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Chaos in continuously monitored quantum systems: An optimal-path approach
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We predict that continuously monitored quantum dynamics can be chaotic. The optimal paths between past
and future boundary conditions can diverge exponentially in time when there is time-dependent evolution and
continuous weak monitoring. Optimal paths are defined by extremizing the global probability density to move
between two boundary conditions, and are then expressed as solutions to a Hamiltonian dynamical system. We
investigate the onset of chaos in pure-state qubit systems with optimal paths generated by a periodic Hamiltonian.
Specifically, chaotic quantum dynamics are demonstrated in a scheme where two noncommuting observables
of a qubit are continuously monitored, and one measurement strength is periodically modulated. The optimal
quantum paths in this example bear similarities to the trajectories of the kicked rotor, or standard map, which is
a paradigmatic example of classical chaos. We emphasize connections with the concept of resonance between
integrable optimal paths and weak periodic perturbations, as well as our previous work on “multipaths,” and
connect the optimal path chaos to instabilities in the underlying quantum trajectories.
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I. INTRODUCTION

Advances in the fabrication, control, and readout of qubits
have propelled rapid progress in the field of quantum informa-
tion processing [1,2] over the past two decades. This was made
possible, in part, through foundational theory work concerning
open and continuously monitored quantum-mechanical and
quantum-optical systems [3–9], which has led to the con-
temporary theory of stochastic quantum trajectories (SQTs)
[2,10–12]. Continuous monitoring of quantum systems, where
the system is inherently open and experiences measurement-
induced backaction and nonunitary dynamics, is an active field
of research [13–16], generating both experimental and theoreti-
cal interest related to topics such as feedback control [2,17–25],
entanglement generation [26–33], and state stabilization [34]
in qubits. These topics have potential applications in larger
research efforts toward quantum error correction [2,18].

Chaos has been researched in a body of literature that
is largely independent of that just cited. With the exception
of some work concerning chaos in quantum optics [35], the
overwhelming majority of the literature on “quantum chaos”
is concerned with the behavior of quantized versions of systems
that have well-defined classically chaotic analogs [36,37]. In
classical mechanics, chaos is defined by exponential sensitivity
to changes in initial conditions; therefore, a classically chaotic
system, while mathematically deterministic, is effectively
unpredictable in the long term unless it can be initialized
with perfect precision. Exponential divergence of trajectories
is often quantified by computing a Lyapunov exponent (LE),
where a positive exponent signals that nearby paths diverge
[38–42]. Studies of classically chaotic systems in the quantum
regime have resulted in insights about fluctuations in the
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spectra of many-body quantum systems [43–45], semiclassical
wave packet dynamics [46–48], and the transition between
classical and quantum dynamics [49–57]. There is an essential
difference in this field, however, in that classical chaos is
defined in terms of the divergence of trajectories, which do
not exist at all in closed quantum systems. Furthermore, the
quantum dynamics of wave functions in closed systems are
explicitly unitary and applied linearly. A handful of works
have looked specifically at chaos in open quantum systems
[54,58], or the SQTs of continuously monitored quantum
systems with chaotic classical analogs [59–64]; the latter have
primarily focused on theoretical investigations of quantization
and measurement of the damped-driven Duffing oscillator, and
its classical-to-quantum transition.

In the current paper we introduce a fundamentally different
kind of quantum chaos, using optimal paths (OPs) to describe
the stochastic dynamics induced by quantum measurement
[65–67]. OPs are defined as the extremal-probability paths
which move from an initial state qi to a final state qf over
a traversal time T . Although our usage here to describe
chaotic dynamics in a quantum measurement problem is
novel, similar mathematics have been used to study classical
stochastic systems (see, e.g., [68–73]). Both theoretical and
experimental investigations of qubit dynamics under various
measurement schemes [74–77] have elaborated on the OP
concept for quantum measurement, demonstrating good agree-
ment between theory and experiment. The behavior of the
open and measured quantum system is expressed in terms of
a Hamiltonian dynamical system in the OP approach. This
system gives rise to equations of motion for the OPs, which
give a well-defined and conceptually clear definition of chaos
in continuously monitored quantum systems. These OPs for
qubits are mathematically analogous to the classical paths in
the sense of being extrema of an action [78], despite the qubit
having no classical analog. We consider a qubit simultaneously
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monitored along the noncommuting observables σx and σz

as an example in which to implement our methods; this is
based on the experimental system realized in [79], which is
also considered theoretically in Refs. [76,80,81]. We extend
our investigation of this system to a case where one of the
measurement strengths is varied periodically; in the limit
where the periodic measurements become strong, our system
bears qualitative similarities to the kicked rotor, or standard
map [39,40,82,83], a paradigmatic example of classical chaos.
The kicked rotor has been studied in a quantum context
[54,62,84,85], but our system, while qualitatively similar at
the mathematical level, is physically quite different.

Our article is laid out as follows: in Sec. II we introduce
our theoretical methods. This includes summaries of the
mathematics of OPs generally, and of situations where multiple
OP solutions link two boundary conditions (“multipaths”
[76,77]). We also propose a definition of the Lyapunov
exponent for OP dynamics. In Sec. III we apply our methods
to the two-measurement example mentioned above. With that
example in mind, we are then able to more formally connect
OP chaos with rapid growth in the number of multipath
solutions in Sec. IV. Some discussion, conclusions, and
outlook are included in Sec. V.

II. THEORETICAL MODEL AND METHODS

Under continuous measurement, the quantum state is up-
dated through the application of nonunitary operators, which
are constructed based on the correspondence between the
specific measurement process and the readout signal(s) r(t ).
In other words, every time a new readout value is acquired, the
state ρ(t ) is updated by [1]

ρ(t + dt ) = Mdtρ(t )M†
dt

tr(Mdtρ(t )M†
dt )

, (1)

where Mdt (r) is the measurement operator. The probability
density for acquiring a particular readout given a particular
quantum state is given by ℘(r|ρ) = tr[Mdtρ(t )M†

dt ]; this is
associated with the function G we discuss below in the limit
dt → 0. The state update can be approximated by expanding
(1) to first order in dt ; this is associated with the function F
used below. Such expansions can also lead to the stochastic
master equation (SME). The specific operators we use in
our subsequent qubit measurement examples are based on a
Bayesian update scheme [9]. See Appendix A for details.

A. Optimal paths for pure-state qubits

OPs are defined by extremizing the joint probability of a
path q(t ) through quantum state space (e.g., Bloch sphere
coordinates for a qubit) and readout(s) r(t ). Such a probability,
constrained to paths which link a given initial q(0) and final
q(T ) states, may be expressed in terms of a path integral of
the form

∫
D[p]eS , where we define the stochastic action S,

which contains the stochastic Hamiltonian H , by

S =
∫ T

0
dt[H (q, p, r, t ) − p · q̇]. (2)

A least action principle δS = 0 optimizes the path probability,
and gives us OPs as solutions to

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
,

∂H

∂r

∣∣∣∣
r�

= 0, (3)

which are Hamilton’s equations with an additional optimiza-
tion condition on the measurement readout(s) [65,66], which
defines the optimal readout(s) r�(q, p). The stochastic Hamil-
tonian can be expressed in the form

H = p · F[q, r, t] + G[q, r, t], (4)

where q̇ = F can be obtained from a quantum Bayesian
scheme [9] by expanding a state update equation to O(dt ),
or equivalently as the Stratonovich form of a stochastic
master equation [2,11,86,87] (see Appendix A or [76] for
a detailed derivation in the context of OPs). The “probabil-
ity cost-function” G [76] is defined by expanding the log-
probability ln{P (r(t )|q(t ))} for the readout update given state
q(t ), as modeled in the Bayesian formalism. A Hamiltonian
H�(q, p, t ) may be obtained by integrating out the readout(s)
from the path integral, because the action is Gaussian in r(t ),
or equivalently by substituting r� back into H .

Generically, when we consider the evolution of a qubit
state, q could include all three of the Bloch sphere coordinates
x, y, and z. However, for simplicity, and to focus on new
effects, we will limit the space throughout this paper with
some simplifying assumptions. We suppose that all our states
start pure and stay pure (this implicitly includes an assumption
that our measurements have ideal quantum efficiency). Fur-
thermore, we may constrain the dynamics to the xz plane of
the Bloch sphere, so that they may be completely expressed by
the polar angle θ in the xz plane, for x = sin θ and z = cos θ . A
dispersive qubit readout, as modeled in the Bayesian scheme,
results in F and G having certain forms and properties, e.g., G
is quadratic in r; these force the optimal readouts r�(θ, p) to be
linear in p. Using these relationships, we are able to simplify
our stochastic Hamiltonian down to the form [76]

H�(θ, p, t ) = a(θ, t ) (p2 − 1) + b(θ, t ) p. (5)

The angle θ parametrizes the quantum states and p is the
generalized “momentum” conjugate to θ . The functions a

and b are determined by the particulars of any driving and
measurements applied to the qubit. We will add one more
assumption and corresponding notation concerning the time
dependence of H�, for later use; we suppose that a and b are
such that H� can be split into

H�(θ, p, t ) = H (0)(θ, p) + h(θ, p, t ). (6)

The time-independent term H (0) must be integrable, because
its phase space is two dimensional, and the stochastic energy
E = H (0) is conserved; then h can be interpreted as a time-
dependent perturbation added to those integrable dynamics.

B. Multipaths and Lagrange manifolds

In Refs. [76,77] we defined “multipath” behavior, and
identified it in physically realizable qubit systems. We review
some definitions and concepts that will be needed in this paper.
A multipath group of solutions exists when two or more OPs
link the same boundary conditions θ0 and θT (for fixed T ).
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A particular Lagrange manifold (LM) in the OP phase space,
which includes all p0 at one single initial state θ0, may be used
to detect multipaths. This LM describes all of the OPs branch-
ing out from a particular initial state (the manifold includes all
of the different OP possibilities on which we may wish to post-
select). The manifold will then deform under the Hamiltonian
flow of (5) over time. Multipaths form at final states θT which
are represented several times in the final manifold; multipaths
form at final boundary conditions where the manifold fails the
vertical line test. This can happen either due to the formation
of a catastrophe [88], which is a fold in the LM, or simply an
overlap of the LM with itself mod-2π , in which case we say
the solutions have different winding counts about the Bloch
sphere. The multipath phenomenon is quite similar to that of
optical caustics; just as many rays of light may leave a source
with different wave vectors, and then reconverge on some other
location, OPs may leave a given state θ0 with different p0, and
then reconverge on some other state θT . Regions of θT where
the LM overlaps itself are the caustic regions. Catastrophes in
the manifold specify the boundaries of such regions in the final
conditions, where the number of OPs connecting the same θ0

and θT increases. The different p0 are not immediately exper-
imentally accessible for qubit OPs; the generalized momenta
merely index different possible optimal readouts r�, which may
occur according to some probability density.

