Since
the faces of �∗ do not carry any information about the qubits
and the Z error syndromes, we are not particularly interested
in them; we have some freedom as to how to define πcc′ for
faces in �∗\c.

We define the edge boundary of a 3-cell in �∗ as

δν =
∑
cc′

πcc′ (ν) =
∑
cc′

edd ′
�ν . (16)

We call it the edge boundary because πcc′ (ν) is an edge; see
Eq. (15c). We extend δ to multiple 3-cells linearly.

A simple example of 3-colex and related complexes are
shown in Fig. 4. We can relate the various complexes and the
objects of interest for us as follows:

� �∗ �∗\c �∗\cc′

Qubit vertex tetrahedron triangle edge
Z-check face edge edge
X-check 3-cell vertex vertex vertex

The preceding lemmas lead to the following corollary.
Corollary 1. Let � be a 3-colex with v vertices, e = 2v

edges, fcc′ cc′-faces, and νc c-cells. Let the total number
of faces be f = ∑

cc′ fcc′ and 3-cells be ν = ∑
c νc. The

following table summarizes the number of cells in �∗\c and
�∗\cc′

, where c,c′,d,d ′ ∈ {r,b,g,y} are distinct:

� �∗ �∗\c �∗\cc′

3-cells ν v νc νc + νc′

Faces f 2v v/2 fcc′

Edges 2v f fdc′ + fc′d ′ + fdd ′ fdd ′

Vertices v ν νc′ + νd + νd ′ νd + νd ′

Proof. The i-cells in dual complex �∗ are in one-to-one
correspondence with the (3 − i)-cells of �. Now suppose that
�∗ is modified so that all vertices colored i are deleted. Then all
3-cells incident on it will be merged to form a new 3-cell. Since
all the 3-cells in �∗ are incident on some i-vertex, they will be
part of some new 3-cell and �∗\c will contain ci 3-cells. On
deleting the i-vertices, exactly one face will remain from each
3-cell in �∗. Since each of these faces will be shared between
two 3-cells, there will be v/2-faces. The edges in �∗\i are those
that are incident on vertices other than i-vertices.
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FIG. 4. A 3-colex � and its dual �∗; i-cells of �∗ correspond to the (3 − i)-cells of �. The minor complexes �∗\r and �∗\ry are also shown.
(In �, we use smooth lines for green edges, dotted lines for red edges, dashed lines for blue edges, and thick lines for yellow edges.)

Similarly, in �∗\cc′
, only the d-vertices, d ′-vertices, and

dd ′-edges will survive. These are precisely νd + νd ′ -vertices
and fdd ′ -edges. The number of faces and 3-cells of �∗\cc′

is
immediate from Lemmas 5 and 6. �

Remark 1. The minor complexes defined here are the duals
of the shrunk complexes defined in [18]. For example, �∗\b is
exactly the dual of the b-shrunk complex and �∗\ry is the dual
of the ry-shrunk complex.

C. X-type errors on 3D color codes

Let us now see how to perform error correction on a color
code. It is helpful to see the (topological) structure of the errors
in the dual of the 3-colex. We analyze the bit-flip and phase-flip
errors separately. Suppose that we have X errors on some set
of qubits. In the dual colex, the erroneous qubits correspond
to a volume. Through πc, we can associate qubits to faces of
the minor complex �∗\c. Thus we can project errors from �∗
to �∗\c.

If a qubit ν has a bit-flip error, then we place an X error on
the image of ν in �∗\c. In other words,

πc(Xν) = Xπc(ν), (17)

where πc(Xν) gives an X error acting on the qubits in �∗\c.
A consequence of Eq. (17), together with linearity of πc, is

that for two adjacent qubits ν1 and ν2 sharing a c-colored face
f , we have πc(Xν1Xν2 ) = Xπc(ν1)Xπc(ν2) = I , where we used
the fact that πc(ν1) = πc(ν2) = f . In other words, a c-face
common to two qubits in error corresponds to an error-free
qubit in �∗\c.

