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We apply advanced methods of control theory to open quantum systems and we determine finite-time
processes which are optimal with respect to thermodynamic performances. General properties and necessary
conditions characterizing optimal drivings are derived, obtaining bang-bang-type solutions corresponding to
control strategies switching between adiabatic and isothermal transformations. A direct application of these results
is the maximization of the work produced by a generic quantum heat engine, where we show that the maximum
power is directly linked to a particular conserved quantity naturally emerging from the control problem. Finally
we apply our general approach to the specific case of a two-level system, which can be put in contact with two
different baths at fixed temperatures, identifying the processes that minimize heat dissipation. Moreover, we
explicitly solve the optimization problem for a cyclic two-level heat engine driven beyond the linear-response
regime, determining the corresponding optimal cycle, the maximum power, and the efficiency at maximum power.
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I. INTRODUCTION

Suppose that we have at disposal a quantum system that
can be coupled with two heat baths of different temperatures:
What is the most powerful heat engine that we can realize
using the system as a working medium? For fixed initial
and final states, what is the optimal finite-time transforma-
tion minimizing heat dissipation? These questions are at the
basis of the current research activity in finite-time quantum
thermodynamics [1–3]. Focusing on systems describable by
quantum master equations, the aim of this work is to solve the
previous maximization and minimization problems through
the formalism of optimal control theory and, in particular,
exploiting a quite useful technique known as the Pontryagin’s
minimum principle (PMP) [4].

Optimal control theory has proven to be a very powerful tool
to face a wide range of problems in the quantum world, from
achieving fast and effectively adiabatic processes with qubits
or quantum oscilllators [5–14], to manipulating the relaxation
time [15–18] and the dissipation [19–21] in open quantum
systems. The time-minimization problem turns out to be of
great relevance also from a thermodynamic point of view, being
fundamental in enhancing the performance of the quantum
Otto engine [22–24]. However, there are many more issues of
quantum thermodynamics that can be tackled using optimal
control, from reaching the lowest achievable temperature
and testing the third law of thermodynamics [22,25], to the
enhancement of finite-time thermal engines [1,26–28]. This
last purpose has been sought in a variety of frameworks,
e.g., in stochastic or harmonic oscillator quantum engines
[29–33], in multilevel driven quantum systems [34–39], and in
systems with strong fluctuations [40]. In the case of finite-time
thermal engines, thermodynamics must be supported by a
dynamical theory, that often consists of phenomenological
equations [41,42], although more fundamental descriptions

have been considered [43,44]. In our analysis we focus on
the paradigmatic scenario of thermal engines which base their
functioning on the possibility of modulating the interactions
of a quantum system S with a cold and a hot reservoir. In
this framework we show how the PMP can be used to identify
optimal procedures that allow for the minimization of the heat
released or equivalently for the maximization of the power
produced into a cycle.

For this purpose we adopt the Markovian master equation
approach [45] and describe the time evolution of the density
matrix ρ̂(t ) of S in terms of a first-order differential equation,

dρ̂(t )

dt
= Lu(t )[ρ̂(t )] := −i[Ĥu(t ), ρ̂(t )] + Du(t )[ρ̂(t )], (1)

with Ĥu(t ) and Du(t ) being, respectively, the (possibly time-
dependent) system Hamiltonian and the Gorini-Kossakowski-
Sudarshan-Lindblad dissipator [45,46] which gauges the ther-
malization process induced by the reservoirs connected to S.
As implicitly indicated by the notation, both these terms are
assumed to exhibit a parametric dependence upon t , mediated
via a collection of external control fields represented by the
real vectorial function u(t ) := {u1(t ), u2(t ), . . .} which can be
used to drive the system evolution, e.g., by changing its energy
spectrum or by selectively switching on and off the couplings
with the various thermal baths. Within this setting our aim
is to find the best strategy that minimizes the mean heat Q

released by S while evolving according to Eq. (1) for a fixed
time interval [0, τ ], i.e., the quantity [47–49],

Q := −
∫ τ

0
〈Ĥu(t ) Lu(t )[ρ̂(t )]〉dt, (2)

where here and in the following we use 〈· · · 〉 to represent
the trace operation. For cyclic processes this corresponds
to maximizing the work performed by the system, i.e.,
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the quantity,

W := −
∫ τ

0

〈
ρ̂(t )

dĤu(t )

dt

〉
dt. (3)

In the first part of this paper the problem will be considered
in its entirety: We find a set of necessary minimum conditions
that can be used to prove some interesting results, from the
existence of a conserved quantity along the optimal trajectories
to the derivation of a state equation for the exchanged work
and heat. Eventually the optimal solutions will be partially
bang-bang and we will provide a set of necessary conditions
that have to be satisfied at the switching points. This behavior is
reminiscent of the familiar switching between isothermal and
adiabatic transformations of a standard Carnot cycle, which
is known to have an optimal efficiency in the quasistatic limit
[50]. Finally we focus on the case of a two-level system which
is sufficiently simple to be treated analytically and, at the same
time, of significant conceptual relevance. Indeed, thanks to
the application of the PMP, we are able to give a complete
characterization of the optimal cycle achieving the maximum
power output.

II. MINIMIZATION OF RELEASED HEAT

To find a stationary point of the functional (2) we will apply
the PMP [51] to the extended functional,

J := Q +
∫ τ

0

{
λ(t )(〈ρ̂(t )〉 − 1)

+
〈
π̂ (t )

(
Lu(t )[ρ̂(t )] − dρ̂(t )

dt

)〉}
dt. (4)

In this expression π̂ (t ) is a self-adjoint operator of the same
dimension of ρ̂(t ), called costate [52], and λ(t ) is a scalar
function, both acting as Lagrange multipliers that enforce,
respectively, the dynamical constraint (1), and the normal-
ization condition 〈ρ̂(t )〉 = 1. Replacing (2) into (4) we can
conveniently express J as

J =
∫ τ

0

{
H(t ) −

〈
π̂ (t )

dρ̂(t )

dt

〉}
dt, (5)

where the function H(t ) is the pseudo-Hamiltonian of the
model defined as

H(t ) := 〈(π̂ (t ) − Ĥu(t ) )Lu(t )[ρ̂(t )]〉 + λ(t )(〈ρ̂(t )〉 − 1).

