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Conditional limit measure of a one-dimensional quantum walk with an absorbing sink
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We consider a two-state quantum walk on a line where after the first step an absorbing sink is placed at the
origin. The probability of finding the walker at position j , conditioned on that it has not returned to the origin, is
investigated in the asymptotic limit. We prove a limit theorem for the conditional probability distribution and show
that it is given by the Konno’s density function modified by a prefactor ensuring that the distribution vanishes at
the origin. In addition, we discuss the relation to the problem of recurrence of a quantum walk and determine the
Pólya number. Our approach is based on path counting and the stationary phase approximation.
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I. INTRODUCTION

Quantum walks [1–3] emerged during the 1990s as quantum
mechanical extensions of classical random walks on a graph or
a lattice, although similar ideas had appeared already in 1960s
in the works of Feynman and Hibbs on discretization of the
Dirac equation [4] and in the 1980s in the work of Gudder on
quantum graphic dynamics [5,6]. Since then they have attracted
considerable attention due to their potential applications in
quantum information [7], e.g., in quantum search algorithms
[8] and testing graph isomorphism [9].

Properties of quantum walks on infinite lattices are usually
investigated in the asymptotic limit of large number of steps
n. For homogeneous quantum walks on a line one can prove
weak-limit theorems which show their ballistic spreading. The
proofs are based on either a path-counting and combinatorial
approach [10–12] or Fourier transformation [13]. The latter
method allows for straightforward extensions to quantum
walks with larger internal degrees of freedom [14,15] (i.e.,
larger coin space) and higher-dimensional lattices [16–19]. For
quantum walks without translational invariance it is signifi-
cantly more difficult to derive the explicit shape of the limit
distribution; however, analytical treatment is still tractable in
some cases. For example, the so-called CGMV method [20],
which utilizes matrix-valued orthogonal Laurent polynomials
[21], can be applied to quantum walks on a line [22] or a half-
line [23] with position-dependent coins. Moreover, in terms of
scattering theories, if the perturbation on the one-dimensional
lattice is in the trace class, the convergence in law can be shown
[24].

In the present paper we consider a discrete-time quantum
walk on a line where an absorbing sink is placed at the origin
after the first step. The sink is modeled by a projection operator
which sets the amplitude at the origin to zero. Hence, the
overall evolution is not unitary. Quantum walks with sinks
on various graphs were studied in the literature, focusing on
the absorption probability [25,26] and its time dependence
[27–29]. We investigate the part of the wave function which

survives the absorption in the limit of infinite number of steps.
It is shown that the conditional probability distribution to find
the walker at position j , conditioned on the fact that the walker
was not absorbed at the origin, converges weakly to a limit
measure. Our proof is based on the path-counting approach
[30] and stationary phase approximation [31].

The rest of the paper is organized as follows: we review the
usual unitary two-state quantum walk on a line in Sec. II and
set the notation. The main results of our paper are presented
in Sec. III, where we state the limit theorem for the quantum
walk with an absorbing sink at the origin. The properties of the
conditional limit measure are illustrated by several examples.
The detailed proof of the theorem is left for the Appendix. In
Sec. IV we discuss the relation of our results to the problem of
recurrence and show that the conditional limit measure can be
used to determine the Pólya number of a quantum walk. We
conclude in Sec. V.

II. PRELIMINARY

In this section we set the notation and review the usual
unitary quantum walk. We consider a two-state coined quantum
walk on an integer lattice Z. The Hilbert space of the walk
is given by the tensor product of �2(Z) corresponding to the
position of the walker on the lattice and C2 describing the
internal coin state:

H = �2(Z) ⊗ C2 = {ψ : Z → C2 | ||ψ ||H < ∞}.
The scalar product in H is defined by