The syndrome corresponding to bit-flip errors is associated
to edges of �∗. In �∗\c, not all edges are present. But if an
edge is present, we associate to that edge the same syndrome
as in �∗. Syndromes in the minor complex are essentially the
restriction of the syndromes in �∗. Let se be the syndrome on
edge e; then,

πc(se) = sπc(e) = se. (18)

This is consistent with Eq. (7b).
At this point, we have qubits living on the faces and

syndromes on the edges of �∗\c just as we would have in a 3D
toric code. But it needs to be shown that indeed we truly have
the structure of a 3D toric code and not merely the appearance
of it. This we shall take up next.

First let us consider the edge-type checks on �∗\c. Consider
an edge e in �∗\c. Then, e is also present in �∗. For each qubit
incident on e, there is a c-colored face incident on e. These
c-faces exhaust all the faces incident on e in �∗\c. Thus, in
the 3D toric code associated to �∗\c, every face incident on e

participates in that check on e as required for the edge-type
checks in the 3D toric code. Next we look at the projected
syndromes on the minor complex.

Theorem 1. Projection of X errors onto toric codes. Let s

be the syndrome for an X error E on the 3D color code defined
on a 3-colex � and πc(s) the restriction of s on �∗\c. Then the
error πc(E) in �∗\c produces the syndrome πc(s) in the toric
code associated to �∗\c.

Proof. We now will show that in �∗\c, the syndrome
produced by πc(E) is the same as πc(s). Consider any edge
in �∗\c; by definition, πc(se) = se, where se is the syndrome
on e with respect to �∗. Since � is 3-colex, an even number
of qubits are incident on e, say 2m. Then, se = ⊕2m

i=1qi where
qi = 1 if there is an X error on the ith qubit, and zero otherwise.
Each of these qubits (tetrahedrons) incident on e is projected
to a qubit in �∗\c. But note that two qubits which share a face
are mapped to the same qubit in �∗\c. Thus there are m qubits
(triangles) incident on e with respect to �∗\c. These (projected)
qubits are in error if and only if one of the parent qubits in �∗
is in error. Let rj = 1 if there is an error on the projected qubit,
and zero otherwise. Then, rj = q2j−1 ⊕ q2j , where 2j − 1 and
2j are the qubits which are projected onto the j th qubit in
�∗\c. The syndrome on e as computed in the 3D toric code is
⊕m

j=1rj = ⊕m
j=1(q2j−1 ⊕ q2j ) = se. Thus the projected error

πc(E) produces the same syndrome as the projected syndrome
πc(s).

Corollary 2. Let s be the syndrome for an X error on the
3D color code defined on a 3-colex � and πc(s) the restriction
of s on �∗\c. Then, πc(s) is a valid syndrome for (an X error
on) the toric code on �∗\c.

Proof. By Theorem 8, πc(s) is the same as the syndrome
produced by an X error on �∗\c. Therefore, it must be a valid
syndrome for an X error for the 3D toric code on �∗\c.

Lemma 7. Let v be a c-vertex in �∗ and νv be the 3-cell in
�∗\c obtained by merging all the qubits incident on v. Then the
X-type stabilizer BX

v of the color code on �∗ is mapped to an
X-type stabilizer generator of the toric code on �∗\c,

πc

(
BX

v

) = BX
νv

and πc′
(
BX

v

) = I for c′ �= c. (19)
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Proof. We have BX
v = ∏

ν:v∈ν Xν . Then,

πc

(
BX

v

) = πc

( ∏
ν:v∈ν

Xν

)
=

∏
ν:v∈ν

Xπc(ν) (20)

(a)=
∏

f ∈∂(νv )

Xf = BX
νv

, (21)

where (a) follows from Lemma 3. Thus, πc(BX
v ) is exactly the

X-type stabilizer generator defined on the 3-cell νv .
Now consider a c′-face incident on v. Such a face is in

the boundary of two qubits incident on v. This means that
for every qubit ν incident on v, there exists another qubit
ν ′ incident on v such that πc′ (Xν) = πc′ (Xν ′). Therefore,
πc′(BX

v ) = ∏
ν:v∈ν Xπc(ν) = I . �

Note that the previous lemma implies that for a c′-vertex,
πc(BX

v ) = I .
Corollary 3. Let S be an X-type stabilizer on the color code.