(6)

The PMP provides us with a set of necessary conditions
that have to be satisfied by an optimal choice of the control
parameters [51] in order to minimize Q. In particular it implies
that (i) a nonzero costate π̂ (t ) exists such that

dρ̂(t )

dt
= ∂H(t )

∂π̂ (t )
,

dπ̂ (t )

dt
= −∂H(t )

∂ρ̂(t )
, (7)

the first reducing to (1), the second describing instead the
time evolution of the costate [see Eq. (A1) of the appendix].
The PMP establishes also that for all t ∈ [0, τ ] the pseudo-
Hamiltonian H(t ) (ii) has to be minimum with respect to the
control functions u(t ), and (iii) it has to assume a constant

value K, i.e.,

H(t ) = K. (8)

Thanks to the above construction we can finally express the
minimum value of the heat released by the system in the
following compact form:

Qmin = 〈π̂ (0)ρ̂(0)〉 − 〈π̂ (τ )ρ̂(τ )〉 −
∫ τ

0
λ(t )dt, (9)

with

λ(t ) = −
〈
ρ̂eq (t )

dπ̂ (t )

dt

〉
, (10)

where now all the quantities on the right-hand sides are
computed on the optimal trajectories fulfilling the PMP re-
quirements and where ρ̂eq (t ) is a fixed point of the super-
operator Lu(t ) (see the appendix for details).

It is worth noticing that the above conditions hold true
independently from the initial and final states ρ̂(0), ρ̂(τ )
which can be fixed later on [51]. It is also still possible to
both fix or leave the final time τ free and perform a further
optimization on it. A last remark is mandatory about the
regularity of the optimal trajectories. The control fields which
provide the local minima of the pseudo-Hamiltonian (6) need
not to be differentiable, nor continuous (an irregular behavior
which is common in control theory and goes under the name
of bang-bang control [7,53]). For this reason, when solving
Eq. (7) for ρ̂(t ) and π̂ (t ) we are forced to accept piecewise
smooth solutions divided by instantaneous switchings of the
controls u(t ), in which the state and the costate have to be
continuous, although a discontinuity in their first derivative is
allowed (Weierstrass-Erdmann corner conditions [51]).

III. MAXIMUM POWER AND PHYSICAL MEANING OF K

The quantity K appearing in Eq. (8) corresponds to a
constant of motion (the analog of energy in Hamiltonian me-
chanics) but, apart from providing a convenient parametriza-
tion of the optimal solutions, its physical interpretation might
appear quite obscure. The situation changes, however, if,
instead of minimizing the dissipated heat, we minimize its
corresponding emission rate R := Q/τ by optimizing also
over τ . Indeed recalling Eq. (5) and the general law for the
variation of an “action” functional with respect to δτ (see,
e.g., Ref. [51]) we obtain that, on-shell [i.e., when Eq. (1) and
〈ρ̂(t )〉 = 1 are satisfied] and for fixed initial and final states, the
following holds: δJ = δQ = H(τ )δτ = Kδτ . Accordingly,
the variation of R can be expressed as

δRmin = δQ

τ
− Qδτ

τ 2
= δQ

τ
− Rminδτ

τ
= (K − Rmin)

δτ

τ
,

(11)

which nullifies if and only if Rmin = K. It is worth stressing
that the above analysis does not tell us the explicit value of
Rmin: It is just a formal identity which only shows that the latter
coincides with the value ofK associated with the trajectory that
yields the minimal rate. Yet Eq. (11) allows one to establish
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the following lower bound:

Rmin := min
all protocols,

all τ > 0

Q

τ
� K∗ := min

K∈A
K, (12)

where A denotes the accessible region for the parameter K
[i.e., the set which contains the values of K that allow for an
integration of the equations of motion (7) which are consistent
with the PMP constraints (ii) and (iii) and with the assigned
initial and final conditions of the problem]. Equation (12) is
remarkable since it allows one to replace the minimization of
the functional R with respect to all possible protocols, with a
much simpler, single-parameter minimization. Notice also that
for cyclic processes we have W = −Q, and so the maximum
power achievable from the quantum system S when exploited
as a thermal engine is bounded as

Pmax := max
all protocols,

all τ > 0

W

τ
� −K∗. (13)

Moreover, if the critical solution with K = K∗ is such that
the corresponding rate is equal to K, then this is necessarily
the optimal solution and the previous bounds (12) and (13)
are saturated. As we are going to show later, this is exactly
what happens for the optimization of a two-level system
heat engine. For general systems, we expect a saturation of
both the inequalities (12) and (13) whenever there exists a
sufficiently regular infinitesimal cycle with conserved quantity
K = K∗. Indeed, in the limit τ → 0, the heat rate along critical
trajectories can be expressed, using Eq. (5), as

R = J
τ

= lim
τ→0

1

τ

∫ τ

0

{
H(t ) −

〈
π̂ (t )

dρ̂(t )

dt

〉}
dt

= H(τ ) − π̂ (0)[ρ(τ ) − ρ(0)]/τ = H(τ ) = K, (14)

where we used that in cyclic process ρ(0) = ρ(τ ) and π̂ (t ) �
const.

To derive the previous results we have implicity assumed
that the energy cost of switching on and off the system-bath
interactions is negligible, which is a standard approximation in
the weak coupling limit. Nevertheless, in an infinitesimal cycle
the number of switchings goes to infinity and their contribution
to the work may be finite, vanishing only for specific forms
of the interaction Hamiltonian (e.g., a partial swap [54]).
A more accurate discussion would involve a microscopic
characterization of the system-bath interactions [55,56] which
goes beyond the purposes of the present work.

IV. TWO-BATH SCENARIO

We now focus on the paradigmatic case where S is directly
coupled to only two baths, a cold reservoir of inverse temper-
ature βc, and a hot reservoir of inverse temperature βh; see
Fig. 1. Accordingly we take

Du(t )[· · · ] = γc(t )D(c)
u(t )[· · · ] + γh(t )D(h)

u(t )[· · · ], (15)

with D(c)
u(t ) and D(h)

u(t ) being the dissipators describing the
thermalization processes induced by the two reservoirs and
with γc,h(t ) being the corresponding damping rates which
we consider as dedicated elements of the control fields set.

FIG. 1. Pictorial representation of the two-bath model: a system S

whose Hamiltonian Ĥu(t ) is driven via a collection of external control
fields u(t ), evolves in time while being coupled with a cold bath of
inverse temperature βc and with a hot bath of inverse temperature βh

through the couplings parameters γc(t ) and γh(t ) which can also be
externally controlled.