It is useful to define a Jacobian at time T ,

JT = ∂θT

∂p0

, (7)

for the manifold. The LM we use for finding multipaths is
defined by J0 = 0 ∀ p0. Catastrophes generating multipaths
form where JT = 0, or where its inverse, the “Van-Vleck
determinant” V = |J−1| = |∂2S/∂θ0∂θT |, expressed in terms
of the stochastic action S (2), diverges [76]. The behavior of
manifolds we care about here can be described using JT and a
curvature or concavity CT = ∂JT /∂p0 = ∂2θT /∂p2

0.
A multipath containing two MLPs has been observed in

experiment [77], and in principle a larger number of paths
could also be extracted from data given a large enough en-
semble of SQTs. However, the difficulty of this task increases
significantly with the number of approximately equally likely
paths meeting a given set of boundary conditions. A system
with a large number of multipaths becomes significantly less
predictable.

C. Computing Lyapunov exponents for OPs

We now define a measure of OP chaos. Based on classical
definitions of chaos, we are interested in paths with similar
initial conditions which diverge exponentially from each other.
That is, we consider paths with similar initial states where
a distance D(t ) ∼ D0e

tλ(t ) measured between the two paths
grows such that λ(t ) > 0 over the time interval of interest.
The quantity λ(t ) we have implicitly defined above is the
Lyapunov exponent (LE), which quantifies how quickly paths
converge or diverge. A number of approaches and conventions
for computing LEs can be found throughout the literature, e.g.,
in [38–40]. We will use the simplest definition of the LE,

λ(t ) ≡ 1

t
ln

(
D(t )

D0

)
, (8)

obtained directly from above, where we must account for the
finite-time nature of this LE, which cannot grow indefinitely
due to the bounded nature of the Bloch sphere. We define a
distance about a path θ , initialized at θ0 and p0, by using two
auxiliary paths θ± initialized at θ0 ± δθ0, where δθ0 is small
(we use δθ0 = 0.01 in subsequent examples) and p0 is fixed
(δp0 = 0). Using components of distances across the Bloch
sphere [δx±(t )]2 = [sin θ (t ) − sin θ±(t )]2 and [δz±(t )]2 =
[cos θ (t ) − cos θ±(t )]2, we define the Euclidean distance as
the average of those between the main path and each auxiliary
path, i.e.,

D(θ (t )) = 1
2

√
[δx+(t )]2 + [δz+(t )]2

+ 1
2

√
[δx−(t )]2 + [δz−(t )]2. (9)

Using two auxiliary paths offset in opposite directions sym-
metrizes our distance measure (we have no physical reason to
favor the shift being in one direction or the other).

Although the distance used in the LE would typically be
a distance over all dimensions of phase space for a classical
system (i.e., would also account for distances between p and
some p± over time), we here define our distance in the θ

direction only. This is justified for OPs, because the p cannot
be measured directly, and we wish to emphasize differences
in the quantum state itself. Exponential growth in distance,
corresponding to chaos, will be sufficiently characterized by
λ(t ) sustaining a positive value over the evolution time of
interest because of the finite system size.

The way we initialize D0 and define D(t ) emphasizes the
effect of imperfect state preparation on the OP dynamics.
Preparing states with the same p0 (although not a physically
well-defined task for individual SQTs) amounts to initializing
them with similar optimal readout(s) r�

0. The variation in the
initial optimal readout(s) δr�

0 ≈ δθ0∂θr�
0|θ0,p0 is (are) on the

same order as the small variation δθ0 in the state itself under this
scheme. Appeals to physical intuition demand that this remain
so as long as the states remain similar, because the monitoring
of observables leading to readouts is precisely what is used
construct the SQT in the quantum state θ to begin with [89].
Furthermore, we will see in Sec. IV that this definition lends
itself well to connecting the chaos it defines with the multipath
behavior given by LMs.

III. TWO CONTINUOUS MEASUREMENTS
WITH VARIABLE STRENGTHS

We now demonstrate the presence of this kind of quan-
tum chaos in a specific system. Consider a qubit simulta-
neously subjected to weak measurements along σx and σz

[76,79–81,90]. The measurements are described by charac-
teristic times τx and τz, respectively, which determine the time
scale on which the bare measurement causes wave function
collapse. If dt is the time to perform a single measurement,
then τ � dt denotes a weak measurement and τ � dt denotes a
stronger measurement, which becomes projective as τ/dt → 0.
In an experiment, dt would reflect the time required to acquire
one readout value; the OPs are constructed in the limit of weak
and continuous measurements (the limit as dt → 0). Below
we will always leave τx = 1 μs fixed, but we will modulate
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the strength of τz, exploring regimes both where τz � τx (both
measurements are still weak; see Sec. III B and Appendixes B 2
and C 2) and regimes where τz � τx (the z measurement
is periodically much stronger than the x measurement; see
Sec. III C and Appendix C 2).

Our z measurement will be modulated in strength according
to

τz(t ) = τx − A g(t )

with g(t ) = exp

[
−

(
t − 1

2�
)2

2τ 2
m

]
for t ∈ [0,�], (10)

which is repeated with period �, such that g(t ) = g(t + �)
for all t . It is useful to notate γx ≡ 1/τx, ε = A/τx , and set
γz ≡ 1/τz = γx[1 − εg(t )]−1, expressing the peak strength of
the z measurement in terms of the dimensionless ε ∈ [0, 1]. We
always retain τm � �, such that the changes in τz are narrow
compared with their period; for the purposes of numerical
examples, we use τm = 25 ns. The form (10) amounts to a
“kick” in the strength of the z measurement, such that the
measurement becomes stronger at the peak of the Gaussian
(every half-integer microsecond). When ε � 1 (A � τx), both
the x and z measurements are weak, and when ε → 1 (A →
τx), the z measurement becomes projective. Intuitively, the
stronger measurements can cause sudden jumps in the SQTs
and OPs, as they induce at least partial state collapse. The
size of the jumps is obviously related to the kick strength ε.
The relative values of τx and � also impact the OP jump size,
however. The OPs do not have to jump when τx � �, since
diffusion from any state will easily reach the z eigenstates
before another kick happens. However, jumps are necessary in
the opposing regime τx � �, since diffusion from an arbitrary
state is unlikely to reach the z eigenstates on its own before a
kick. See Appendix F for a simplified model of the projective-
kick limit, and further details. In examples below, we always
take τx = 1 μs = �. Our choice of τx = 1 μs and the kick
duration τm = 0.025 μs implies that at ε = 0.975 we pass the
point where 2 · min(τz) fits within one standard deviation of
its kick peak (meaning that this is approximately the value
of ε where a single kick lasts long enough compared to τz to
collapse the state to the eigenstates of σz).

A. Stochastic Hamiltonian for two noncommuting
qubit measurements

The stochastic Hamiltonian which generates OPs for the
two-measurement system is defined by (4) and

F = rx

τx

cos θ − rz

τz

sin θ,

G = − r2
x − 2rx sin θ + 1

2τx

− r2
z − 2rz cos θ + 1

2τz

(11)

(see [76] and/or [65,80]). With the optimal readouts r�
x =

sin θ + p cos θ and r�
z = cos θ − p sin θ substituted in (or inte-

grated out), we obtain H� = (p2 − 1) a(θ, t ) + p b(θ, t ) with

a(θ, t ) ≡ sin2 θ

2τz(t )
+ cos2 θ

2τx

,

b(θ, t ) ≡ sin θ cos θ

(
1

τx

− 1

τz(t )

)
. (12)

When the measurement strengths are equal (i.e., τx = τ = τz),
as is approximately true for all time when ε � 1, and at the
times between kicks regardless of the value of ε, the stochastic
Hamiltonian reduces to that of a simple rotor,

H�
rot = p2 − 1

2τ
. (13)

As discussed in Appendix E, and in other works [76,79–81],
this rotor Hamiltonian corresponds to simple diffusion of the
state on a circle. The rotor Hamiltonian is integrable because
the stochastic energy E = H is conserved, as is p. Since H�

rot
is a function of p only, we may furthermore regard the pair
{θ, p} = 1 as its action-angle coordinates.

We now introduce the kick (10) into H�. Notice that γz can
be expanded in powers of ε such that

γz = γx

1 − εg(t )
= γx

∞∑
n=0

[εg(t )]n. (14)

When ε � 1, the kick barely changes the measurement
strength, and gives OP dynamics described by a small per-
turbation to those of H�

rot. The full stochastic Hamiltonian H�

can be expanded in powers of ε as

H�(θ, p, t ) = H (0)(p) +
∞∑

n=1

εnH (n)(θ, p, t ), (15)

where H (0) = (p2 − 1)/2τx = H�
rot and

H (n�1) = gn(t )

(
p2 − 1

2τx

sin2 θ − p

τx

sin θ cos θ

)
. (16)

In the notation of previous sections, we have H� = H (0)(p) +
h(θ, p, t ), where the time-dependent part h containing the
kicks has been decomposed in powers of ε. Our aim below will
be to explore the dynamics first for small ε � 1, and then for
stronger (ε → 1) measurements. Links to, and explanations of,
a series of supplemental animations illustrating the dynamics
across the full range of ε can be found in Appendix C 2.