Then, πc(S) is an X-stabilizer on the toric code defined by
�∗\c. Conversely, for every X-stabilizer S on �∗\c, there exists
an X-stabilizer generator S on �∗ such that πc(S) = S and
πc′(S) = I .

Proof. The first statement is a consequence of Lemma 7
as {BX

v } generate all X-stabilizers of the color code. Further,
{πc(BX

v )} = {BX
νv

}, where v ∈ Cc
0(�∗). By Lemma 3, {BX

νv
}

generate the X-type stabilizers of the toric code on �∗\c. Thus
the converse also holds. �

Let the support of an error E be defined [19] as

supp(E) =
∑

i:Ei �=I

i, (22)

where i could be a 3-cell, face, or an edge, depending on where
the qubits are located. It follows that

supp(EE′) = supp(E) + supp(E′). (23)

We define the boundary of an error in �∗ to be the boundary
of the volume that corresponds to the collection of qubits on
which the error acts nontrivially. In other words,

∂E =
∑

ν:Eν �=I

∂ν = ∂[supp(E)]. (24)

We use the same notation ∂ for the boundary of cells as well
as operators. Note that ∂(EE′) = ∂E + ∂E′.

Lemma 8. X error boundary. Using the same notation as in
Theorem 1, the boundary of an error E in �∗ is

∂E =
∑

c

supp[πc(E)]. (25)

Proof. Let Eν denote the error on the 3-cell corresponding
to the νth qubit. Then we can write

∂E
(a)=

∑
ν:Eν �=I

∂ν
(b)=

∑
ν:Eν �=I

∑
c

πc(ν) (26)

=
∑

c

∑
ν:Eν �=I

πc(ν)
(c)=

∑
c

∑
ν:Eν �=I

supp[πc(Eν)] (27)

(d)=
∑

c

supp[πc(E)], (28)

Algorithm 1. Estimating (face) boundary of X-type error

Input: A 3-colex �, Syndrome of an X error E

Output: F, an estimate of ∂E where F ⊆ C2(�∗)
1: for each c ∈ {r,b,g,y} do
2: for each edge e in �∗\c do // syndrome projection
3: sπc(e) = se // se is syndrome on edge e

4: end for
5: Using the projected syndrome on �∗\c, estimate the error Fc

by any 3D toric code decoder for X errors
6: end for
7: Return F = ⋃

c Fc

where (a) follows from the definition of the boundary of an
error; (b) follows from the fact that the boundary of a single
qubit is the collection of four faces of the tetrahedron that
correspond to the qubit; (c) follows from rearranging the order
of summation and the observation that πc(ν) is the c-face in
the boundary of ν [see Eq. (7d)], and if Eν �= I , then this is the
same as the support of πc(Eν); and (d) follows from Eq. (23)
and completes the proof. �

By Lemma 8, the boundary of an error E can be broken
down into four surfaces, each lying in a separate minor complex
�∗\c. We show that if these surfaces were modified by the
support of a stabilizer in the minor complexes, then these
modified surfaces form the boundary of an error E′ which
is equivalent to E up to a stabilizer, i.e., E′ = ES for some
X-stabilizer S on the color code.

Lemma 9. X error boundary modulo stabilizer. Let E be
an error on �∗. Let Sc be X-stabilizer generators on �∗\c.
Then, ∂E + ∑

c supp(Sc) is the boundary of ES, for some
X-stabilizer S on �∗ i.e.,

∂E +
∑

c

supp(Sc) = ∂(ES). (29)

Proof. Since Sc is a stabilizer generator, by Corollary 3,
there exists an X-stabilizer Sc on �∗ such that πc(Sc) = Sc

and πc′ (Sc) = I . By Lemma 8, ∂(Sc) = supp(Sc). Then, using
∂EF = ∂E + ∂F , we obtain ∂ESc = ∂E + ∂Sc. Repeating
this for all c, we have ∂(E

∏
c Sc) = ∂E + ∑

c ∂Sc. Letting∏
c Sc = S, we can write this as ∂(ES) = ∂E + ∑

c supp(Sc)
as claimed. �

The importance of the previous result is that we can
independently estimate the four components of the boundary
of an error. With these results in hand, we can estimate the
boundary of an X error.