The complete positivity of the dynamics implies that these
two damping parameters are non-negative. On top of this,
while keeping unconstrained the remaining control fields, we
restrict ourselves to the case in which the total damping rate
is equal to a given positive constant �, i.e., γc(t ) + γh(t ) = �.
This condition enforces a physically motivated thermalization
timescale, preventing the emergence of trivial solutions, and is
ideally suited to the case of typical thermal machines working
between two different temperatures. As a matter of fact under
this assumption the minimization of Eq. (6) with respect to
γc,h(t ) can be easily performed, yielding only two extremal
control strategies in which the system is selectively coupled at
maximum rate � with either the cold or the hot thermal bath.
These two possible regimes can be activated depending upon
the sign of the functional,

Au(t )(π̂ (t ), ρ̂(t )) := 〈
(π̂ (t ) − Ĥu(t ) )

(
D(h)

u(t ) − D(c)
u(t )

)
[ρ̂(t )]

〉
.

(16)

In particular the choice γc(t ) = �, γh(t ) = 0, corresponding
to the case where S only interacts with the cold bath, is
available whenever Au(t ) � 0 (cold isotherms [57]), while
the choice γc(t ) = 0, γh(t ) = � is available if Au(t ) � 0 (hot
isotherms). Following a standard bang-bang approach, the
optimal trajectory can then be obtained by dividing the total
time interval [0, τ ] into an ordered sequence of intermediate
steps where one of the above behaviors applies—the explicit
values of the controls u(t ) being fixed by solving the corre-
sponding Eq. (7) under the PMP conditions (ii) and (iii). These
isothermal evolutions are separated by intermediate switching
times where, with ρ̂(t ) and π̂ (t ) still preserving continuity,
S may experience adiabatic jumps on u(t ) which effectively
result in an instantaneous decoupling of the system from the
thermal baths (adiabats). The optimal switching times can be
found by solving the set of algebraic equations derived from the
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FIG. 2. (a) Form of the cold (blue) isotherm when βh = 0.3 βc and K = −0.05 �/βc. (b) Form of the hot (red) isotherm for the same set of
parameters. The area below the function p(βcu) is equal to the heat released [(a) light blue] or the heat absorbed [(b) orange] for the cold and
hot isotherm respectively, measured in units of β−1

c . The arrows show the direction of the dynamics.

continuity of the state and costate variables. From a numerical
point of view this is an easy task to accomplish, at least if
compared to an ab initio numerical optimization over the whole
family of bang-bang trajectories.

V. THE TWO-LEVEL SYSTEM CASE

As an example of a two-bath model for which the PMP
optimization can be explicitly solved we consider the case in
which S is a two-level system driven by a time-dependent
Hamiltonian that has constant eigenvectors {|0〉, |1〉}, but an
energy gap u(t ) � 0 which can be externally modulated, i.e.,
Ĥu(t ) := u(t )|1〉〈1|. For dissipators we take the superoperator
defined by the mapping,

D(c,h)
u(t ) [ρ̂(t )] = η̂βc,h

(t ) − ρ̂(t ), (17)

where η̂β (t ) := [e−βu(t )|1〉〈1| + |0〉〈0|]/(e−βu(t ) + 1) is the in-
stantaneous Gibbs state of Ĥu(t ) with inverse temperature
β (for β > 0). This model is similar to one considered by
Esposito et al. in [1,28], for which our approach allows now
a systematic and rigorous solution of the optimal trajectory
problem. The restriction to a nonrotating Hamiltonian is a
necessary assumption for minimizing heat dissipation, at least
when the dynamics is induced by a dissipator of the form (17).
This can be proven by constructing a set of equations ad hoc for
the coherent case, starting from the PMP conditions introduced
in the first section of the actual work. However, this discussion
involves many technical issues and we postpone it to another
publication.

A physical implementation of Eq. (17) is realizable, (e.g.,
with a single-level quantum dot in contact with two fermionic
heat baths, in the wide band approximation [28,58]. In this
case the low energy level |0〉 is associated with an empty dot,
while the excited level |1〉 is associated with a dot populated
by one fermion. For the sake of simplicity, as in Ref. [28], we
shall focus on the case where the initial state of S exhibits no
coherences in the energy eigenbasis. Under these conditions
Eq. (1) ensures that the density matrix of the system maintains
a diagonal form at all t , allowing us to express it as ρ̂(t ) :=
p(t )|1〉〈1| + (1 − p(t ))|0〉〈0| where p(t ) is the probability for

S of being in the excited level. Replacing this into (5) and
exploiting the fact that we have the gauge freedom to assume
π̂ (t ) to be traceless [52] it then follows that we can also neglect
the coherence contributions to the costate, writing it as π̂ (t ) =
q(t )(|0〉〈0| − |1〉〈1|), with q(t ) to be determined by solving
the dynamical equation (7).

Under these assumptions it is possible to explicitly solve
the optimal trajectory problem. For this sake we recall that
our solutions can be parametrized by the constant of motion
K, defined in Eq. (8), that turns out to be always negative for
the model in consideration (see the appendix). Specifically,
introducing the adimensional quantities μc := −√−(βcK)/�
and μh := √−(βhK)/�, it follows that the evolution of the
density matrix of S along an optimal cold (respectively, hot)
isothermal step is given by

p(t ) = 1 − μc,h xc,h(t )

1 + x2
c,h(t )

. (18)

The dependence upon the control parameter u(t ) in (18) is
gauged through the function xc,h(t ) := exp [βc,hu(t )/2]. This
is determined by the differential equation,

dxc,h(t )

dt
= �

[
x2

c,h(t ) + 1
]
xc,h(t )[

x2
c,h(t ) − 2 xc,h(t )

μc,h
− 1

] , (19)

that can be integrated for assigned boundary conditions (see
the appendix). In the remainder of this paragraph we will
discuss a specific example in which, for the sake of simplicity,
�−1 and β−1

c are fixed and adopted as units of time and
energy, respectively, such that the rate K is measured in units
of �/βc. Examples of the isothermal trajectories (18) in the
plane (p, βcu) are presented in Fig. 2 for βh = 0.3 βc and
K = −0.05 �/βc.