〈ϕ, φ〉H =
∑
j∈Z

〈ϕ(j ), φ(j )〉,

where 〈·, ·〉 denotes the standard scalar product in C2. The
standard basis of C2 corresponds to the coin states L and R,
which determines the direction of the hopping of the walker
to the left or to the right. Index j labels the position of the
walker on the lattice Z. The two-component complex vector
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SABRI, SEGAWA, AND ŠTEFAŇáK PHYSICAL REVIEW A 98, 012136 (2018)

ψ (j ) ∈ C2 consists of probability amplitudes of the walker
being on the vertex j with the coin states L and R, i.e.,
||ψ (j )||2 is the probability to find the walker at position j .
The discrete-time evolution of the quantum walk is described
by the unitary operator U . The operator U can be decomposed
into a product of the shift operator S and the coin operator C.
The coin operator C does not change the position of the walker,
and it acts on the state ψ as

(Cψ )(j ) = Cjψ (j ),

where Cj is a 2 × 2 unitary matrix which can be position
dependent:

Cj =
(

aj bj

cj dj

)
.

Throughout the paper we consider

Cj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C+ =
(

a+ b+
c+ d+

)
: j > 0,

C0 =
(

a0 b0

c0 d0

)
: j = 0,

C− =
(

a− b−
c− d−

)
: j < 0,

i.e., the coin operator C can act in principle differently at the
origin (j = 0) and on the positive and negative semiaxis. We
assume that the coin is mixing, i.e., |a±,0| �= 0 or 1. The shift
S acts nontrivially on the position space �2(Z). Depending on
the coin state (L or R) it moves the walker to the left (i.e., from
j to j − 1) or to the right (from j to j + 1). In total, the action
of the operator U on the state ψ can be described by

(Uψ )(j ) = Pj+1ψ (j + 1) + Qj−1ψ (j − 1),

where

Pj =
(

aj bj

0 0

)
, Qj =

(
0 0
cj dj

)
, i.e., Pj + Qj = Cj .

The time evolution of the quantum walker according to the
unitary operator U is given by

ψn = Uψn−1 = Unψ0.

The subscript denotes the number of steps taken by the walker.
For the initial state ψ0 we consider the walker starting from
the origin (j = 0) with the coin state ψc ∈ C2:

ψ0(j ) =
⎧⎨
⎩

ψc : j = 0,

0 : j �= 0.

We write the initial coin state in the form

ψc = (α, β )T

and assume that it satisfies the normalization condition

|α|2 + |β|2 = 1.

The subject of interest in quantum walks is the probability
νn(j ) to find the walker after n steps at a position j which is
given by

νn(j ) = ||ψn(j )||2.

The properties of the probability distribution νn(j ) are well
understood in the asymptotic limit n → ∞. In particular, for
the homogeneous case where Cj = C0, we find the following
limit theorem [10–13]:

Theorem 1. Let Xn be the position of the walker after n

steps of the quantum walk, i.e., a random variable following
the distribution νn which satisfies

P (Xn � m) =
∑
j�m

νn(j ).

Then we have

lim
n→∞ P (Xn/n � y) =

∫ y

−∞
ρ(x) dx

for any y ∈ R, where the limit density ρ(x) is given by

ρ(x) = (1 − λx)fK (x; |a0|).
Here fK denotes the Konno’s density function

fK (x; a) =
√

1 − a2

π (1 − x2)
√

a2 − x2
, (1)

and the parameter λ depends on the initial state ψc according
to

λ = |α|2 − |β|2 + a0αb0β + a0αb0β

|a0|2 .

We note that the limit density can be used to approximate
the exact probability distribution according to the relation

νn(j ) ≈ 2

n
ρ

(
j

n

)
,

which is valid for j and n of the same parity. The factor of 2 is
introduced artificially to offset the fact that the two-state walk is
bipartite, i.e., νn(j ) = 0 for j and n of the opposite parity. The
limit density captures the overall shape of the exact probability
distribution and its main features, such as the positions of the
peaks near ±|a0|n which correspond to the divergencies of the
limit density ρ(x) for x → ±|a0|.