Theorem 2. Estimating the face boundary of X errors. The
boundary of an X error E on the dual of the color code
can be estimated by Algorithm 1. The algorithm estimates
∂E up to the boundary of an X-stabilizer of the color code,
provided πc(E) is estimated up to a stabilizer on �∗\c, where
c ∈ {r,g,b,y}.

Proof. We only sketch the proof as it is a straightforward
consequence of the results we have shown thus far. By Lemma
8, the boundary of the error consists of support of πc(E), i.e.,
the projections of the error on the 3D toric codes on �∗\c.
By Theorem 1, the syndrome of πc(E) is the restriction of
the syndrome on �∗. Therefore, πc(E) can be estimated by
decoding on �∗\c. By Lemma 9, if the estimate for πc(E)

012302-7



ARUN B. ALOSHIOUS AND PRADEEP KIRAN SARVEPALLI PHYSICAL REVIEW A 98, 012302 (2018)

is equivalent up to a stabilizer on �∗\c, we can obtain the
boundary of E up to the boundary of a stabilizer on the color
code. �

If any of component decoders on the minor complexes make
a logical error, then Algorithm 1 may fail to produce a valid
boundary.

D. Z-type errors on 3D color codes

One can prove results similar to the previous section for
the Z-type errors also. As we noted earlier, the syndrome
information about Z errors resides on the vertices of �∗, while
the error corresponds to a volume. To recover the boundary of
the error, the objects of interest are the minor complexes �∗\cc′

.
Recall that the edges of �∗\cc′

are associated with qubits. So
we project the errors on cell ν to πcc′ (ν), which is an edge in
�∗\cc′

. We define

πcc′ (Zν) = Zπcc′ (ν). (30)

Let the syndrome on v ∈ C0(�∗) be sv . Then we define the
syndrome on v ∈ �∗\cc′

as

πcc′ (sv) = sπcc′ (v) = sv, (31)

so the syndrome on πcc′ (�∗) is simply the restriction of the
syndrome on �∗. To project the color code onto toric codes,
this syndrome must be a valid syndrome on the minor complex.

We next show that both Z errors and their associated syn-
dromes can be projected consistently onto the minor complexes
�∗\cc′

.
Theorem 3. Projection of Z errors onto toric codes. Let E

be a Z-type error on �∗ and its associated syndrome s. Then
the error πcc′ (E) in �∗\cc′

produces the syndrome πcc′ (s).
Proof. We only need to show the theorem for vertices

v ∈ �∗\cc′
. Suppose E produces the syndrome sv on v; then,

sv = ⊕
ν:v∈ν qν , where qν = 1, if there is a Z error on ν and

zero otherwise. We need to show that πcc′ (E) produces the
syndrome sv on v. Every qubit incident on v must have a
dd ′-edge incident on v since v must be a d- or d ′-vertex. Two
qubits incident on v can share at most one such edge. Then
we can partition the qubits incident on v depending on the
dd ′-edge on which they are incident. Let {e1, . . . ,em} be these
dd ′-edges. Then we can write

{ν : v ∈ ν} = ∪i{ν : v,ei ∈ ν}, (32)

sv =
⊕
ν:v∈ν

qν =
⊕

i

⊕
ν:v,ei∈ν

qν =
⊕

i

ri , (33)

where ri = ⊕
i:v,ei∈νi

qν .
The qubits containing ei are projected onto the dd ′-edge

ei in the minor complex �∗\cc′
and there is an error on ei if

and only if ri = ⊕
ν:v,ei∈ν qν = 1. Thus the syndrome on the

vertex v as computed with respect to the toric code on �∗\cc′

is
⊕m

i=1 ri = sv = πcc′ (sv) as required. �
Corollary 4. Validity of Z syndrome restriction. Let s be the

syndrome for a Z error on �∗. Then, πcc′ (s) is a valid syndrome
for a Z error on �∗\cc′