In the picture it is also reported the associated amount of
the heat released by S: For the model we are considering,
this quantity admits an explicit, yet cumbersome, analytic
expression and a simple geometrical interpretation as minus the
area subtended by the curve u(p) between the initial and final
points of the corresponding trajectory (see the appendix). The
general optimal process can involve also adiabatic jumps of the
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FIG. 3. (a) Profile of the zero contour of f (p,K) when βh = 0.3 βc determining the condition for adiabatic jumps. For ease of representation
we plot the contour of f as a function of −K and we omit the dependence of pad,1(K) and pad,2(K) by K. (b) General form of the optimal
trajectories for βh = 0.3 βc and K = −0.05 �/βc. Curved blue and red lines (respectively, passing through E,A,B and C,D,F) are cold and
hot isotherms. The two horizontal lines correspond to the values pad,1 and pad,2 when the system undergoes intermediate adiabatic jumps
(represented with horizontal black arrows). The area enclosed by the cycle is colored in orange and is equal to the heat absorbed during the
cycle.

field u(t ) in which S moves from one isothermal trajectory (say
cold) to the other (say hot). In such a process the continuity
of p(t ) and π (t ) has to be preserved, and we formulate
this requirement introducing a function f (p,K) whose zero
contour associates each value of K to the values of p in which
an adiabatic quench is allowed [cf. Eqs. (B14) and (B15) of
the appendix].

An example for the case with βh = 0.3 βc is provided in
Fig. 3(a): The model admits a threshold value K∗ for the
parameterK, that is exactly the quantity introduced in Eq. (12).
For values of K < K∗ no adiabatic jumps are allowed in the
construction of the optimal trajectory minimizing the global
heat released in the process. On the contrary for values of
K � K∗, such jumps may occur whenever along an isothermal
trajectory the probability p(t ) assumes two specific values
pad,1(K), pad,2(K) corresponding to the zeros of the function
f (p,K) defined in Eq. (B15). Figure 3(b) shows the form of the
optimal trajectories for the values of the parameters specified
above and K = −0.05 �/βc. Let us consider, for instance,
an initial condition with u(0) = β−1

c and p(0) = 0.07 [point
IN in Fig. 3(b)] and suppose that we want to reach the final
configuration with u(τ ) = 6 β−1

c and p = 0.26 [point OUT in
Fig. 3(b)] following an optimal trajectory. We first note that,
since the direction of the dynamics in the cold (hot) isotherms
is, respectively, fixed to be downwards (upwards) (see Fig. 2),
it can be shifted only through an adiabatic quench. Moreover,
as we have already noted, for any fixed constant of the motion
K, only two such optimal adiabats are allowed, i.e., only the
pieces of trajectories B-C and D-E in Fig. 3(b). With all of
this in mind, the shortest path to reach the final configuration
turns out to be IN -A-B-C-F -OUT in Fig. 3(b). However,
we can also construct other optimal trajectories if, once we
get to the point D, we choose to perform a cycle D-E-B-C
before continuing towards the point F . We can add as many
cycles as we want, the price to pay will be an increment of
the final time τ . Accordingly we can decompose the total

duration of the protocol and the corresponding heat released by
S as

τ = τc(K) + τh(K) + Nτcycle(K), (20)

Q = Qc(K) + Qh(K) + NQcycle(K), (21)

where τcycle(K) and Qcycle(K) are the contributions associated
with a complete inner cycle and τc(K), τh(K), and Qc(K),
Qh(K) those associated with the part of the trajectories which
connect the inner cycle to the initial and final conditions (all
quantities admitting explicit analytical expressions). It turns
out that, for fixed N , the terms on the right-hand side of Eq. (20)
are increasing functions of K, while the terms on the right-
hand side of Eq. (21) are decreasing functions of K (see the
appendix). Accordingly one would be tempted to minimize
Q by taking the larger value of the parameter K. Yet, as we
reduce K, the terms on the right-hand side of Eq. (20) decrease
to the point that, for fixed τ , it is possible to increase N by one,
allowing the start of a new inner cycle. When this happens the
heat in Eq. (21) acquires an extra negative correction resulting
in a net decrease of the total released heat Q: Choosing lower
values of K appears hence to be the optimal choice. This is
particularly evident when we consider the asymptotic limit
τ → ∞. In this situation the initial and final probabilities p(0)
and p(τ ) do not play any role, as the energy contributions
“outside of the cycle” in Eq. (21) become negligible due to the
divergency of N .

Since the optimal protocol collapses to an infinite succes-
sion of identical cycles, the maximization of the total power
output (minimization of the total heat emission rate) finally
reduces to searching for the cycle in which P (R) assumes the
highest (lowest) possible value. As we know from the previous
discussion about the physical link betweenK and the maximum
power, a good candidate for the potentially optimal cycle is the
one for whichK assumes its minimum accessible valueK∗. As
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FIG. 4. (a) Dimensionless function g proportional to the minimum heat dissipation rate according to K∗ = −(�/βc )g(βh/βc ). For cyclic
processes, g(βh/βc ) corresponds to the maximum power (in units of �/βc) achievable by the two-level system heat engine. (b) Efficiency
at maximum power η∗ (dark blue) derived in Eq. (24) compared with the Carnot efficiency ηC (gray dashed line) and the Curzon-Ahlborn
efficiency ηCA (light green).

we are going to show in the next section, such cycle saturates
both inequalities (12) and (13), implying that it achieves the
maximum power.

VI. MAXIMUM POWER HEAT ENGINE
FOR A TWO-LEVEL SYSTEM

SettingK = K∗, the two adiabatic switching points collapse
to the same critical value p∗ := pad,1(K∗) = pad,2(K∗).

This yields an asymptotically vanishing amount of the
corresponding heat released per cycle (limK→K∗ Qcycle(K) =
0) and makes the heat rate an indeterminate form (a similar
phenomenon has been observed in the weak dissipation limit
[1]). Physically this optimal regime corresponds to an infinites-
imal cycle in which the quantum state is almost unaffected but,
at the same time, the Hamiltonian is subject to finite quenches
where u oscillates back and forth between two extremal values
u∗

c,h associated with the cold and hot (isochoric) processes (see
the appendix), as in an Otto cycle. The corresponding optimal
time evolution of the cycle and of the control function u(t )
are plotted in Fig. 5(c). What is more, since the cycle is also
infinitesimal with respect to its time duration, from Eq. (14) we
also have R = K∗ and both bounds (12) and (13) are saturated.

This means that the infinitesimal Otto cycle is optimal and the
corresponding maximum power is given by Pmax = −K∗.