We make a few more general remarks before analyzing the
dynamics in detail. First, at the level of SQTs, the integrable
part of the Hamiltonian H�

rot describes isotropic diffusion about
the Bloch sphere, consistent with experimental findings [79]
(see also Refs. [76,80], and Appendix E). However, when
τx �= τz, diffusion towards one set of measurement eigenstates
is favored over the other, and the SQTs diffuse anisotropically.
The diffusion constants generically grow larger as τ shrinks.
See Appendix E for further details. Second, the system we
have constructed greatly resembles the kicked-rotor or standard
map, a system which is often used as a pedagogical example
of classical chaos. The classical kicked rotor [39,40,82,83] is
derived by adding periodic δ kicks to the Hamiltonian for a
simple rotor; such a perturbation, which destroys conservation
of E and p, is known to make the rotor’s dynamics become
chaotic, especially for stronger kick strengths. The system we
have described above is also a rotor disturbed by a periodic
force, and it most resembles the classical kicked rotor in the
limit where ε → 1 and τm → 0 [91] (see Appendix F for
details). The onset of chaos in the kicked rotor and similar

012141-4



CHAOS IN CONTINUOUSLY MONITORED QUANTUM … PHYSICAL REVIEW A 98, 012141 (2018)

FIG. 1. We show a stroboscopic phase portrait of H� for
ε = 0.1. Paths are initialized across θ for p = 0, π/3, π/2, 2π/3,

π, 3π/2, 2π, and 3π , along with small offsets (±0.2) about each p0

to improve the plotted resolution of features in the phase space. Points
are plotted in between kicks every � = 1 μs from T = 0 → 100 μs to
construct the image. Colors are assigned based on the LE λ(t ) (8). We
see that integrable rotor tori are destroyed at the p = kπ resonances,
where k is an integer, giving way to alternating hyperbolic and elliptic
fixed points with new periodic islands; the other initial conditions
shown are not impacted substantially. A formal derivation in support
of this result, and further remarks, appear in Appendixes B 1 and B 2.
This image is drawn from a larger animation which can be found in
the supplements described in Appendix C 2. Compare the pattern of
islands and tori above with the shape of the LM displayed in Fig. 2(c).

mappings is well understood [38–40,82], and below we will
show that our H� generates qualitatively similar dynamics,
with ε playing a role similar to the kick-strength parameter of
the standard map.

B. Resonances in the weak measurement regime

Let us consider the dynamics of H� for ε � 1, where
both of the measurements τx ≈ τz remain weak, generating
diffusive quantum trajectories. From animated surveys of the
phase space in this regime (see Appendix C 2) we know that
disturbances to the integrable phase space are restricted to
regions near p = kπ for integer k. This is clearly illustrated

in Fig. 1, where we show a stroboscopic phase portrait for
ε = 0.1. The question which drives this subsection is: What is
special about the values p = kπ when ε � 1?

Based on canonical perturbation theories [39,40,82,92–95],
including the theorem by Kolmogorov, Arnold, and Moser
(KAM) [96], we expect that the OP dynamics will not deviate
substantially from the integrable dynamics of H (0) in this
regime, except near resonances. By “resonance,” we refer to
a rational number relationship between periodic motion from
H (0) and the period � of the first-order perturbation εH (1).
We have H (0) = H (0)(p) = E, so that the frequency ν (0) of
integrable, periodic OPs is determined by computing ν (0) =
∂pH (0) = p/τx = ±√

1 + 2τxE/τx . A resonance occurs, and
so perturbation theory breaks down, wherever the condition

ν (0)(E)� + 2πk/� = 0 (17)

is satisfied, for � = 0,±2 and any integer k (see Appendix B 1
for details). For τx = �, this relationship reduces to p� +
2πk = 0, which explains the appearance of resonances at
integer multiples of p = π . Equivalently, those resonances
appear where the period of the integrable motion

T̃ =
∫ T̃

0
dt =

∫ π

0

dθ

θ̇
= τxπ

p0
→ p0 = k

τxπ

�
(18)

is an integer multiple of the kicking period itself. Along the
paths with resonant p0 or E, the effects of the perturbation
build over time, since the unperturbed motion is always
“in-phase” with the perturbing force, instead of averaging out
and leaving the H (0) dynamics nearly unchanged, as would
happen off-resonance. As these lines of p0 are destroyed, e.g.,
as shown in Fig. 1, chaos gets its first toehold in the phase
space; the resonances generate the first major disruptions to
the integrable tori as ε grows.

The largest deviations from the LM generated by the flow
of H (0) at low ε also occur in paths initialized near those
same resonant p0. H (0) is a quadratic function of p, so its
LM cannot contain caustics [97]. The manifolds describing
multipath behavior originating at the excited state θ0 = 0, both
for H (0), and the full H�, are shown in Fig. 2; the similarity
between Figs. 1 and 2(c) is immediately apparent. When ε is

FIG. 2. We show plots of the LM initialized at θ0 = 0, after T = 20 μs, for ε = 0.1, τx = 1 μs = �, and τm = 0.025 μs. In (a) we plot θT

against p0, in (b) we plot θT against pT , and in (c) we repeat plot (b), but with θT plotted mod-2π since states separated by an angle of 2π on
the Bloch sphere are identical. Lighter colors denote higher winding numbers. In (a) and (b), the black line shows the LM for H� = H (0) + h,
and the dashed red line shows the LM for H (0) only. Deviations in the LM due to the perturbations, relative to the integrable case, are primarily
restricted to values p ≈ kπ for integer k, that is, in the neighborhood of resonances between H (0) and the weak applied kicks. We further note
that the representation in (c) highlights the enormous similarity between the LM and stroboscopic phase portrait shown in Fig. 1; the same
patterns highlighting flat paths, except at islands forming around resonance zones, are clearly visible in both images.
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small, the formation of catastrophes in the LM corresponds
with the p0 forming resonance bands; these give the first
interesting multipath behavior, and will play a key role in
turning the entire phase space into a chaotic sea as ε grows
larger. This is the first of many connections we will discuss
between OP chaos and multipaths.

The concept of resonance, in the context of OPs, should ex-
tend well beyond the specific example we discuss here. Starting
with an integrable stochastic Hamiltonian, any additional pe-
riodic perturbations will generate dynamical disruptions along
paths in the OP phase space which match the perturbation’s
period, much as we have seen above. This is true even when the

FIG. 3. We show stroboscopic phase portraits for the Hamiltonian (12) subject to periodic strong measurements according to (14). Points
are plotted at the moment when H� most closely resembles (13), halfway between kicks. We use τm = 25 ns and τx = 1 μs = �. The simulation
was run from T = 0 → 15 μs, including 15 kicks, to generate the figures. We show ε = 0.95 (a) and (b), ε = 0.98 (c) and (d), and ε = 0.99
(e) and (f). Color denotes the LEs (8) for the paths in (b), (d), and (f), computed according to the distance (9) shown in (a), (c), and (e). We are
particularly interested in examples where the LE is large as well as positive, implying that D(t ) grows to be much larger than D0 ≈ 0.01 within
a modest duration T . Note that the yellow color for D � 0.2 corresponds to differences in angle on the Bloch sphere greater than approximately
8◦. The original integrable rotor orbits are nowhere to be found, but islands formed by the p = 0 resonance are still clearly visible in the
phase portrait. As ε grows, those periodic islands are gradually destroyed, turning into a chaotic sea as more internal resonances propagate
out, destroying the remaining stable tori. Examples of individual paths with large D and λ from the ε = 0.99 case are shown in Fig. 4. For
supplemental animations showing the evolution between these images, see Appendix C 2.
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FIG. 4. We show chaotic paths generated by (a) θ0 = 0.286 and p0 = 1.227, and (b) θ0 = 1.142 and p0 = −0.545, in the system defined
by (12) and (14). We use τx = 1 μs = �, τm = 0.025 μs, and ε = 0.99 in both examples. In each plot, the paths generated by those initial
conditions themselves are shown in solid black, whereas those from θ0 + 0.01 are shown in dashed cyan, and those generated by θ0 − 0.01 are
shown in dotted red. The dashed and dotted paths are those used to compute the distance (9) about the solid black curves, which in turn defines
the LE (8). The finite time LEs are plotted on the axes below their respective path groups. In each of these examples, small variations in the
state appear by T ≈ 5 μs, the paths grow far apart in the quantum state space by T ≈ 10 μs, and the trend continues to T ≈ 15 μs and beyond.
This growth in D corresponds to LEs with sustained positive values large enough to generate sizable values of tλ(t ) over the evolution time of
interest.

perturbation is weak; from there the resonance phenomenon
offers a relatively well-understood (from classical chaos the-
ory) pathway to OP chaos as the perturbation is strengthened.
A wide variety of other schemes which meet these criteria
could be easily devised for qubit systems, using combinations
of measurement(s) and Rabi drive.

C. Chaos and multipaths in the strong measurement regime

We now proceed to investigate the dynamics of H� at
values of ε near 1, corresponding to strong kicks (nearly
projective z measurements). Stroboscopic phase portraits for
ε = 0.95, 0.98, and 0.99 are shown in Fig. 3. These figures
confirm that chaos overtakes larger portions of the phase
space as ε grows. A few examples of strongly chaotic paths
at ε = 0.99 are shown in Fig. 4, which serve to illustrate
the qualitative effect of OP chaos. In these examples, we
see groups of OPs which start at nearly identical quantum
states; as time goes on, small deviations in their dynamics
are magnified, until the states θt generated by these OPs are
effectively uncorrelated. Qualitatively, we may understand that
small deviations in diffusion between kicks get magnified by
the kick itself; that is, a measurement kick probabilistically
collapses the state to an eigenstate of σz in this regime, and
stochastic elements of the diffusion between kicks determine
the probability for a path to go one direction or the other
at the next kick. Thus, every kick effectively elevates the
randomness inherent in the preceding diffusion step to the
point that it manifests as chaotic unpredictability in the OPs
(which are defined statistically, not on the basis of any one
SQT). Thus we see that states prepared on the border of being

easily distinguishable experimentally (we use δθ0 = 0.01 and
δp0 = 0 in Fig. 4) can lead to OPs which are ripped apart
within 5–7 kicks (measurement cycles). In other words, the
OPs are sufficiently sensitive to changes in initial state that
small deviations in state preparation lead to OPs which diverge
wildly from each other within experimentally accessible time
frames. We stress that although the OP formalism allows us to
work with mathematics from classical Hamiltonian mechanics
and chaos theory, the above intuition very much emphasizes the
intrinsically quantum qualities of the qubit system, and effects
of quantum measurement which give rise to all the dynamics
we discuss.

IV. IMPLICATIONS OF OP CHAOS

We will be able to elucidate the impact of OP chaos on
the underlying SQTs by illustrating that there is a connection
between manifold deformation, multipaths, and OP chaos.