.
Proof. From Theorem 3, we see that πcc′ (s) coincides with

the syndrome produced by a Z error on �∗\cc′
. Hence, πcc′ (s)

must be a valid syndrome for a Z error on a 3D toric code. �

Having projected both the error and the syndrome onto the
minor complexes, we recover the boundary of the error in steps.
To this end, we define the edge boundary of an error E as

δE =
∑

ν:Eν �=I

δν =
∑

ν:Eν �=I

∑
cc′

πcc′ (ν) (34)

=
∑
cc′

supp[πcc′ (E)], (35)

where Eq. (35) follows from interchanging the order of sum-
mation in Eq. (34). We see that the edge boundary of E can
be recovered by recovering πcc′ (E). The next lemma shows an
interesting property of the edge boundary that will help us in
correcting Z errors.

Lemma 10. Edge boundary corresponds to an X syndrome.
Let EZ = ∏

ν∈� Zν and EX = ∏
ν∈� Xν . Then the syndrome

of EX is nonzero on the edges in δEZ .
Proof. Consider the syndrome of EX on an edge e. Then,

se �= 0 iff |{ν ∈ � | e ∈ ν}| is odd. (36)

In other words, se is nonzero if and only if the number of qubits
in � incident on e is odd. From Eq. (34), we see that e will
be present in the edge boundary of EZ if and only if an odd
number of qubits are incident on e. Thus the syndrome of EX

is nonzero on the edge boundary of EZ . �
We cannot always expect to estimate the edge boundary ex-

actly because the estimates for πcc′ (E) on the minor complexes
could be off. The next lemmas show this will not be problem as
long as the estimates for πcc′ (E) are off by stabilizer elements.

Lemma 11. Suppose S is a Z-stabilizer on �∗\cc′
; then there

exists a Z-stabilizer S in �∗ such that πcc′ (S) = S and πxy(S) =
I for xy �= cc′.

Proof. A Z-stabilizer in �∗\cc′
is generated by the face-type

stabilizers in �∗\cc′
. Therefore, it suffices to consider when S

is a face-type stabilizer. By Lemma 5, the faces of �∗\cc′
are in

correspondence with the cc′-edges of�∗. So we can letS = BZ
fe

for some face fe in �∗\cc′
and cc′-edge e in �∗. The stabilizer

of the color code attached to e is given by BZ
e = ∏

ν:e∈ν Zν .
Then,

πcc′ (BZ
e ) =

∏
ν:e∈ν

Zπcc′ (ν)
(a)=

∏
ν:e∈ν

Zedd′
�ν

(37)

(b)=
∏

t∈∂(fe)

Zt = BZ
fe

= S, (38)

where (a) follows from Eq. (15c) and (b) from Eq. (14).
Denote by Ve the set of qubits incident on e. Every qubit

ν ∈ Ve contains a c′d ′-edge. These edges must also be incident
on the c′-vertex of e. Two qubits ν and ν ′ which have the same
c′d ′-edge must share a face since they already share e. Hence
only two qubits ν,ν ′ ∈ Ve can share a c′d ′-edge. For these
qubits, we have πcd (ν) = πcd (ν ′). This implies πcd (BZ

e ) =∏
ν:e∈ν Zec′d′

�ν
= I . Similar arguments can be used to show that

πxy(S) = I for other xy �= cc′. We omit the details. �
Lemma 12. Edge boundary modulo stabilizer. Let E be a

Z-type error on the color code and S a Z-stabilizer on �∗\cc′
.

Then, δE + ∑
e:Se �=I e is the edge boundary of ES for some

Z-stabilizer S on �∗.
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Algorithm 2. Estimating (edge) boundary of Z-type error

Input: A 3-colex �, Syndrome of a Z error E

Output: E, an estimate of the edge boundary δE, where E ⊆ C1(�∗)
1: for each c,c′ ∈ {r,b,g,y} do
2: for each vertex v in �∗\cc′

do // syndrome projection
3: sπcc′ (v) = sv // sv is syndrome on vertex v

4: end for
5: Estimate the error Ecc′ using any 3D toric code decoder for Z

errors on �∗\cc′

6: end for
7: Return E = ∑

c,c′ Ecc′

Proof. By Lemma 11, there exists a Z-stabilizer S on �∗
such that πcc′ (S) = S and πxy(S) = I for xy �= cc′. Therefore,

I = πxy(S) = πxy

⎛
⎝ ∏

ν:Sν �=I

Zν

⎞
⎠ =

∏
ν:Sν �=I

Zπxy (ν). (39)

From this, we infer that for xy �= cc′,∑
ν:Sν �=I

πxy(ν) = 0. (40)

Therefore, the edge boundary of S has support only in �∗\cc′
.