As discussed in the appendix, the minimum rateK∗ depends
upon the bath temperatures and the maximum coupling as in

K∗ = − �

βc

g

(
βh

βc

)
, (22)

with g(z) a dimensionless function that measures the power
output of the process and has been computed numerically in
Fig. 4(a). For z → 1 this quantity, and hence K∗, nullifies:
This is the linear response regime where the two reservoirs
have similar temperatures and where the maximum power (13)
asymptotically vanishes (see, e.g., [1]). In the opposite limit
z → 0 (which also includes the zero temperature limit for the
cold bath), the function g(z) is maximized and behaves as
g(z) ≈ θ/z, with θ ≈ 0.06961 being a dimensionless constant,
yielding

Pmax ≈ 0.06961
�

βh

, (23)

corresponding to the ultimate upper limit for the power
achievable by a two-level system heat engine working on a
fixed temperature gradient. The analytic treatment of the limit
z → 0 is provided in the appendix. Finally from the definition

(a) (b) (c)

FIG. 5. (a) Optimal excitation probability p∗ = pad,1(K∗) = pad,2(K∗) as a function of the temperature ratio. (b) The two extrema of the
quenches characterizing the maximum power heat engine u∗

c (dark blue) and u∗
h (light red), measured in units of β−1

c as a function of βh/βc. The
case of βh/βc = 0.3 is singled out. (c) The optimal driving protocol for the parameter u∗(t ), measured in units of β−1

c . The driving is composed
by a succession of infinitesimal Otto cycles, where the extrema u∗

c and u∗
h can be found directly from the left panel of the figure. The value

�τ � τ is an arbitrarily small unit of time expressing the duration of each degenerate cycle.
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(2) we can also compute the infinitesimal heat dissipated in the
cold and hot isotherms of the optimal cycle obtaining dQc =
u∗

cdp � 0, dQh = −u∗
hdp � 0. The efficiency at maximum

power has therefore the following simple expression:

η∗ = 1 − u∗
c

u∗
h

, (24)

which remarkably corresponds to the same efficiency of
a standard Otto cycle subject to complete thermalizations.
Equation (24) has been computed after solving numerically the
maximum power equations (see the appendix) and is plotted
in Fig. 4(b) along with the Carnot efficiency ηC = 1 − βh/βc

and the Curzon-Ahlborn efficiency ηCA = 1 − √
βh/βc [60].

We observe that the exact result is well approximated by the
Curzon-Ahlborn efficiency which is known to be a universal
feature common to many classical and quantum heat engines
[2,41]. The slight discrepancy between η∗ and ηCA can be
ascribed to the fact that our solution is exact while the
Curzon-Ahlborn efficiency is usually derived under different
approximations, e.g., in the linear-response regime [61] or in
the slow-driving limit [43]. By direct inspection of Figs. 4(a)
and 4(b), we also observe that η∗ converges to ηCA in the weak
dissipation limit g → 0, consistently with the results of [1].

VII. CONCLUSIONS

In this work we presented a general theory of optimal con-
trol specifically designed for optimizing thermodynamic cost
functions. Exploiting Lagrangian methods and Pontryagin’s
minimum principle we systematically derived in a general
way a set of necessary analytical conditions characterizing
thermodynamic processes with minimum heat dissipation. We
found that optimal solutions can be parametrized by a particular
conserved quantityKwhich is strongly related to the minimum
heat dissipation rate and, for cyclic processes, to the maximum
work power. We also proved that the controls in the optimal
dynamics are of bang-bang-type switching between isothermal
and adiabatic evolutions. We applied the formalism to the
paradigmatic case of a two-level system whose dynamics is
governed by a thermalizing master equation, modeling the
coupling with two different heat baths. For arbitrary initial and
final conditions, we determined the class of critical thermody-
namic processes minimizing heat dissipation. When the system
is used as a cyclic heat engine, we explicitly found that the
maximum power is obtained for an infinitesimal Otto-like cycle
performed around a particular nonequilibrium quantum state.
For what concerns a potential physical implementation of our
model good candidates are, for instance, single-level quantum
dots [28,59]. Indeed their stability and the high tunability
may allow one to realize the optimal processes studied in
this work directly in the laboratory. From a technical point of
view we have highlighted the versatility of the PMP approach
to optimal control of quantum thermodynamics, paving the
way to further applications in the field, e.g., the minimization
of entropy production in open quantum systems [45]. The
entropy production functional is strictly connected to the heat
functional (2), to which is substantially equivalent in the single
bath scenario, although its nonlinear dependence on the state
could lead to nontrivial deviations from the results of the
present paper when considering more thermal baths.
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APPENDIX A: THE PONTRYAGIN’S
MINIMUM PRINCIPLE

By differentiating the pseudo-Hamiltonian with respect to ρ̂(t )
one can easily verify that the second of the PMP equations (7)
corresponds to

dπ̂ (t )

dt
= −{L†

u(t )[π̂ (t ) − Ĥu(t )] + λ(t )1}, (A1)

with L†
u(t ) being the adjoint of the generator Lu(t ). By multi-

plying both sides of (A1) by a fixed point state ρ̂eq (t ) of the
superoperator Lu(t ) and then taking the trace, it immediately
yields Eq. (10). Equation (9) instead can be obtained by using
(1) and (A1) to express the time derivative of 〈π̂ (t )ρ̂(t )〉 and
integrating it over the time interval [0, τ ]. Notice also that the
PMP requirement (ii) can be translated into a set of necessary
conditions, by imposing stationarity of H(t ) with respect to
variation of the control fields, i.e.,

〈(π̂ (t ) − Ĥu(t ) )∂kLu(t )[ρ̂(t )]〉 = 〈Lu(t )[ρ̂(t )]∂kĤu(t )〉,
(A2)

where ∂k := ∂/∂uk (t ) is the partial derivative with respect to
the kth component of u(t ). Finally using the normalization of
ρ̂(t ) the PMP requirement (iii) can be expressed as

〈(π̂ (t ) − Ĥu(t ) )Lu(t )[ρ̂(t )]〉 = K. (A3)

It is worth remarking that this last condition is a direct
consequence of the PMP requirements (i) and (ii) [51]. Still
it is convenient to introduce it because it is an algebraic
equation that allows one to neglect one degree of freedom
in the differential equations (7), leading to a simplification
of the calculations (cf. see next section for an application
of this fact). We also notice that condition (8) applies for
explicitly time-independent pseudo-Hamiltonians [51], and in
our case this is always true, because we relegate all possible
time dependence in the controls.