III. QUANTUM WALK WITH AN ABSORBING SINK AT
THE ORIGIN

Let us now turn to the central issue of the paper, which is
the quantum walk with an absorbing sink at the origin. If the
walker returns to the origin, it is annihilated by the sink and
the walk ends. The sink sets the amplitude at the origin to zero
while leaving the rest of the state untouched. Mathematically,
the sink is described by the projection operator �0 which acts
on the state ψ as

(�0ψ )(j ) =
⎧⎨
⎩

ψ (j ) : j �= 0,

0 : j = 0.

Let us now consider the evolution of a quantum walk with the
absorbing sink at the origin. The state of the walker after n

steps, provided that it has survived the action of the sink (i.e.,
it has not crossed the origin), is given by a non-normalized
vector

ψ (sur)
n = (U (sur) )nψ0.
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Here we have defined

U (sur) = (1 − �0)U.

The norm of the vector ψ (sur)
n is the survival probability up to

the nth step

P (sur)
n = ∣∣∣∣ψ (sur)

n

∣∣∣∣2
H =

∑
j∈Z

∣∣∣∣ψ (sur)
n (j )

∣∣∣∣2
. (2)

Let us now define the conditional probability distribution,
which is normalized by the survival probability, as

ν (cond)
n (j ) =

∣∣∣∣Uψ
(sur)
n−1 (j )

∣∣∣∣2

P
(sur)
n−1

.

This is a quantum walk’s analog of the conditional probability
on Z at time n under the condition that the walker has never
returned to the origin.

The main result of our paper is the following limit theorem
for the conditional probability distribution:

Theorem 2. Let X(cond)
n be a position of the quantum walker

after n steps of the walk with an absorbing sink at the origin,
i.e., a random variable following the distribution ν (cond)

n and
satisfying

P
(
X(cond)

n � m
) =

∑
j�m

ν (cond)
n (j ).

Then we have

lim
n→∞ P

(
X(cond)

n /n � y
) =

∫ y

−∞
ρ (cond)(x) dx

for any y ∈ R. The conditional limit density is given by

ρ (cond)(x) = H (x)ρ (+)(x) + H (−x)ρ (−)(x),

where H (x) is the Heaviside step function and

ρ (+)(x) = P+
N (|a+|)

4x2

1 + x
fK (x; |a+|),

ρ (−)(x) = P−
N (|a−|)

4x2

1 + |x|fK (x; |a−|).

Here fK (x; a) is the Konno’s density function and

P+ = |〈v(+)
0 , ψc〉|2, 〈v(+)

0 | = (c0, d0),

P− = |〈v(−)
0 , ψc〉|2, 〈v(−)

0 | = (a0, b0).

By N (a) we have denoted a normalization factor which reads

N (a) = πa2 − 2a
√

1 − a2 + 2(1 − 2a2) arcsin(a)

π (1 − a2)
.

We leave the detailed proof of the theorem for the Appendix
and turn to the discussion of the results.

First, we see that the conditional limit measure is determined
by the Konno’s density function as for the walk without the
absorbing sink, however, modulated by the factor 4x2

1+|x| . This

contribution ensures that ρ (cond)(x) tends to zero for x = 0 as
expected due to the presence of the sink. We illustrate this
feature in Fig. 1 where we consider the homogeneous case
with the Hadamard coin:

C+ = C− = C0 = 1√
2

(
1 1
1 −1

)
.
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FIG. 1. In the upper plot we show the conditional probability
distribution of the Hadamard walk after 100 steps with absorbing
sink at the origin. Note that the plot is on the logarithmic scale. Blue
dots are obtained from the numerical simulation, black curve is the
approximation with the limit density of (3). The initial coin state
was chosen as ψc = (1, 0)T , which results in a symmetric conditional
distribution. In the lower plot we present the cumulative distribution
function where the rapid oscillations of the probability distribution
are smeared out. The cumulative distribution function obtained from
the limit density perfectly fits the exact numerical data.