A. Examples of manifold and multipath behavior

We begin by showing the LM in the strong-kick regime
initialized at the excited state θ0 = 0 after three, four, and
five kicks in Fig. 5. It is immediately apparent that by the
time even five kicks have taken place, the manifold contains a
large number of catastrophes bounding wide caustic regions,
especially at higher winding numbers [98]. Even among the
relatively high-probability dynamics at lower |p0| and fewer
winding counts (the calmest part of the LM), the number of
multipaths grows quickly. Examples from this calmer region
appear in Fig. 6, where we show the OPs describing a bit
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FIG. 5. The Lagrange manifold describing multipaths originating at the excited state θ0 = 0 on p0 ∈ [0, 1.5], under evolution generated by
(12) and (14), with ε = 0.99 and τx = 1 μs = �, is shown at T = 3 μs (a)–(c), T = 4 μs (d)–(f), and T = 5 μs (g)–(i). The y axis in the left
column is p0, and the y axis in the center and right columns is pT . The x axis always denotes θT , but in the right column it is shown mod-2π (as
is physically relevant for qubit states) rather than as the raw angle θ . The pairs (b) and (c), (e) and (f), and (h) and (i), respectively, contain the
exact same information represented differently. Winding counts in the right column are denoted by color, with lighter colors corresponding to
more winds around the Bloch sphere. The manifold is only computed and plotted over positive p0 because the phase space has odd symmetry;
the other half of the manifold for θ0 = 0 is identical except for being mirrored across the origin of the phase space. The number of catastrophes
in this segment of the manifold grows from 9 at T = 3 μs (a)–(c), to roughly 140 at T = 4 μs (d)–(f), to approximately 2200 at T = 5 μs
(g)–(i).

flip. After five kicks, we see that there are already five OPs
which make a bitflip from the excited state to the ground
state, in each direction (and that is only those which do it
with half a winding count, never mind the rarer, but still
observable, paths which orbit the Bloch sphere 1.5 times or
more). All of the OPs shown in Fig. 6 are most likely paths
(MLPs) with similar probability weights, and are therefore
all approximately equally physically significant [99]. The
evolution of the quantum state under continuous measurement
would experimentally be derived using a particular model to
reconstruct the stochastic state evolution from the stream of
readout results. OPs are effectively defined from data with
respect to the pre- and post-selected density of ensembles
of SQTs. Some examples are shown in Fig. 6, including a
two-path winding count group demonstrating good agreement
between theory and simulation [100]. In showing that the
OP equations of motion are chaotic, we show that evolutions

with similar θ (t ), p(t ), and r�(t ) diverge from each other
given a modest amount of time to evolve further. We have
measured this divergence in the state θ , but it also necessarily
appears in the optimal readouts r�, since r(t ) is experimentally
used to construct a trajectory θ (t ). It is tempting to think
that OP chaos ought to imply that the entire distribution of
SQTs (without imposing a final boundary condition) should
drastically change given small variations in the initial state;
this is not necessarily true. Our OPs are derived under the
assumption that a final boundary condition will be imposed,
which makes them conceptually different from the global MLP
(the OP which reaches the most likely θT at the final time), or
the average path. In fact, neither of the latter exhibit particularly
striking behavior in the system defined by (10) and (12). We can
see, however, that small changes in boundary conditions can
drastically change the number of OP solutions. An example of
this behavior appears in Fig. 7. We confirm from Fig. 6 that the
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FIG. 6. We show plots for the density of simulated SQTs for
(12), initialized at θ0 = 0, with ε = 0.99, τm = 0.025 μs, and τx =
1.0 μs = �. All x axes are time in μs, and all y axes are θ , either
as the full angle (a), or mod-2π (b)–(d). We show (a) the density
without post-selection, and with post-selection on the ground state
(θT = ±π ) at (b) T = 3 μs, (c) T = 4 μs, and (d) T = 5 μs. In (b)
we show agreement between MLPs comptuted from simulated SQTs
(blue) with the theoretical MLPs (black). The associated LMs may be
found in Fig. 5. Normalized density is shown on the color bar, where
1 is the maximum trajectory density between boundary conditions,
and 0 corresponds to no trajectories at all.

FIG. 7. A segment of the LM from Fig. 5(g) (initialized at θ0 = 0,
after T = 5 μs, with τm = 0.025 μs, τx = 1 μs = �, and ε = 0.99)
is shown in (a), in solid black. The vertical dotted red and dashed blue
lines highlight two particular post-selections, at θT = 9.28 and θT =
9.32, respectively. We compare the number of multipaths linking the
excited state to these two final states over the given time interval.
The first of these final boundaries admits five OP solutions, shown
in (b), whereas the second admits 11 OP solutions, shown in (c).
This sharp change in the number of solutions existing between quite
similar boundary conditions highlights a way that instabilities in the
OP dynamics (and therefore the underlying distribution from which
they are optimized) are exaggerated in conjunction with the OPs being
chaotic.

behavior of the OPs reflects the behavior of the underlying SQT
distribution post-selected on the desired boundary conditions.
We also see that we have a situation where the number of
MLPs reaching most θT grows rapidly, such that it becomes
harder to say which dynamics are actually the overall “most
likely.” The MLP is simplest to interpret when only one or a few
solutions exist, corresponding to well-defined routes visible
in the underlying SQT density. Nonetheless, we may proceed
knowing that multipaths with even large numbers of solutions
reflect the features of the underlying post-selected trajectory
density. Furthermore, from Fig. 7 we see that we may find
examples of interesting OP behavior using the LM we use to
find multipaths. We next devote some time to relate the LM’s
behavior directly to OP chaos.

B. Formal connections between OP chaos and multipaths

The sharp growth in the complexity of the LM, due at least in
part to sharp increases in the number of catastrophes with each
kick, is born of the same resonance phenomenon which gen-
erates chaos in this system for low ε (compare Figs. 1 and 2);
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FIG. 8. Three Lagrange manifolds, initialized at θ0 = 0 (solid
black) and θ±

0 = ±0.01 (dashed cyan and dotted red), are shown at
T = 5 μs. A more comprehensive view of the central manifold is
shown in Figs. 5(a), 5(d) and 5(g), as we are using the same parameters
(τx = 1 μs = �, τm = 0.025 μs, and ε = 0.99). In this region, the
three manifolds have a similar shape, so the divergence of points with
the same p0 depends on the size of |JT |. Two values of p0 (shown as
horizontal lines) and the corresponding points on each manifold are
emphasized, highlighting that the points in the region with a larger
|JT | have been torn much farther apart than those in the region with a
smaller |JT |, due to a small shift in the p direction between the LMs.

it is natural to suppose that the subsequent LM complexity at
larger ε, and therefore the corresponding multipath behavior
(Figs. 5 and 6), is connected with the chaotic properties of the
OP dynamics we have described (e.g., in Figs. 3 and 4).

The presence of large numbers of multipaths is a hallmark
of OP chaos. When multipaths form, the LM overlaps itself,
and in doing so gains areas of large |JT | [see Figs. 5(a), 5(d) and
5(g) for an example of this]. Suppose three LMs are initialized
at the states θ0 and θ±

0 = θ0 ± δθ0. In order to avoid chaos,
it is necessary that the LMs maintain similar shapes. We first
consider the case where they do maintain similar shapes, except
for some variations ±δθ and ±δp. After time T , the distance
between points with the same p0 is

DT ∼ 1
2 |θT (p0) − θ+

T (p0 + δp)|
+ 1

2 |θT (p0) − θ−
T (p0 − δp)| + δθ

≈ δθ0 + δθ + |JT δp|. (19)

In regions where |JT | is large, the effect of small shifts in the
p direction between manifolds of similar shape is magnified,
so nearby points in these regions will diverge. In other words,
even a small difference δp(t ) between p(t ) and p±(t ) generates
very different values θT and θ±

T where the manifold has large
|JT |. This situation is illustrated in Fig. 8. A large |JT | can
only appear when the manifold is either spreading over a very
high range of winding counts, and/or forming many-layered
caustics, with closely spaced (relative to p0) catastrophes. It
is also possible that adjacent LMs have unrelated shapes after
some time, in which case the region in question is necessarily
chaotic. This situation does not have to occur in connection
with the formation of many caustics; however, if the scale on
which caustics form relative to p0 is smaller than the shifts
δp, LMs which maintained similar shapes become scrambled

FIG. 9. A particular segment of the LM from Fig. 5 is shown
at T = 4 μs (a), and T = 5 μs (b), in solid black, with auxiliary
LMs initialized ±0.01 rad away in dashed cyan and dotted red (as
in Fig. 8). We again use τx = 1 μs = �, τm = 25 ns, and ε = 0.99.
At T = 4 μs, the three manifolds still have a similar shape, but are
shifted in the p direction. In (b), one kick later, more catastrophes
have formed, and are clustered on a scale smaller than the shift in
p, such that paths with the same p0 in different LMs are torn apart
throughout the region shown, rather than only in a few segments of
the LMs with large |JT |.

to the point that they no longer resemble each other as they
evolve. This situation is shown in Fig. 9. One particularly
interesting feature which emerges from chaotic OP dynamics
is that one may choose similar boundary conditions which sit
on opposite sides of many catastrophes in the manifold; thus
situations where small changes in final boundary conditions
lead to dramatically different numbers of OP solutions, as
shown in Fig. 7, are relatively commonplace in such systems.

In Appendix D 1 we define numerical “stretching param-
eters” which quantify aspects of a manifold’s shape and
deformation. The overall growth of the number of caustics in a
representative segment of the manifold, and its overall level of
deformation, are compared with the average LE (D9) in Fig. 10.
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FIG. 10. We plot three parameters s1 (D1), s2 (D3), and s3 (D7),
defined in Appendix D 1, which quantify the deformation of the
manifold, along with the average LE λav (D9). These “stretching
parameters” are normalized relative to the LE so that the magnitude
of the area under all the curves is the same over the interval shown.
These parameters are plotted over the first 5 μs for the system given
by (12) and (14), with A = 0.99 μs, τx = 1.0 μs, and τm = 25 ns.
The manifold was initialized at θ0 = 0 in (a), and θ0 = 0.286 in (b),
the latter of which corresponds to Fig. 4(a). In both (a) and (b) we
use auxiliary manifolds with θ0 ± 0.01, and p0 ∈ [−2, 2] to compute
λav. We see that the length L (s1) and Jacobian J (s2) for the manifold
(green♦ and red�, respectively) are very closely related to each other,
and that the number of catastrophes (see s3, blue ×) grows sharply at
each kick, following similar behavior. We see that by about the third
or fourth kick, λav (D9) (black ◦) begins to saturate, and decreases
(although it remains quite positive); this appears reasonable, since
the distance (D8) is defined in a way that gives it a maximum value,
whereas the other parameters plotted here may grow indefinitely. With
the support of the arguments from Sec. IV, the connection between the
average LE and other parameters reinforces that chaos and complex
multipath behaviors do not occur independently in this system; one
implies the other across large sections of manifold (large enough to
encompass virtually all reasonably probable OP behaviors originating
from a particular initial state).