APPENDIX B: SOLUTION FOR A TWO-LEVEL SYSTEM

From Eq. (17) it follows that the functional (16) can be
expressed as

Au(t ) = [2q(t ) + u(t )]
[eβhu(t ) − eβcu(t )]

[eβcu(t ) + 1][eβhu(t ) + 1]
. (B1)

Therefore, since u(t ) � 0 and βc � βh, we have that the kind
of isotherm S can experience is determined by the sign of
2q(t ) + u(t ): In particular if the latter is negative thenS follows
a cold isotherm (γc = �, γh = 0); if, instead, it is positive then
S follows a hot isotherm (γc = 0, γh = �). Keeping this fact
in mind the PMP conditions (A2) and (A3) yield the identity,

K = −�βc,he
βc,hu(t )

[
2q(t ) + u(t )

1 + eβc,hu(t )

]2

, (B2)

from which it is clear that K � 0 for every optimal solution.
Taking the square root of Eq. (B2) and recalling the definitions
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of μc,h and xc,h(t ) given in the main text, we have

2q(t ) + u(t ) = μc,h

βc,h

[
1 + x2

c,h(t )
]

xc,h(t )
, (B3)

and combining this last equation with Eq. (A2) we obtain
Eq. (18). These expressions link q(t ) and p(t ) to the con-
trol field u(t ) when S is moving along an isotherm. The
explicit dynamical evolution finally follows from Eqs. (1)
and (A1), i.e.,

dp(t )

dt
= �

[
1

1 + x2
c,h(t )

− p(t )

]
, (B4)

dq(t )

dt
= �

2
[2q(t ) + u(t )], (B5)

where in the derivation of the second expression we used (10)
and the fact that the equilibrium state ρ̂eq (t ) associated with the
dissipator (17) is the Gibbs state η̂βc,h

(t ). In particular, taking
the time derivative of Eq. (18) and using (B4) we obtain Eq. (19)
which completely determines the time evolution of the control
parameter u(t ) along an isotherm. Notice that the same solution
can also be derived using instead (B3) and (B5), showing that
the set of PMP conditions we are using is indeed redundant as
anticipated in the previous section. Before proceeding further
we also remark that the above analysis assumes the gap u(t )
to be non-negative. Yet the entire derivation can be easily
extended to the case of negative gaps, the only difference being
in the definition of the constants μc,h whose signs have to be
swapped, i.e., μc = +√−(βcK)/� and μh = −√−(βhK)/�.

An implicit integration of Eq. (19) can be obtained for
assigned boundary conditions. Specifically, for a generic
isothermal trajectory where xc,h(t ) takes the values x0 and
x1 at times t0 and t1 > t0, respectively, Eq. (19) imposes the
following constraint:

t1 − t0 = χc,h(x1) − χc,h(x0)

�
, (B6)

with χc,h(x) := −(2/μc,h) arctan(x) + ln[(x2 + 1)/x].
Furthermore, from the definition Eq. (2), we can express
the heat exchanged during such transformation as

Qc,h = −
∫ t1

t0

dt u(t )
dp(t )

dt
= −

∫ p1

p0

dp uc,h(p), (B7)

where p0 = p(t0), p1 = p(t1), and where the functions uc,h(p)
are obtained by inverting Eq. (18) to express the field u in terms
of p along the isotherm, i.e.,

uc,h(p) = 2

βc,h

ln xc,h(p), (B8)

xc,h(p) =
√

μ2
c,h + 4p(1 − p) − μc,h

2p
. (B9)

Equation (B7) provides the geometrical interpretation of Qc,h

as minus the area subtended by the function (B8) as shown
in Fig. 2; furthermore by direct integration can be casted in a
form which is similar to (B6), i.e.,

Qc,h = �c,h(x1) − �c,h(x0)

βc,h

, (B10)

where now �c,h(x) := −2μc,h arctan x + [2x(x + μc,h)/(1 +
x2)] ln x − ln (1 + x2). Notice that Eqs. (18) and (B4) imply
that for a hot isotherm dp(t )/dt � 0 if xh ∈ [1, 1/μh], inside
the region where p(t ) is defined [i.e., p(t ) ∈ [0, 1]] forcing
the system to always increase the population of its excited
level as explicitly indicated in Fig. 2. Accordingly, the right-
hand side of Eq. (B7) must have p1 � p0 making Qh negative
as expected (heat must be absorbed along a hot isotherm). A
similar reasoning holds for the cold isotherms in which the
heat is always released. Consider next the limit case where the
system S has enough time to fully thermalize while in contact
with the reservoir, i.e., �(t1 − t0) → ∞. In this limit the only
way in which the right-hand side of Eq. (B6) can be arbitrarily
large if p0,p1 are fixed is by choosingμc,h → 0, i.e.,K → 0.
With this choice it is easy to see that Eq. (18) reduces to the
equilibrium Gibbs distribution while Eq. (B7) becomes

Qc,h = [H (p0) − H (p1)]

βc,h

, (B11)

with H (p) being the Shannon entropy associated with the
probability p, that is exactly what we expect in a quasistatic
process.

As already mentioned, in the construction of the optimal
trajectory for a two-bath problem, the system S may experience
adiabatic jumps of the control field u(t ) which permits S to
abruptly switch from the hot to the cold isotherm and vice
versa. Such switches may occur only at those special times
which allow for the preservation of the continuity of ρ̂(t ) and
of the costate π̂ (t ) during the jump. For the two-level system
case we are considering here this can be enforced by imposing
the continuity p(t ) and q(t ) when abruptly passing from the
hot to the cold trajectory or vice versa. Using Eqs. (18) and
(B3) we find the two conditions,

1 − μcxc(p)

1 + x2
c (p)

= 1 − μhxh(p)

1 + x2
h(p)

, (B12)

uc(p) − μc

[
1 + x2

c (p)
]

βcxc(p)
= uh(p) − μh

[
1 + x2

h(p)
]

βhxh(p)
.

(B13)

Given the functional dependence of Eqs. (B8) and (B9) it
follows that (B12) is always satisfied for all values of p.
Equation (B13) instead selects the values of p which fulfill
the following condition:

f (p;K) = 0, (B14)

with

f (p;K) := (�c − μc )

(�h − μh)
− (�h − μh)

(�c − μc )
+ 2

√
βcβh

×
[

1

βc

ln
(�c − μc )

2p
− 1

βh

ln
(�h − μh)

2p

]
,

(B15)

and �c,h(p) :=
√

μ2
c,h + 4p(1 − p). It is easy to show that for

each value of p and for each choice of βc and βh, f (p;K) is
monotonically decreasing in K. Thus for the implicit function
theorem the zero contour of f (p,K) is the graph of a function
of p which we plot in Fig. 3(a). One notices that for each
value of K > K∗ which depends upon βc,h and �, there are
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always two values of p nullifying f (p;K) and identifying
the trajectory points where the system can switch from one
isothermal regime to the other, while no transitions are allowed
for values of K < K∗. By close inspection of the right-hand
side of Eq. (B15) one may notice that K appears in it always
through the ratio K/�. Furthermore a simple dimensional
analysis of the same equation can be used to verify that
the quantity βcf (p,K) is a function of the ratio βh/βc.
Equation (22) follows from these two observations.