As for the initial state we consider ψc = (1, 0)T , where the
walker in the first step jumps to the left or to the right with
equal probability: P+ = P− = 1/2. Hence, the conditional
limit measure is symmetric and has the form

ρ (cond)(x) = 1

2 − 4
π

4x2

1 + |x|fK

(
x;

1√
2

)
. (3)

We note that P± also gives the asymptotic conditional proba-
bility of finding the walker on the positive or negative half-line:

P+ =
∫ |a+|

0
ρ (cond)(x) dx,

P− =
∫ 0

−|a−|
ρ (cond)(x) dx.

As the next example we consider a case with different
coins for the origin and the positive and negative half-line.
The sink at the origin decouples the two half-lines. Hence, the
evolution of the walker on the positive (negative) semiaxis is
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FIG. 2. Conditional probability distribution on the log scale (up)
and the cumulative distribution function (down) of the walk with ab-
sorbing sink at the origin. The initial coin state was ψc = (0.6, 0.8)T .
The coins were chosen according to (4). Different coins for j > 0
and j < 0 result in asymmetric conditional distribution. In this case
the walk spreads faster on the negative half-line than on the positive
half-line. In addition, due to the choice of the initial coin state, the
particle has a higher probability to be on the left side of the absorbing
sink.

determined purely by C+ (C−). In Fig. 2 we have chosen the
coins according to

C+ = 1

2

(
1

√
3

−√
3 1

)
,

C0 = 1√
2

(
1 1
1 −1

)
, (4)

C− =
(

cos
(

π
8

)
sin

(
π
8

)
− sin

(
π
8

)
cos

(
π
8

)
)

.

Since a− = cos ( π
8 ) > a+ = 1

2 , the walk spreads faster on the
negative half-line than on the positive. Due to the choice of
the initial state ψc = (0.6, 0.8)T the conditional distribution
is heavily biased towards left. Indeed, we find that P− = 0.98
and P+ = 0.02, which is also clearly visible from the plot of
the cumulative distribution function.

Finally, we consider the case where the walker jumps in the
first step with probability 1 to one side of the line, i.e., P+ = 1
or P− = 1. This depends on the relation between the coin at
the origin C0 and the initial state ψc. From the unitarity of the
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FIG. 3. Conditional probability distribution on the log-scale (up)
and the cumulative distribution function (down) of the Hadamard walk
with absorbing sink at the origin. The initial coin state was chosen
as ψc = 1√

2
(1, −1)T . In such a case the conditional distribution

completely vanishes on the left side of the absorbing sink, since in the
first step the walker jumps with probability 1 to the right and cannot
cross the origin afterwards.

matrix C0 we find

P− = 1 ⇐⇒ ψc = (a0, b0)T ,

P+ = 1 ⇐⇒ ψc = (c0, d0)T .

Since the walker cannot cross the origin due to the presence of
the sink the conditional probability distribution is nonzero only
on the positive or negative half-line. We illustrate this feature
in Fig. 3 for the case of the Hadamard walk. The initial state
was chosen as ψc = 1√

2
(1,−1)T , which results in P− = 0 and

P+ = 1. Clearly, the walker can be found only on the positive
half-line.

IV. RECURRENCE AND PÓLYA NUMBER

Let us conclude by applying our results to the problem
of recurrence [32]. Here we are interested in the probability
that the walker returns to the origin, which is called the Pólya
number. The walk is said to be recurrent if its Pólya number
is equal to one, and transient otherwise. For quantum walk
there are two inequivalent definitions of the Pólya number
[33,34] depending on the way the return to the origin is
observed. In the observation scheme introduced in Ref. [33]
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the measurement is performed only once after n steps and
the walk is restarted afterwards. The observation scheme in
Ref. [34] requires one to monitor the origin continually after
every step, and the walk ends if the walker is found. We
note that in the classical case the two concepts are equivalent
in the sense that recurrence under one definition implies
recurrence under the other, and vice versa [35]. However, in
the quantum case the two approaches lead to different results
already for a quantum walk on a line, where in the restart
scheme the walk is recurrent [35], while in the continual
scheme it is transient [25,36]. Both observation schemes for
recurrence were recently implemented in a photonic quantum
walk experiment [37] which has clearly shown the difference
between the two schemes arising from the projective nature of
quantum measurements.