Furthermore, substituting for S and S in S = πcc′ (S), we obtain

∏
e:Se �=I

Ze = πcc′

⎛
⎝ ∏

ν:Sν �=I

Zν

⎞
⎠ =

∏
ν:Sν �=I

Zπcc′ (ν). (41)

Equation (41) implies that∑
e:Se �=I

e =
∑

ν:Sν �=I

πcc′ (ν) (42)

=
∑

ν:Sν �=I

πcc′ (ν) +
∑

xy �=cc′

∑
ν:Sν �=I

πxy(ν) (43)

= δS. (44)

Thus, δS = ∑
e:Se �=I e and δE + ∑

e:Se �=I e = δ(ES). �
With these results in hand, we show how to estimate the

edge boundary of a Z error from the minor complexes given
the syndrome on its vertices.

Theorem 4. Estimating edge boundary of Z errors. Let �

be a 3-colex and E a Z error on the associated color code.
Algorithm 2 estimates δE, the edge boundary of E, up to the
boundary of a Z-stabilizer of the color code, provided πcc′ (E)
is estimated up to a stabilizer on �∗\cc′

.
Proof. By Corollary 4, the restriction of the syndrome of E

is a valid syndrome on �∗\cc′
. By Theorem 3, πcc′ (E) has the

same syndrome as the restriction and πcc′ (E) can be estimated
using a 3D toric decoder on �∗\cc′

. We can reconstruct the
edge boundary from πcc′ (E) using Eq. (35). By Lemma 12,
if the estimates for πcc′ (E) are up to a stabilizer on �∗\cc′

, the
estimate for the edge boundary of E will differ by the boundary
of a Z-stabilizer on the color code. �

What we have achieved so far is that we have taken a Z

error whose syndrome is on vertices and converted it to a valid
syndrome on edges for an X error with the same support. We

can take this syndrome on edges and recover the face boundary
of the error using Theorem 2.

Note that the estimate for the edge boundary returned by
Algorithm 2 need not be a valid edge boundary if any of the
component decoders fail. So we need a method to check the
validity of the edge boundary. Recall that the X syndrome
on the toric code is the boundary of a collection of faces.
Therefore, it is a union of homologically trivial cycles. We
can project the edge boundary E obtained in Algorithm 2 onto
each of the minor complexes �∗\c. If the edge boundary is valid,
then all the homologically nontrivial closed surfaces in (�∗\c)∗
will intersect with the projected syndrome an even number of
times. This test can be carried out in linear time in the number
of qubits.

Theorem 5. Estimating face boundary of Z -type errors. Let
E be a Z-type error on �∗ whose edge boundary is estimated
using Algorithm 2. If the edge boundary is valid, then we can
estimate the face boundary of E up to a Z-stabilizer on the
color code using Algorithm 1.

Proof. By Theorem 4, we can estimate the edge boundary
of E up to a Z-stabilizer boundary. By Lemma 12, these edges
are precisely the syndrome for an X error. By Lemma 10,
this X error has the same support as E up to an X-stabilizer.
But in a color code, for every X-stabilizer there exists a Z-
stabilizer with the same support. Thus the final boundary of E

is estimated up to a Z-stabilizer provided all the intermediate
estimates from Algorithms 1 and 2 are all up to a stabilizer on
the respective 3D toric code decoders. �

E. Decoding 3D color codes

The projection onto the toric codes allow us to decode the
3D color code. Before we can give the complete decoding
algorithm, we need one more component. Following Theorems
2 and 5, we only end up with the boundary of the error. We
need to identify the qubits which are in error. The procedure
for lifting the boundary to volume is given in Algorithm 3. The
main idea behind this algorithm is the fact that the color code
is connected and we can partition the qubits into two groups:
those inside and those outside of the boundary. The following
lemma justifies the procedure in Algorithm 3.