APPENDIX C: DEPENDENCY OF OPTIMAL
STRATEGIES ON K

Differentiating both terms of Eq. (B6) with respect to K we
get

∂

∂K (t1 − t0) = −
(

βc,h

2μc,h�

)
∂

∂μc,h

(t1 − t0)

= [arctan(x1) − arctan(x0)]

�Kμc,h

. (C1)

Now for a cold isotherm we have that p(t ) is a decreasing
function of time, while u(t ), and hence x(t ), are increasing
[see Eq. (B6)]. Accordingly in the above equation we have
x1 � x0. Exploiting the fact that arctan[x] is an increasing
function of its argument and the fact that −μc is a positive
quantity, we can conclude that for a cold isotherm the time
interval t1 − t0 it takes the system to move from one point of the
trajectory to the other, is an increasing function of K. Exactly
the same conclusion can be inferred for the hot isotherm (here
the fact that x1 � x0 is compensated by the negativity of −μh).
Using this observation we can then conclude that the quantities
τc(K), τh(K), and τcycle(K) appearing in Eq. (20) are increasing
functions of K. Similarly, for the quantities appearing on
the right-hand side of Eq. (21) we simply use Eq. (B10) to
observe that

∂Qc,h

∂K = K ∂

∂K (t1 − t0), (C2)

and we then conclude that Qc(K), Qh(K) and Qcycle(K) are
decreasing functions of K.

APPENDIX D: EVALUATION OF K∗ AND p∗

For a two-level system which can be put into contact with
either of two heat baths of fixed temperatures βc and βh, the
maximum power (or minimum dissipation) control strategy is
completely determined by two parameters: the optimal rate K∗
and the optimal excitation probability p∗. Indeed, according
to the results presented in the main text, the maximum power
−K∗ is achieved by a sequence if infinitesimal Otto cycles
performed around the nonequilibrium working point p∗. In
this regime the energy gap is periodically switched between
the two finite values uc(K∗, p∗) and uh(K∗, p∗) [given by
(B8) and (B9)], each quench being followed by an incomplete

thermalization with the cold and hot baths, respectively. From
the previous analysis we know that the desired optimal param-
eters K∗ and p∗ are solutions of the following minimization
problem: minK∈A;p K subject to condition (B14), determining
the accessible region of the control problem and represented in
Fig. 3(a). This minimization problem is efficiently determined
from the following system of algebraic equations:{

f (K, p) = 0,
∂
∂p

f (K, p) = 0,
(D1)

where, after some calculations, the second equation can be
explicitly written as

[1 + x2
c (K, p)]

μc(K, p)xc(K, p)
= − [1 + x2

h(K, p)]

μh(K, p)xh(K, p)
. (D2)

Expressing K in units of �/βc, it is easy to check that the
solution of (D1) depends only on the temperature ratio βh/βc,
so that it could be casted as in Eq. (22). The strictly decreasing
nature of g(z) suggests that optimal thermal engines are
particularly performant in the limit z → 0. Indeed in this
regime a machine working with fixed temperature gradient
δ = β−1

h − β−1
c produces the maximum power output. This

is verified by direct substitution of y := (δβc )−1 and z = y/

(1 + y) in Eq. (22), and noticing that the function yg[y/(1 +
y)] is also monotonically decreasing in y. This limit also can be
treated analytically, solving the system (D1) for infinitesimal
values of βh/βc. Using the asymptotic behavior g(z) ≈ θ/z,
replacing Eq. (22) into Eq. (D2), and considering only the
leading order coefficients in the expansion for small z we obtain

p∗(z → 0) = 2θ

1 + 4θ
. (D3)

To complete the solution of (D1) we apply the same expansion
procedure to Eq. (B14) which, combined with (D3), gives

4θe4θ = e−1, (D4)

whose solution can be expressed in terms of the so-called
Lambert function W [62]:

θ = W (e−1)

4
≈ 0.06961. (D5)

Equation (D5) confirms our numerical result for θ , and
makes it possible to estimate p∗ through Eq. (D3), yielding
p∗(z → 0) = 0.10848. This is in agreement with the
numerical plot for the optimal excitation probability p∗, shown
in Fig. 5(a) for all temperature ratios. Once the values of the
quantities K = K∗ and p = p∗ have been determined, one can
also find the extremal values u∗

c,h of the maximum power Otto
cycle by simply inverting the functional dependence that links
p and u in Eq. (17) [see Fig. 5(b)]. Finally, the optimal control
protocol for the parameter u∗(t ) can be found from the optimal
values of K∗, p = p∗, u∗

c,h through Eq. (34) [see Fig. 5(c)].
Noticeably the time durations of the two isochores are equal,
as could be directly verified from Eqs. (B4) and (B14).
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Phys. Rev. Lett. 88, 097905 (2002).

[55] D. Newman, F. Mintert, and A. Nazir, Phys. Rev. E 95, 032139
(2017).

[56] M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J.
Eisert, Phys. Rev. Lett. 120, 120602 (2018).

[57] With the word isotherm we refer to transformations in which the
system is in contact with only one bath at a time, even if the
evolution is not quasistatic.

[58] U. Harbola, M. Esposito, and S. Mukamel, Phys. Rev. B 74,
235309 (2006).

[59] N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kopev,
Z. I. Alferov, and D. Bimberg, Semiconductors 32, 343 (1998).

[60] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).
[61] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep.

694, 1 (2017).
[62] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and

D. E. Knuth, Adv. Comp. Math. 5, 329 (1996).

Correction: The Acknowledgment section was missing and
has been inserted.