We see that the length of the manifold grows exponentially
[see (D1)], and that this growth is closely matched by exponen-
tial growth in the average Jt [see (D3)] and a number of catas-
trophes [see (D7)]. This is in contrast with the rate of growth in
catastrophes in the integrable case (for time-independent τx and
τz), which is only linear in time [76]. The average LE (D9) over
a large segment of the LM also grows exponentially for several
kicks, and then levels off. This is expected, as the distance mea-
sure (D8) has a maximum value—our LEs can never actually
grow indefinitely, because there is a limit to how far apart they
can get on the Bloch sphere. Nonetheless, we see that there is
enough chaos around the θ0 shown, across the range p0 ∈ [0, 2]
to obtain a function λav(t ) which is almost always positive and
mostly increasing on t ∈ (0, 5] μs; its magnitude and shape
are similar to those shown from particular examples in Fig. 4.
Furthermore, we see in Fig. 10 that the shapes of λav(t ) and the
three parameters describing the LM are related, highlighting a
general connection between multipaths and OP chaos.

V. CONCLUSIONS

We have have introduced a different kind of chaos in
quantum systems, which may appear in open systems with
dynamics due to continuous measurements. We do this by
looking for chaos in the extremal-probability paths, rather
than in ensembles of stochastic quantum trajectories directly.
OPs are mathematically classical, and we therefore apply a
classical definition of chaos, which implies a form of unpre-
dictability even in deterministic systems; if paths with nearby
initial conditions diverge exponentially, then knowledge of the
long-term behavior of the system is severely limited by the
precision with which initial states can be prepared. Alternately,
post-selections on vastly different outcomes may be traced
back to initially similar behaviors, which diverge into different
behaviors exponentially, rather than linearly, in time. The OP
formalism allows us to apply this classical definition of chaos to
purely quantum systems, lacking any clear mechanical analog
in the classical world. For example, we have demonstrated that
such exponential divergence may occur in the OPs for a con-
tinuously monitored qubit, where dynamics reminiscent of the
kicked rotor are generated entirely by making measurements.
Lyapunov exponents computed among OPs show that OPs
with initially similar quantum states and optimal readouts can
diverge to completely different states within relatively short
times (i.e., over intervals well within the coherence times of
modern qubits, used in many experiments to implement the
weak, continuous measurements we have considered here). We
stress the instability of OPs is related to the instability of the un-
derlying distribution of SQTs itself, when both initial and final
boundary conditions are applied. With the boundaries properly
taken into account, we have shown that chaotic OP behavior
is connected with dramatic growth, over time, in the number
of OP solutions meeting given sets of boundary conditions, as
well as the possibility to see large differences in the number
of OP solutions linking nearly identical boundary conditions.
These effects are themselves a form of unpredictability in
the dynamics, which reflect instabilities in the dynamics of
underlying SQTs and their statistics. We have been able to
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explain the onset of both the chaotic and multipath behaviors
in terms of resonances between an integrable and perturbing
part of the OP Hamiltonian. This concept should extend to any
system with a time-dependent and periodic perturbation.

Instabilities in the dynamics of stochastic quantum tra-
jectories may have consequences for qubit control, error
correction, and other general problems of interest in the larger
quest for useful quantum control and information processing.
Extensions of the work we have started here could generalize
into a practical understanding of when and how OP chaos
can occur, and how it impacts feedback control schemes or
other useful tasks involving continuously measured qubits.
For instance, suppressing the kinds of dynamics we describe
here underscores the need for effective feedback schemes to
control complicated systems. Alternatively, a feedback control
scheme itself (which is necessarily time dependent) could lead
to quite wild and unintended dynamics among rarer events
which deviate from the intended behavior; an understanding
of these dynamics could aid in designing robust schemes. We
hope that further investigations of OP chaos in qubits, across
a wider range of measurement schemes, can lead to a deeper
understanding of these questions.
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APPENDIX A: REVIEW OF STATE UPDATE AND PATH
INTEGRAL FORMALISMS FOR CONTINUOUS

WEAK MONITORING

All of the information contained in this Appendix can be
found in other works, e.g., Refs. [9] and [65–67,76], and is
included here to make this paper more accessible to those not
already familiar with the formalism.

1. Bayesian state update

As seen in (1) and the surrounding text, the state of
our qubit ρ, given some readout, is updated through the
application of some measurement operators according to ρ(t +
dt ) = Mρ(t )M†{tr[Mρ(t )M†]}−1

. Individual weak qubit
measurements in the xz plane of the Bloch sphere can be
implemented with the measurement operator

Mϕ = exp

[
−

(
1 + r2

ϕ

)
dt

4τϕ

]{
cosh

[
rϕ dt

2τϕ

]
I

+ sinh

[
rϕ dt

2τϕ

]
(σz cos ϕ + σx sin ϕ)

}
, (A1)

for dt � τ . We have a z measurement for ϕ = 0 and an
x measurement for ϕ = π/2, i.e., we may define operators
specifically for X = Mϕ=π/2 and Z = Mϕ=0 measurements,
for use in the state update equation. These operator assignments
can be shown to be equivalent to applying Bayes’ rule, in
the readout probability densities, to individual elements of the
density matrix ρ [9,65,76].

In the example developed in the main text, we are interested
in monitoring both the observables σx and σz at the same time,
i.e., we are interested in the particular case where

ρ(t + dt ) = ZXρ(t )X†Z†

tr[ZXρ(t )X†Z†]
. (A2)

The probability density from which the readouts r are drawn is
given by ℘(r|ρ) = tr[ZXρ(t )X†Z†]. The two-measurement
operator can be expanded to first order in dt , such that

ZX ≈ (I + Ẑdt )(I + X̂dt ) ≈ I + (X̂ + Ẑ)dt, (A3)

where X̂ = −(rx − σx )2/(4τx ) and Ẑ = −(rz − σz)2/(4τz).
Notice that to O(dt ), any dependence on the order of mea-
surement operators disappears. Then an update equation for
small dt ,

ρ̇ = ζ̂ − ρ(t )tr(ζ̂ ), (A4)

can be derived, where ζ̂ ≡ [X̂ + Ẑ, ρ]+, and the brackets [, ]+
denote the anticommutator. For the vector q of Bloch sphere
coordinates, a dynamical system can be extracted by taking
q̇ = tr(ρ̇σq), which yields

ẋ = (1 − x2)rx

τx

− xzrz

τz

, (A5)

ẏ = −y

(
zrz

τz

+ xrx

τx

)
, (A6)

ż = (1 − z2)rz

τz

− xzrx

τx

. (A7)

It is easy to see that if y = 0, then ẏ = 0 also, so that the y

evolution can be uncoupled from the system and neglected; we
do this and work purely in the xz plane of the Bloch sphere.
The remaining x and z equations can be converted to polar
coordinates (R, θ ) in that plane; it is then simple to show
that for perfect measurement efficiency (implicitly assumed
above), and an initially pure state (R = 1), that Ṙ = 0, leaving
only evolution in θ , given by

θ̇ = F[θ, r, t] = rx

τx

cos θ − rz

τz

sin θ. (A8)

2. The stochastic path integral

We now review the procedure developed in Refs. [65–67] to
derive the OPs. We begin by writing down the joint probability
associated with a path (a sequence of readouts {r} and their
associated states {q}), which may be expressed by

P ({q}, {r}|qi , qf )

= δ(qi − q0)δ(qf − qn)

[
n−1∏
k=0

℘(qk+1|qk, rk )℘(rk|qk )

]
.

(A9)
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The δ-functions at the initial and final points apply the initial and final boundary conditions. The indices k

run over time, such that if ρk = ρ(t ), then ρ(t + dt ) = ρk+1 and so on. We use ℘(qk+1|qk, rk ) = δ(qk+1 − qk −
dtF[qk, rk]) is a deterministic update rule from e.g. (A5) or (A8). The readouts are stochastic, and drawn from
the density ℘(rk|ρk ) = tr(Z (rz)X (rx )ρkX†(rx )Z†(rz)) discussed above. Recall that a δ-function may be written δ(q) =
(2πi)−dim(q)

∫ i∞
−i∞ dp exp [−p · q], where dim(q) is the dimension of q, and dp = dp1 dp2 . . . dpdim(q). We apply this identity

to all δ-functions in (A9), such that

P = lim
n→∞ lim

dt→0
N

i∞∫
· · ·

∫
−i∞

(
n−1∏
k=0

dpk

)
exp

[
B +

n−1∑
k=0

(−pk · (qk+1 − qk − dt Fk ) + ln ℘(rk|qk ))

]

=
∫

D[p] exp

[
B +

∫ T

0
dt (−p · q̇ + p · F[q, r] + G[q, r])

]

=
∫

D[p] exp

[
B +

∫ T

0
dt (H (q, p, r, t ) − p · q̇)

]
=

∫
D[p] exp (B + S[q, p, r]) (A10)

for N = (2πi)−(n+2)·dim(q). We use the shorthand B = −p−1 ·
(q0 − qi ) − pn · (qn − qf ) for the boundary terms, and the
shorthand G for the expansion to O(dt ) of the log-probability
for the readouts ln ℘(r|q). The expansion of ln ℘(r|ρ) =
ln tr(ZXρ(t )X†Z†) to O(dt ), relevant to the example in the
main text, yields

G dt = −
(

r2
x − 2rx sin θ + 1

2τx

+ r2
z − 2rz cos θ + 1

2τz

)
dt,

(A11)

up to some constants which do not affect the dynamics, and
which can be absorbed into N . The expression (A11) should
be understood as the counterpart to (A8). OPs extremize the
path probability, i.e. Hamilton’s equations for the OPs emerge
by demanding δS = 0, a constraint satisfied by solutions
extremizing the path probability P . See Refs. [65,66] for
further details.

APPENDIX B: RESONANCES DISRUPTING
INTEGRABILITY

Here we review resonances more formally, as they apply
to the example from Sec. III. Helpful external references
which inform the following summary and analysis include
[40,41,82,93–96,102].