Lemma 13. Lifting the boundary of error. Algorithm 3 will
give the smallest collection of 3-cells � ⊆ C3(�∗) such that
∂� = F. If F is not a valid boundary, then the algorithm returns
an empty set.

Proof. The algorithm takes as input a collection of faces
supposed to enclose a volume. If the faces enclose a volume,
we can label all the 3-cells inside and outside the boundary
differently. Cells adjacent to each other and enclosed within the
same boundary are labeled the same. The algorithm proceeds
by labeling a random choice of initial qubit and then proceeds
to assign labels to all its adjacent qubits. If two qubits share
a face that is not in the boundary F, then they must have the
same label because one must cross the boundary to change
the label. Two qubits that are adjacent and share a face that
is in the boundary must have different labels. The algorithm
stops when there are no more qubits to be labeled or when a
qubit is assigned contradicting labels, indicating that F is not
a boundary. �
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Algorithm 3. Lifting a boundary to a volume

Input: Complex �∗, Set of faces F ⊆ C2(�∗)
Output: � ⊆ C3(�∗) such that F is the boundary of �

1: Set � = ∅; mν = 0 for all ν ∈ C3(�∗) // Initialization
2: Initialize � = {νo},mνo

= 1 // For some 3-cell νo

3: while mμ = 0 for some μ ∈ Nν with mν �= 0 do
4: for each μ ∈ Nν do // Nv := 3-cells sharing a face with ν

5: if mμ = 0 then
6: if μ ∩ ν ∈ F then
7: mμ = −mν // Qubits on different side of error

boundary
8: else
9: mμ = mν // Qubits on same side of error boundary

10: end if
11: if mμ = 1 then
12: � = � ∪ {μ}
13: end if
14: else
15: if μ ∩ ν ∈ F and mμ �= −mν then
16: � = ∅; Exit // F not a valid boundary
17: end if
18: if μ ∩ ν �∈ F and mμ �= mν then
19: � = ∅; Exit // F not a valid boundary
20: end if
21: end if
22: end for
23: end while
24: if |�| > |C3 \ �| then
25: � = C3 \ � // Pick the smaller volume
26: end if

The running time of the algorithm is linear in the number
of qubits. The algorithm assumes that all qubits have the same
error probability. It can be modified so that it picks the most
likely qubits if the error probabilities are not uniform. We now
give the decoding procedure for color codes.

Theorem 6. Decoding 3D color codes via 3D toric codes. An
errorE on a color code can be estimated using Algorithm 4. The
estimate will be within a stabilizer on the color code provided
the intermediate decoders also estimate within a stabilizer on
the respective codes.

Proof. The proof of this theorem is straightforward given
our previous results. The decoding is performed separately for
X and Z errors and it makes use of the fact that the color
code is a CSS code. The algorithm proceeds by estimating the
boundary of the X-type errors and Z errors separately. The
correctness of these procedures is due to Theorems 2 and 5.
Lemma 13 ensures that these boundaries can be lifted to find
the qubits that are in error. Decoding failure results if any of
the component decoders fail or make logical errors. This will
lead to either the failure of the lifting procedure or an invalid
edge boundary in line 7 of Algorithm 4. The validity of the
edge boundary can be checked by ensuring that the restricted
syndrome πc(δEZ) consists of homologically trivial cycles. �

Remark 2. The decoder could fail if any of the intermediate
decoders make a logical error.

The overall running time depends on the running time of
the 3D toric code decoders. We can run them independently or

Algorithm 4. Decoding 3D color codes

Input: A 3-colex � and the syndrome
Output: Error estimate Ê

1: Let sX be syndrome for X type error EX

2: Obtain the face boundary ∂EX from Algorithm 1 with sX as
input

3: Lift the boundary ∂EX by running Algorithm 3 and obtain �X ,
the support of EX

4: if �X = ∅ and sX �= 0 then
5: Declare decoder failure and exit
6: end if
7: Let sZ be syndrome for Z type error EZ

8: Estimate the edge boundary δEZ from Algorithm 2 with sZ as
input

9: Check πc(δEZ) consists of homologically trivial cycles only,
otherwise declare decoding failure and exit.