012139-10

https://doi.org/10.1103/PhysRevE.87.062106
https://doi.org/10.1103/PhysRevE.87.062106
https://doi.org/10.1103/PhysRevE.87.062106
https://doi.org/10.1103/PhysRevE.87.062106
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1103/PhysRevLett.96.060503
https://doi.org/10.1016/j.automatica.2013.07.020
https://doi.org/10.1016/j.automatica.2013.07.020
https://doi.org/10.1016/j.automatica.2013.07.020
https://doi.org/10.1016/j.automatica.2013.07.020
https://doi.org/10.1016/j.automatica.2016.07.035
https://doi.org/10.1016/j.automatica.2016.07.035
https://doi.org/10.1016/j.automatica.2016.07.035
https://doi.org/10.1016/j.automatica.2016.07.035
https://doi.org/10.1109/TAC.2017.2684083
https://doi.org/10.1109/TAC.2017.2684083
https://doi.org/10.1109/TAC.2017.2684083
https://doi.org/10.1109/TAC.2017.2684083
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/10.1103/PhysRevX.4.021013
https://doi.org/10.1103/PhysRevLett.112.180602
https://doi.org/10.1103/PhysRevLett.112.180602
https://doi.org/10.1103/PhysRevLett.112.180602
https://doi.org/10.1103/PhysRevLett.112.180602
https://doi.org/10.1038/nphys3522
https://doi.org/10.1038/nphys3522
https://doi.org/10.1038/nphys3522
https://doi.org/10.1038/nphys3522
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e19040136
https://doi.org/10.3390/e19040136
https://doi.org/10.1109/TCST.2015.2390191
https://doi.org/10.1109/TCST.2015.2390191
https://doi.org/10.1109/TCST.2015.2390191
https://doi.org/10.1109/TCST.2015.2390191
https://doi.org/10.1103/PhysRevA.88.062326
https://doi.org/10.1103/PhysRevA.88.062326
https://doi.org/10.1103/PhysRevA.88.062326
https://doi.org/10.1103/PhysRevA.88.062326
https://doi.org/10.1038/nphys3758
https://doi.org/10.1038/nphys3758
https://doi.org/10.1038/nphys3758
https://doi.org/10.1038/nphys3758
https://doi.org/10.1103/PhysRevA.90.052324
https://doi.org/10.1103/PhysRevA.90.052324
https://doi.org/10.1103/PhysRevA.90.052324
https://doi.org/10.1103/PhysRevA.90.052324
https://doi.org/10.1021/jp992544x
https://doi.org/10.1021/jp992544x
https://doi.org/10.1021/jp992544x
https://doi.org/10.1021/jp992544x
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1103/PhysRevE.95.012148
https://doi.org/10.1103/PhysRevE.90.060102
https://doi.org/10.1103/PhysRevE.90.060102
https://doi.org/10.1103/PhysRevE.90.060102
https://doi.org/10.1103/PhysRevE.90.060102
https://doi.org/10.1103/PhysRevLett.111.030405
https://doi.org/10.1103/PhysRevLett.111.030405
https://doi.org/10.1103/PhysRevLett.111.030405
https://doi.org/10.1103/PhysRevLett.111.030405
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1088/1367-2630/8/5/083
https://doi.org/10.1038/srep06208
https://doi.org/10.1038/srep06208
https://doi.org/10.1038/srep06208
https://doi.org/10.1038/srep06208
https://doi.org/10.3390/e18050168
https://doi.org/10.3390/e18050168
https://doi.org/10.3390/e18050168
https://doi.org/10.3390/e18050168
https://doi.org/10.1209/0295-5075/89/20004
https://doi.org/10.1209/0295-5075/89/20004
https://doi.org/10.1209/0295-5075/89/20004
https://doi.org/10.1209/0295-5075/89/20004
https://doi.org/10.1063/1.4885277
https://doi.org/10.1063/1.4885277
https://doi.org/10.1063/1.4885277
https://doi.org/10.1063/1.4885277
https://doi.org/10.1119/1.18197
https://doi.org/10.1119/1.18197
https://doi.org/10.1119/1.18197
https://doi.org/10.1119/1.18197
https://doi.org/10.1209/0295-5075/89/20003
https://doi.org/10.1209/0295-5075/89/20003
https://doi.org/10.1209/0295-5075/89/20003
https://doi.org/10.1209/0295-5075/89/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1209/0295-5075/81/20003
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1103/PhysRevE.93.042112
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1209/0295-5075/113/60002
https://doi.org/10.1088/1742-6596/490/1/012185
https://doi.org/10.1088/1742-6596/490/1/012185
https://doi.org/10.1088/1742-6596/490/1/012185
https://doi.org/10.1088/1742-6596/490/1/012185
https://doi.org/10.1063/1.4711096
https://doi.org/10.1063/1.4711096
https://doi.org/10.1063/1.4711096
https://doi.org/10.1063/1.4711096
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.81.051129
https://doi.org/10.1103/PhysRevE.87.042119
https://doi.org/10.1103/PhysRevE.87.042119
https://doi.org/10.1103/PhysRevE.87.042119
https://doi.org/10.1103/PhysRevE.87.042119
https://doi.org/10.1103/PhysRevE.90.062134
https://doi.org/10.1103/PhysRevE.90.062134
https://doi.org/10.1103/PhysRevE.90.062134
https://doi.org/10.1103/PhysRevE.90.062134
https://doi.org/10.1038/srep14413
https://doi.org/10.1038/srep14413
https://doi.org/10.1038/srep14413
https://doi.org/10.1038/srep14413
https://doi.org/10.1038/srep29282
https://doi.org/10.1038/srep29282
https://doi.org/10.1038/srep29282
https://doi.org/10.1038/srep29282
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1103/PhysRevLett.105.150603
https://doi.org/10.1088/0022-3727/27/6/011
https://doi.org/10.1088/0022-3727/27/6/011
https://doi.org/10.1088/0022-3727/27/6/011
https://doi.org/10.1088/0022-3727/27/6/011
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1007/s10955-012-0550-6
https://doi.org/10.1007/s10955-012-0550-6
https://doi.org/10.1007/s10955-012-0550-6
https://doi.org/10.1007/s10955-012-0550-6
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.1088/0305-4470/12/5/007
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.1088/1367-2630/15/3/033022
https://doi.org/10.1088/1367-2630/15/3/033022
https://doi.org/10.1088/1367-2630/15/3/033022
https://doi.org/10.1088/1367-2630/15/3/033022
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1103/PhysRevLett.88.097905
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevE.95.032139
https://doi.org/10.1103/PhysRevLett.120.120602
https://doi.org/10.1103/PhysRevLett.120.120602
https://doi.org/10.1103/PhysRevLett.120.120602
https://doi.org/10.1103/PhysRevLett.120.120602
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1103/PhysRevB.74.235309
https://doi.org/10.1134/1.1187396
https://doi.org/10.1134/1.1187396
https://doi.org/10.1134/1.1187396
https://doi.org/10.1134/1.1187396
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1119/1.10023
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750
https://doi.org/10.1007/BF02124750