1. Introduction to resonances in canonical perturbation theory

We decompose our stochastic Hamiltonian in powers of
ε, i.e., H (θ, p, t ) = H (0)(p) + ∑∞

n=1 εnH (n)(θ, p, t ), as we
have done above. Below we will assume that ε is small,
and restrict our analysis to a first-order perturbation, working
only with H ≈ H (0) + εH (1) + O(ε2). When a Hamiltonian
is integrable, it is generally possible to find a set of canonical
coordinates called action-angle coordinates; the Hamiltonian,
when transformed into these coordinates (the “Kamiltonian”
K [94]), only depends on the new generalized momenta [93].
We have assumed that H (0) is already in its action-angle
coordinates. We will use our given coordinates {θ, p} = 1,
and hypothetical new coordinates {φ, J } = 1 throughout our
derivations. The braces denote the Poisson bracket. We will

also use a generating function G(θ, J, t ) of the second type
[94], which transforms between the two sets of coordinates.
Recall that

p = ∂G

∂θ
, φ = ∂G

∂J
, and K = H + ∂G

∂t
, (B1)

where φ̇ = ∂J K and J̇ = −∂φK . The aim is to derive K to
first order, and the transformation from θ and p to φ and J

which allows for J̇ = 0 and φ̇ = ν(J ). In other words, we
suppose H (0) + εH (1) is also integrable, and search for the G

which transforms to a new Kamiltonian K (J ) in action-angle
coordinates. However, this procedure will fail at resonances,
indicating that even to first order, the Hamiltonian is no longer
integrable at certain points (the transformation to new action-
angle coordinates cannot be found). Our primary interest is not
in resolving this issue analytically, but merely in seeing where
and how this transformation becomes impossible. Derivations
similar to the one below can be found in, e.g., [40,82,95].

We suppose that G can be expanded in powers of ε, such that
G ≈ θJ + ε G(1)(θ, J, t ), where G(0) = θJ gives the identity
transformation. Then from (B1) we have

p ≈ J + ε
∂G(1)

∂θ
and θ ≈ φ − ε

∂G(1)

∂J
. (B2)

Putting these coordinates into H (θ, p, t ) and expanding gives

H (θ, p, t ) ≈ H (φ, J, t ) + ε{G(1),H�} + O(ε2), (B3)

and then inserting the expansion of H itself, and throwing out
terms to second order in ε, gives

H (θ, p, t ) ≈ H (0)(J ) + εH (1)(φ, J, t ) + ε{G(1),H (0)}. (B4)

The Kamiltonian K ≈ K (0) + εK (1) is then given, to first order
in ε, by

K (0) = H (0)(p = J ),

K (1) − H (1)(θ = φ, p = J, t ) = {G(1),H (0)} + ∂G(1)

∂t
. (B5)

We will now assume that our phase space is 2π periodic in
θ and/or φ, and that the time-dependent perturbation is also
periodic, with some period �. Then we can write H and G as
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Fourier series

H (1) =
∑
�,k

ζ�,k (J )ei�θ e2iπkt/�

and

G(1) =
∑
�,k

ξ�,k (J )ei�θ e2iπkt/�. (B6)

We put these into the expression for K (1) above. We assume
that K (1) is now only a function of J (meaning that we have
found the action-angle coordinates), such that K (1)(J ) can be
absorbed into ζ0,0(J ). Then we have

iζ�,k (J )

�ν (0)(J ) + 2πk
�

= ξ�,k (J ). (B7)

This equation contains the resonance condition we are in-
terested in. Resonances occur where �ν (0)(J ) + 2πk

�
= 0, for

any integer � and k. The Fourier coefficients ξ�,k of even
the first-order generating function G(1), which attempts to
recast the perturbed Hamiltonian into a clearly integrable form,
diverge. This effectively means that the canonical transforma-
tion to action-angle coordinates cannot be completed where a
resonance condition appears. The KAM theorem [96] is largely
concerned with (1) understanding how close to a resonance a
path must be to become chaotic, (2) proving that integrable tori
of H (0) are in fact approximately preserved so long as they are
not too close to the resonances, and (3) formally showing how
to actually construct a convergent perturbation theory away
from the resonances. We will not concern ourselves with the
details of their results overmuch below, except to note that
resonances with low � and k (near 0) typically affect or destroy
a larger neighborhood of nearby integrable orbits than those
with larger � or k. These qualitative features of the dynamics are
visible throughout our numerical studies, detailed in a series of
animations, included in the Supplemental Material [103] and
described in Appendix C 2.

2. More formal analysis of the two-measurement example

We here consider the system from Sec. III in the perturbative
regime (both measurements are still relatively weak) more
formally. Recall the notation and equations in (14), (16), and in
their surrounding text. Below we will take τx = 1, thereby han-
dling all times in units of τx ; the kicking period will also taken
to be unity (� = 1). We reiterate that τm � 1, such that the
weak kicks are narrow compared with their repetition period.
The OP Hamiltonian (12) is H� = H (0)(p) + εH (1)(θ, p, t ) +
ε2H (2)(θ, p, t ) + · · · , or

H�(θ, p, t ) = p2 − 1

2
+

( ∞∑
n=1

εngn(t )

)
H̃ (θ, p) (B8)

for

H̃ ≡ p2 − 1

2
sin2 θ − p sin θ cos θ. (B9)

We may truncate the series to a desired order in ε, and when
ε � 1 (weak kicks, corresponding to A � τx), the first or

second-order approximation of the Hamiltonian will reflect the
dynamics quite well. Below we undertake the actual Fourier
expansion implied by (B7), to see how much more we can learn
analytically about its range of applicability in this system.

We will need to decompose both H̃ (which is periodic in θ )
and

∑
n εngn(t ) (which is periodic in time). We start with H̃ .

Recall that the Fourier form and coefficients may be defined
as (∑

n

εngn

)
H̃ (θ, p) =

∞∑
�=−∞

C�(p, t )ei�θ , (B10)

C� = 1

2π

∫ 2π

0

(∑
n

εngn

)
H̃ (θ, p)e−i�θ dθ. (B11)

We find the coefficients

C0 =
(∑

n

εngn

)
p2 − 1

4
, (B12)

C±2 =
(∑

n

εngn

)(
1 − p2

8
∓ p

4i

)
, (B13)

with those for all other � vanishing. We now perform a similar
computation, expanding the above coefficients into Fourier
form in t , such that

C�(p, t ) =
∑

k

ζ�,k (p)e2iπkt =
∑
k,n

ζ
(n)
�,k (p)e2iπkt . (B14)

This implies that we may write new coefficients

ζ
(n)
0,k (p) = εn p2 − 1

4

∫ 1

0
gn(t )e−2iπktdt (B15)

and

ζ
(n)
±2,k (p) = εn

(
1 − p2

8
∓ p

4i

)∫ 1

0
gn(t )e−2iπktdt. (B16)

Evaluating these expressions requires the result

Cn,k ≡
∫ 1

0
gn(t )e−2iπktdt

= 2(−1)k
∫ 1/2

0
exp

[
−nx2

2τ 2
m

]
cos(2πkx)dx

= (−1)k
√

π

2n
τm exp

[
−2π2k2τ 2

m

n

]

×
(

erf

[
β+

n,k

τm

√
8n

]
+ erf

[
β−

n,k

τm

√
8n

])
, (B17)

where we have defined β±
n,k ≡ n ± 4ikπτ 2

m, the error functions
according to

erf(z) ≡ 2√
π

∫ z

0
e−u2

du, (B18)

and used the form (10). With τm much narrower than τx = 1
we may approximate Cn,k by extending the integration bounds,
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i.e.,

Cn,k = (−1)k
∫ 1/2

−1/2
exp

[
−nx2

2τ 2
m

]
cos(2πkx)dx ≈ (−1)k

∫ ∞

−∞
exp

[
−nx2

2τ 2
m

]
cos(2πkx)dx = (−1)kτm

√
2π

n
exp

[
−2k2π2τ 2

m

n

]
.

(B19)

The entire Hamiltonian can be written, to order O(εN ), as

H� = H (0)(p) +
∑

�

∑
k

∑
n

ζ
(n)
�,k (p)ei(�θ+2πkt ) = H (0)(p) +

∑
k

∑
n

(
ζ

(n)
0,k (p) + ζ

(n)
−2,k (p)e−2iθ + ζ

(n)
2,k (p)e2iθ

)
e2iπkt

= H (0)(p) +
(

p2 − 1

4
[1 − cos(2θ )] − p

2
sin(2θ )

) ∞∑
k=−∞

N∑
n=1

εn Cn,ke
2iπkt . (B20)

This is still an exact result if N → ∞ and the exact form of
Cn,k is used. It is however easily set up to truncate any of the
expressions down to a specific order N in ε. The range of k

which makes substantial contributions to its sum at a given n

should run roughly proportional to
√

n/τm, such that the k sum
could also be truncated, although the number of relevant terms
will remain large (this is clearly valid based on the approximate
form of Cn,k). An approximate version of the Hamiltonian,
based on a truncated Fourier series, is useful in that it can be
more easily studied analytically to a desired order in ε.

Resonance phenomena are not relevant for � and k where
ζ�,k = 0, but the analysis above shows that we have more than
enough nonzero coefficients at play in this system to generate
all the resonances of interest using (B7). Specifically, ν (0) = p

and � = 1 give resonances at p = 2πk/� for � = 0,±2 and
any integer k, with emphasis on |k| near zero. This predicts
the onset of chaos at integer multiples of π , including the
fixed point of H (0) along p = 0, and is entirely consistent
with our observations in Figs. 1 and 2; we elaborate further in
Appendix C 2.

This analysis does not preclude the formation of resonances
beyond those we just described using (B7). The expression
(B7) only includes matches in period between the zeroth and
first order (in ε) parts of H�. For larger ε, the first-order
approximation of the full Hamiltonian is no longer a good
representation of the dynamics. It is known that resonant tori
will give way to alternating elliptic and hyperbolic fixed points
(see, e.g., Sec. 7.2 of the text by Ott [38], and the Poincaré-
Birkhoff theorem). Paths about the elliptic fixed points are
closed curves in the phase space (representing periodic orbits),
which themselves develop resonances with the perturbation
(which may become more pronounced in numerical studies at
larger values of ε).