A quantum walk with the sink at the origin investigated
in this paper corresponds to the continual observation scheme
for recurrence, where the return to the origin is marked by the
absorption of the walker [34]. In this scheme the Pólya number
of the walk is given by

P =
∞∑

k=1

q(0, k),

where q(0, k) denotes the probability of the first return of the
walker to the origin after k steps. The first return probability is
obtained from

q(0, k) = ∣∣∣∣(Uψ
(sur)
k−1

)
(0)

∣∣∣∣2
.

The sum

P (abs)
n =

n∑
k=1

q(0, k)

gives the probability that the walker was absorbed by the sink
until the step n. Clearly, it is the complement of the survival
probability (2):

P (abs)
n = 1 − P (sur)

n .

Since the Pólya number of the quantum walk is given by the
asymptotic value of the absorption probability, we find

P = 1 − lim
n→∞ P (sur)

n .

As we discuss in the Appendix, the limiting value of the
survival probability is given by

lim
n→∞ P (sur)

n = P+N (|a+|) + P−N (|a−|).

Hence, in the continual measurement scheme the Pólya number
for a two-state quantum walk on a line is given by

P = 1 − P+N (|a+|) − P−N (|a−|).
We see that when the coin operator acts differently on the
positive and negative half-line the Pólya number depends on
the initial coin state ψc through the probabilities P±. For |a+| =
|a−| = a the dependence on ψc vanishes and we find that the
Pólya number is given by

P = 2
a
√

1 − a2 + (1 − 2a2) arccos(a)

π (1 − a2)
,

which coincides with the value obtained in Ref. [38]. In the
particular case of the Hadamard walk corresponding to a = 1√

2

the Pólya number reduces to P = 2
π

in accordance with the
findings of Refs. [25,36].

V. CONCLUSIONS

In this paper we have investigated the asymptotic properties
of the quantum walk on a line with an absorbing sink at the
origin. We have shown that the position of the quantum walker
rescaled by the number of steps X(cond)

n /n converges in the
limit n → ∞, similarly like for the unitary quantum walk. The
explicit form of the conditional limit measure was derived.
Finally, the relation to recurrence of a quantum walker was
discussed. In particular, we have derived the Pólya number
in dependence on the initial state and the parameters of the
quantum coin.

It would be interesting to investigate quantum walks with
an absorbing sink on higher-dimensional lattices. For a one-
dimensional lattice considered in the present paper the sink
at the origin separates the dynamics into two independent
quantum walks on a half-line. This is no longer true for higher-
dimensional lattices. One can anticipate that the conditional
limit density will exhibit more complicated patterns depending
also on the initial state. However, this investigation is beyond
the scope of the present paper.

ACKNOWLEDGMENTS

E.S. acknowledges financial supports from the Grant-in-
Aid for Young Scientists (B) and of Scientific Research (B) of
the Japan Society for the Promotion of Science (Grants No.
16K17637 and No. 16K03939). M.Š. is grateful for financial
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APPENDIX: PROOF OF THEOREM 2

Let �n = {1,−1}n. For ξ = (ξ1, . . . , ξn) ∈ �n, we define
σm = ξ1 + · · · + ξm (m � n). We define the weight of path:
w : �n → M2(C2) such that

w(ξ ) = Pξn,σn−1 · · · Pξ2,σ1Pξ1,0

for ξ = (ξ1, . . . , ξn), where

P1,x = Qsgn(x) and P−1,x = Psgn(x).