10: Obtain the face boundary ∂EZ from Algorithm 1 with δEZ as
input

11: Lift the boundary ∂EZ by running Algorithm 3 and obtain �Z ,
the support of EZ

12: if �Z = ∅ and sZ �= 0 then
13: Declare decoder failure and exit
14: end if
15: Return Ê = ∏

ν∈�X
Xν

∏
ν∈�Z

Zν

we can take advantage of the fact that the errors on component
3D toric codes are correlated.

The proposed decoder for 3D color codes can also be
adapted for decoding the gauge color code. Recall that the
gauge operators of the gauge color code are defined on the faces
of a 3D cell complex. They are similar to the Z-type operators
of the 3D color code. However, they contain an X-type and
Z-type gauge operator for each face of the complex. More
relevant is the fact that the stabilizers of the gauge color code
are defined on the 3-cells of the complex and are similar to
the X-type stabilizers of the 3D color code. For each 3-cell,
we can define an X-type and Z-type stabilizer, similar to BX

ν

in Eq. (4). In other words, decoding the bit flip (or the phase
errors) is similar to decoding of the phase-flip errors of the 3D
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FIG. 5. Performance of the stacked color codes over the bit-flip
channel.
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FIG. 6. Performance of the stacked color codes over the phase-flip
channel.

color code. Thus we can decode the gauge color code using
the same approach used for decoding phase errors in the 3D
color code. An alternative approach is to promote all the Z-type
gauge operators to be stabilizers and then decode as a 3D color
code. This amounts to gauge fixing [20]. Other variations are
possible that exploit the structure of subsystem codes.

F. Performance of stacked codes

Recently, a new class of 3D color codes, called stacked
codes, was proposed in [11]. These codes have a layered archi-
tecture which makes them more amenable to implementation
than an arbitrary 3D color code. In this section, we study
the performance of these codes using the projection map we
proposed. Note that the stacked color code has boundaries.
This implies the toric codes onto which it is projected also
contain boundaries. It turns out these toric codes encode zero
logical qubits and can be decoded by generalizing the ideas
of [21]. Taking these into account, we implemented a slightly
modified version of the decoder given in Algorithm 4. These
details, including the 3D toric code decoding, will be discussed
elsewhere.

The performance is shown in Fig. 5 for bit-flip errors and
Fig. 6 for phase-flip errors. We obtain a (code) threshold of
�13.3% for bit-flip errors. For phase-flip errors, we did not
obtain a clear threshold. The performance of the decoder for
phase-flip errors is limited by certain stabilizer generators of
the stacked color code whose size grows with the code. One
approach to improve the performance would be to exploit
the correlations among the various copies of toric codes.
Alternatively, it is possible that stacked codes do not have
a threshold. This absence of threshold could be due to the
growing size of the certain stabilizers. A similar observation
was made concerning these stabilizers in [11,12]. The latter
also argued that such codes may not have a threshold.

IV. CONCLUSION

In this paper, we have shown how to project 3D color
codes onto 3D toric codes. Our work provides an alterna-
tive perspective to that of [10] who also proposed a map
between color codes and toric codes. Our approach emphasizes
the topological properties of color codes. The mapping was
motivated by the problem of decoding 3D color codes. The
toric codes thus obtained are linearly related to the size of
the parent color code. So if the corresponding 3D toric codes
can be decoded efficiently, then so can the 3D color codes by
projecting them onto 3D toric codes using our map. Using our
results, we studied the performance of the stacked color codes.
Stacked color code requires the decoding of a 3D toric code
encoding zero logical qubits. This map also finds application
in the decoding of gauge color codes [14,22,23] by projecting
onto 3D toric codes. One direction for research would be to
incorporate measurement errors as in [24]. Another avenue for
further research is to study the possible use of this map for
fault-tolerant quantum computing protocols.
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