APPENDIX C: DESCRIPTION
OF SUPPLEMENTARY ANIMATIONS

We give a complete list of the animations included in the
Supplemental Material [103], along with captions to clarify the
details and context of each.

1. Path pairs in phase space

The two videos below superpose the evolution of particular
path pairs over the dynamic phase space context in which they

evolve. We see the paths, which start next to each other in the
phase space get pulled apart over time, in an illustration of the
basic definition of chaos.

VT_psani1.mp4—This video shows the phase space (θ on
the x axis, p on the y axis) of the system described in Sec. III,
animated in time. Different colors represent different stochastic
energies at any given moment, and the separatrix at any given
time is shown in light green. It sits along the p = 0 line when
the system is like a rotor, and briefly flares out with each kick.
The red and blue dots track the evolution of the paths of the
same colors in Fig. 4(a). All operating parameters are the same
as in that figure (τx = 1 μs, A = 0.99 μs, τm = 25 ns).

VT_psani3.mp4—This video tracks the paths in Fig. 4(b).
All other details are identical to those in the video above.

2. Stroboscopic phase portraits

We here discuss animated stroboscopic phase portraits for
the system described in Sec. III. Each frame is a stroboscopic
portrait at a different value of ε, with the animation running
over increasing values of ε. In all of the films below, τx =
1.0 μs, such that A (in μs) is numerically equivalent to ε (they
are used interchangeably here). We continue using τm = 25 ns
throughout. All initial conditions, arranged on a mesh, run to
T = 100 μs, and are plotted at the strobe times unless they
have diverged (the numerical integration of the path’s value is
no longer certain to be correct to within some tolerance). Strobe
times occur at every integer time between kicks; at these times,
paths are plotted as a point, with the point’s color denoting its
LE at that time. Black dots correspond to λ = 0. Cool earth
colors range over λ ∈ [0,−0.25] MHz, growing lighter across
that range, with every point λ < −0.25 MHz plotted at the
extreme end (lightest gray-brown hue) of that cool color bar.
Likewise, warm colors range over λ ∈ [0, 0.25] MHz, growing
lighter across that range, with every point λ > 0.25 MHz
plotted at the extreme end (lightest yellow hue) of that warm
color bar.

VT_chonset_survey.mp4—The evolution of a large
swath of the phase space over low values of ε is shown.
Resonances at p = ±2π,±3π,±4π are immediately visible,
followed by those at p = ±π , and then those at p = 0. In
general, we see similar dynamics at all of these resonances,
where the initially (ε = 0) flat line in phase space at a resonant
p0 opens into a series of stable islands around an elliptic fixed
point (separated by hyperbolic fixed points). As ε increases,
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resonances form within the periodic islands themselves; these
resonances gradually destroy the periodic orbits forming the
island, until the entire region of phase space taken up by the
island is effectively a completely chaotic sea. This process
is generic to chaotic Hamiltonians with resonances [38], the
kicked rotor or standard map being one of the classic examples
[82]. Although we only see its early stages in this particular
film, the process will run to conclusion in subsequent ones.
There is considerable variability in how fast the different lines
generate elliptic islands and hyperbolic fixed points, and in how
large those island get, thereby disrupting the rotor behavior
(relative to the unperturbed case) nearby. Generally we can
already see that islands forming at higher |p| in the phase space
(corresponding to rarer events [76]) undergo this process faster
than those at lower |p|, relative to changes in ε.

VT_chonset_reson.mp4—Once again we animate the
phase space over low values of ε. This time, our empha-
sis is specifically on the simplest resonances. Initial condi-
tions generating each frame are chosen specifically for p0 =
0, π/3, π/2, 2π/3, π, 3π/2, 2π, 3π . Auxiliary lines shifted
by ±0.2 from the main list of p0 are also included for
context. This gives a clear look at the relative “strengths” of
different resonances, emphasizing the different rates, relative
to changes in ε, at which islands from resonances grow,
generate internal resonances, and are broken apart. Although
only the p = 0, π, 2π, and 3π resonances appear in the
first-order expression (B7), we can begin to see qualitatively
similar effects happening, with periodic islands of half the size
and spacing, at the p = 3π/2 line by the end of this video,
suggesting that a wider variety of resonances come into play
when higher orders of H (n) become relevant to the dynamics.

VT_chevolv_narrow.mp4—We zoom in on the formation
and evolution of the longest-lived islands in the phase space, at
p = 0,±π , over moderate to high values of ε. An increasing
number of resonances within the stable islands formed from
the simpler ones are visible. These gradually eat away at the
main islands as ε grows. Those which formed around p = ±π

are almost completely destroyed by the end of the video.
VT_chfinal_pi.mp4—We slow down the animation over

the destruction of the islands around p = π at high ε, so that
they can be viewed in detail. Note the numbers of sub-islands
forming within the main one; there is a “countdown” which
occurs in the number of alternating elliptic and hyperbolic fixed
points which emerge from the larger island as it is destroyed.
(See, e.g., Ott [38], Sec. 7.2 for details.) That is, the main
island is gradually destroyed through the emergence first of a
period-6 island chain, followed by a period-5 island chain, and
so on, down to a period-2 sub–island pair just visible as the last
periodic remnants in that part of the phase portrait disintegrate.

VT_chfinal_center.mp4—Finally, we conclude with a
detailed look at the destruction of the final remaining periodic
islands in the phase space, around p = 0, at values of ε

extremely close to one (the stronger measurement kicks are
nearly perfectly projective).

APPENDIX D: DETAILS ON NUMERICAL METHODS

In Fig. 10 we plot a number of stretching parameters which
quantify various properties of the LM’s shape. We define those
parameters explicitly in Appendix D 1, and then make some

general comments about the numerical computation of the LM
in Appendix D 2. The three stretching parameters we describe
are designed for numerical use, but are very much an outgrowth
of the ideas laid out in Sec. IV of the main text.

1. Numerically quantifying manifold deformation

The first parameter quantifying the deformation of the
manifold examines the degree to which the manifold “stretches
out” relative to its initial configuration, and is given by

s1(t ) = 1

t
ln

(
L(t )

L(0)

)
, (D1)

where the length of the LM is given by

L(t ) =
N−1∑
i=0

√
[θi+1(t ) − θi (t )]2 + (

pi+1
0 − pi

0

)2
. (D2)

Numerically, the manifold is defined in terms of a discrete
string of points, indexed by i. When the parameter s1(t ) is
positive, it indicates an exponential rate of growth of the
length of the manifold; by definition this means that states
which start near to each other on the manifold spread out
dramatically over intervals where s1 sustains a positive value
over time. Since the LM remains continuous, this should
happen in conjunction with growth in the second parameter
we define, which is given by

s2(t ) = 1

t
ln [Jav(t ) + 1]. (D3)

We define Jav(t ) as the average Jt of the manifold, calculated
as the weighted average

Jav (t ) = 1

2

N−1∑
i=1

wi (t )[|J+
i (t )| + |J−

i (t )|], (D4)

where

J+
i (t ) = θi+1(t ) − θi (t )

pi+1
0 − pi

0

, J−
i (t ) = θi (t ) − θi−1(t )

pi
0 − pi−1

0

, (D5)

and the weights wi (t ) are the fraction of the range of initial
momenta taken up by each segment, i.e.,

wi (t ) = 1
2

(
pi+1

0 − pi−1
0

)
. (D6)

These weights will all be equal as long as the chosen initial
momenta are evenly spaced, but are required to compensate for
the fact that this is in general not the case (see Appendix D 2).
We showed above how chaos is related to |Jt | � 1; sustained
growth in s2 implies exponential growth in |Jt | across the
relevant segment of the manifold. Following the arguments
of Sec. IV, we expect this to be connected to the formation
of chaotic regions and higher numbers of catastrophes. We
capture this last feature with a third parameter

s3(t ) = 1

t
ln [1 + Nc(t )], (D7)

where Nc(t ) is the number of catastrophes in the manifold
at time t , i.e., the number of places where Jt = 0. Sustained
positive values and growth in s3(t ) imply that the number
of catastrophes is increasing exponentially; this necessarily
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implies a corresponding amount of growth in multipath
solutions connecting the affected boundary conditions.

Finally, it is useful to define an average LE of the manifold,
for the purposes of having an explicit measure of chaos in a
manifold segment to compare against the above parameters
describing aspects of the LM’s shape and deformation over
time. We initialize three manifolds with initial coordinates
θ0 and θ±

0 = θ0 ± δθ0. The average distance between points
is obtained using the same weighting as above, combined
with (9), to give

Dav(t ) = 1

2

N−1∑
i=1

wi (t )
√

[δx+
i (t )]2 + [δz+

i (t )]2

+ 1

2

N−1∑
i=1

wi (t )
√

[δx−
i (t )]2 + [δz−

i (t )]2, (D8)

where [δx±
i (t )]

2 = [sin θi (t ) − sin θ±
i (t )]2 and [δz±(t )]2 =

[cos θi (t ) − cos θ±
i (t )]2 and the weights wi (t ) are given

in (D6). The average LE can then be calculated using

λav(t ) = 1

t
ln

(
Dav(t )

Dav(0)

)
, (D9)

in analogy with (8).

2. Manifold refinement methods

We have shown, e.g., in Fig. 10, that length of a LM in
OP phase space may increase dramatically in time. While this
may happen to some degree in integrable systems, simply due
to the LM stretching across many windings about the Bloch
sphere or spiraling around an elliptic fixed point, the effect is
far less predictable and far more pronounced in the chaotic
systems which are our topic now. In order to perform good
plotting and analysis of the LM after a given time interval, the
resolution of paths in the LM must be adequate at the final
time. The point resolution of the LM has to be especially good
near final boundary conditions of interest for a multipath, if
we are to catch all of the solutions in a multipath group and
find the p0 which lead to the desired θT with high precision.
It should be apparent that this raises considerable numerical
difficulties, since it is not obvious, a priori, where in the
range of p0 a high density of paths should be initialized in
order to obtain a good LM after integration. Furthermore, the
number of paths required may quickly become prohibitively
large for timely computation as the interval over which the
LM needs to be integrated grows. To add to the complications,
there are certain paths where p(t ) diverges to ±∞ (or close
enough to stop a numerical integration), which must be handled
carefully to avoid wasting time or crashing certain types of
integrators.

We resolve these issues by developing a process to refine
the manifold; that is, we have written algorithms which run a
preset number of initial conditions forward, determine where
there are gaps between points in the final manifold which
are unacceptably large, and then runs more points in the
neighborhood of the relevant initial conditions so as to fill in
the final manifold up to the desired resolution. We have used
the Python programming language, and a mix of fourth-order
Runge-Kutta and Bulirsch-Stoer integration (see [101]) to do

this. The algorithm may iterate many times until the final
manifold passes some resolution tests over its entire final range.
Some version of this process is required to obtain the graphics
shown in Figs. 2, 5, 6, 7, 8, 9, and 10. Such an algorithm
necessarily results in a manifold sampled over points that are
unevenly spaced in p0, which motivates the use of weighting
factors (D6) in evaluating shape properties of the LM.

We highlight an aspect of the stretching we have shown
particularly using (D1) however, which is the sheer number of
paths required to get a usable manifold after even moderate
T for the strongly chaotic regime of larger ε. For ε = 0.99,
a single manifold for θ0 = 0 and p0 ∈ [0, 2], used to find the
paths at T = 4.0 μs as shown in Fig. 6(c), or make a plot
like those in Figs. 5 or 10(a), ends up requiring integration of
20 236 initial conditions over the time interval. This can be
done to quite high precision on a personal computer within a
few hours. By adding one more kick at these same parameters,
i.e., going T = 5.0 μs as shown in Fig. 6(d), that number
jumps to 311 710 OPs required to construct the LM; this may
be integrated precisely on a personal computer in 1–2 days.
It should quickly be apparent how this growth becomes a
problem for numerical computation; getting a good manifold
after even 7 or 8 μs in the strongly chaotic regime could
take weeks or months without high-powered computational
facilities.

APPENDIX E: SQT DIFFUSION
WITH TWO MEASUREMENTS

The mathematical context of many of the objects we use
here is discussed in the literature on stochastic mathematical
methods; see, e.g., the book by Gardiner [86] for further details.
Suppose we are given a stochastic differential equation (SDE,
a Langevin equation)

ẋ = A(x, t ) + B(x, t )ξ (t ), (E1)

in Stratonovich form. As discussed elsewhere [65,76,87], the
SDEs we obtain from a Bayesian approach become equivalent
to the Stratonovich form of the SDEs we would obtain
from a stochastic master equation (SME) approach [2,11] if
we make a simplification by assuming the noise is white,
specifically by substituting in rq (t ) = q(t ) + √

τqξ (t ), where
ξ (t ) = dW (t )/dt and dW (t ) is a Weiner process. Given a one-
dimensional SDE in Stratonovich form (E1), the corresponding
FPE is given by [86]

∂℘

∂t
= − ∂

∂x
(A℘) + 1

2

∂

∂x

(
B

∂

∂x
(B℘)

)

=
[

B

2

∂2B

∂x2
+ 1

2

(
∂B

∂x

)2

− ∂A

∂x

]
℘

+
(

3B

2

∂B

∂x
− A

)
∂℘

∂x
+ B2

2

∂2℘

∂x2
, (E2)

for ℘ = ℘(θt , t |℘(θ0, 0)).
Let us apply this formula to study the diffusion under two

measurements with kicking, as treated in Sec. III. The equation

012141-17



LEWALLE, STEINMETZ, AND JORDAN PHYSICAL REVIEW A 98, 012141 (2018)

of motion is

F = rx

τx

cos θ − rz

τz

sin θ

= sin θ cos θ

(
1

τx

− 1

τz

)
+ ξx√

τx

cos θ − ξz√
τz

sin θ, (E3)

where we have simplified the noise by taking rx = sin θ +√
τxξx and rz = cos θ + √

τzξz. We let B = (Bx, Bz), and take
appropriate dot products in (E2) to obtain the FPE

∂℘

∂t
= 3

2

(
1

τx

− 1

τz

)
(sin2 θ − cos2 θ )℘

+5

2
cos θ sin θ

(
1

τx

− 1

τz

)
∂℘

∂θ

+1

2

(
cos2 θ

τx

+ sin2 θ

τz

)
∂2℘

∂θ2
, (E4)

where ℘(θ, t ) is the probability distribution at a given time,
which is always contingent on having evolved forward from
some given initial distribution. The term attached to ∂2

θ ℘ is
effectively a diffusion constant; notice that for small τz (e.g.,
at a kick) the diffusion constant grows very large, meaning that
for a short time trajectories may jump across large distances in
the state space. Note also that (E4) reduces to

∂℘

∂t
= 1

2τ

∂2℘

∂θ2
, (E5)

when τx = τ = τz. Thus we see that when the two-
measurement system reduces to a simple rotor, the underlying
SQTs undergo isotropic diffusion. This is consistent with the-
oretical results from elsewhere [76,80], as well as observations
in the original experimental implementation of this system
with fixed measurement strengths [79]. It sits in contrast with
the more complex case (E4) where the measurement strengths
are unequal, and coefficients in the FPE are state dependent
(thereby privileging collapse to one set of eigenstates over the
other). Periodic strengthening of the measurement ostensibly
results in an overall faster rate of diffusion to higher winding
numbers. The diffusion is no longer isotropic when τx �= τz,
and shorter τ corresponds directly to a faster diffusion rate
(bigger diffusion constant) in a particular direction.

APPENDIX F: A SIMPLE MODEL OF OPS
IN THE PROJECTIVE KICKING LIMIT

We here consider the optimal dynamics in the limit where
τm → 0, and ε → 1 [see Eq. (10)]; these parameters corre-
spond to diffusion under equal measurement strengths, peri-
odically punctuated by instantaneous, perfectly projective z

measurements. We will use a simplified model which ignores
winding counts, considering two MLPs over a single kicking
period �. That is, we prepare an initial state θi , allow for
diffusion over a time interval �/2 to some θ1, perform a
projective z measurement resulting in a state θ2, and then again
allow for isotropic diffusion over a duration �/2, post-selected
on a neighborhood around some final state θf ∈ [0, π ]. We will
assume that θi ∈ [0, π ], and that the projective measurement
kick may either collapse the state to θ2 = 0 or θ2 = π . This
situation is represented in Fig. 11(a). Assuming we initialize

FIG. 11. In (a) we show OPs for the situation discussed in
Appendix F. Paths are allowed to diffuse isotropically for a time
interval �/2, are measured projectively along σz, and are then
allowed to diffuse isotropically again for another �/2. We show
the symmetric case, where OPs diffuse from θi = π

2 to θ1, collapse
to either θ2 = 0 (red) or π (black), and then diffuse again to the
post-selected state θf = π

2 . The amount of diffusion allowed before
each kick is characterized by � = �/τ . The dashed paths are allowed
to diffuse relatively little before the kick (τ � �, � = 0.2 is shown),
whereas the dotted paths are allowed more diffusion before the kick
(τ � �, � = 5 is shown). In the lower plots we show solutions
optimizing the value of θ1 according to the transcendental equations
(F5), with θi = π

2 in (b), and θi = 0.286 in (c). The path through the
excited state is shown in dash-dotted red, and the path through the
ground state is shown in solid black. As � grows, more diffusion is
allowed between each kick, and the jump made by the OP at the kick
is reduced (the optimal θ1 is close to θi for � � 1, and close to θ2

for � � 1).

the state at θi (i.e., the probability density is a delta function),
the probability density to reach some θ1 right before the kick
[from solving (E5)] is given by

℘(θ1|θi ) =
√

τ

π�
exp

[
− τ

�
(θ1 − θi )

2

]
. (F1)

The discrete probability to collapse to θ2 = 0 or π based on
the previous diffusion step is given by

P (θ2|θ1) =
{

cos2(θ1/2) to move to θ2 = 0,

sin2(θ1/2) to move to θ2 = π.
(F2)

Diffusion after the kick looks like (F1), i.e.,

℘(θf |θ2) =
√

τ

π�
exp

[
− τ

�
(θf − θ2)2

]
. (F3)

Combining these two diffusion steps and intermediate jump,
we may construct two probability densities ℘ex and ℘gr , the
first of which is associated with a path that goes through the
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excited state (θ2 = 0), and the second of which goes through
the ground state (θ2 = π ). These read

℘ex = cos2

(
θ1

2

)
exp

[
− τ

�

{
θ2
f + (θ1 − θi )

2
}]

and

℘gr = sin2

(
θ1

2

)
exp

[
− τ

�
{(θf − π )2 + (θ1 − θi )

2}
]
. (F4)

Note that to account for winding numbers around the Bloch
sphere, we would additionally have to let θ1 → θ1 + 2π� and
sum over all integers �. This implies that our system reaches
equilibrium much faster than if it were on the real line.

We have shown through the connection of (13) and (E5) that
the OP dynamics over isotropic diffusion are straight lines,
i.e., when τx = τ = τz, the OP goes as θ (t ) = θ0 + p0 t/τ .
Therefore, we understand that the probabilities above describe
OPs which go from θi → θf via a straight line from θi → θ1,
a jump from θ1 → θ2, then another straight line from θ2 → θf .
The remaining question is: what is the value of θ1 which
optimizes the probability density? (What θ1 does the OP go
through?) This can be computed by taking ∂θ1 ln ℘ = 0, and
solving for the optimal value of θ1. The solutions are given

according to the transcendental equations

tan

(
θ1

2

)
+ 2

�
(θ1 − θi ) = 0 for ℘ex

or

cot

(
θ1

2

)
− 2

�
(θ1 − θi ) = 0 for ℘gr, (F5)

where we have defined � ≡ �/τ . The parameter � is dimen-
sionless, and since τ−1 sets the rate of diffusion between kicks,
we understand that � � 1 represents a situation in which very
little diffusion is allowed between kicks, whereas when � � 1
SQTs diffuse widely between kicks. In the main text we have
emphasized examples in the intermediate regime where � = 1.
Note also that � scales the range of p at which resonances
appear [see Eq. (18)]. The solutions to (F5) for two different θi

are plotted in Figs. 11(b) and 11(c). There we see that the value
of θ1 which the OP takes is very close to θi when � � 1, and is
very close to θ2 when � � 1. This is an intuitive result; if wide
diffusion has occurred prior to a kick (� � 1), it is probable to
find paths which have already diffused to the eigenstates they
will collapse to when kicked, and these paths which make only
a small jump under the projective measurement are optimal.
However, if very little diffusion is allowed to occur before a
measurement kick (� � 1), trajectories will not have been able
to diffuse to the eigenstates of the kick, and the OP is forced
to jump much further.
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