We put �j (n) := {ξ ∈ �n | σ0 = 0, σ1 �= 0, . . . , σn−1 �=
0, σn = j}, which is the set of all the possible paths from
the origin to j without the absorption. In the following we
consider only the positive half-line j � 1, since the proof
for the negative half-line is analogous. The weight of the
paths avoiding to touch the absorbing sink is denoted by
�

(sur)
j (n) = ∑

ξ∈�j (n) w(ξ ). Remark that the non-normalized
amplitude at position j after n steps can be obtained from

ψ (sur)
n (j ) = �

(sur)
j (n)ψc.

Therefore, the weight �(sur)
j (n) will play an important role. We

introduce the generating function of �
(sur)
j (·) with respect to
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time series n,

�̃
(sur)
j (z) =

∞∑
n=0

�
(sur)
j (n)zn,

for a complex value z. We obtain the following lemma for the
explicit expression of �̃

(sur)
j (z).

Lemma 1. Put eiδ = det(C+), � = {θ ∈ [0, 2π ) | |c+| �
| sin θ |} and �c = [0, 2π ] \ �. Let �̃(sur)

j (z) be the above. Then
we have

�̃
(sur)
j (z) = λ̃j−1(z)|ũ(z)〉〈v(+)

0 | (j � 1), (A1)

where |ũ(z)〉 = (λ̃(z)f̃ (z), z)T and 〈v(+)
0 | = (c0, d0). Here for

z = ei(θ−δ/2), λ̃(z) and f̃ (z) are given by

f̃ (ei(θ−δ/2)) = −eiθ |c+|
c+

⎧⎪⎨
⎪⎩

eiη(θ ) : θ ∈ �c,

isgn(sin θ )

(∣∣∣ sin θ
c+

∣∣∣ −
√∣∣∣ sin θ

c+

∣∣∣2
− 1

)
: θ ∈ �.

(A2)

λ̃(ei(θ−δ/2)) = eiδ/2 |a+|
a+

⎧⎪⎨
⎪⎩

sgn(cos θ )

(∣∣∣ cos θ
a+

∣∣∣ −
√∣∣∣ cos θ

a+

∣∣∣2
− 1

)
: θ ∈ �c,

eiκ (θ ) : θ ∈ �.

(A3)

where

sin η(θ ) = sin θ

|c+| , sgn(cos η(θ )) = sgn(cos θ ),

cos κ (θ ) = cos θ

|a+| , sgn(sin κ (θ )) = −sgn(sin θ ). (A4)

Proof of Lemma 1. Replacing �̃0(z) with �̃
(sur)
0 (z) = I

in Lemma 3.1 in Ref. [39], we obtain (A1). The explicit
expressions for f̃ and λ̃; (A2) and (A3), respectively, can be
referred by (3.25) in Ref. [39].�

We use the notation

ψ̃
(sur)
j (z) = �̃

(sur)
j (z)ψc.

By the Cauchy’s coefficient formula, the amplitude at time n

and position j without the absorption ψ (sur)
n (j ) is expressed by

ψ (sur)
n (j ) = einδ/2

∫ 2π

0
ψ̃

(sur)
j

(
ei(θ−δ/2)

)
e−inθ dθ

2π

= einδ/2[Ij (n) + Jj (n)],

where we have introduced

Ij (n) =
∫

�

ψ̃
(sur)
j

(
ei(θ−δ/2)

)
e−inθ dθ

2π
,

Jj (n) =
∫

�c

ψ̃
(sur)
j

(
ei(θ−δ/2)

)
e−inθ dθ

2π
.

Let us first consider Jj (n). By Lemma 1, since θ ∈ �c, the
absolute value of λ̃ is bounded as |λ̃| < 1. Therefore we have

Jj (n) =〈v(+)
0 , ψc〉

∫
�c

e−inθ {λ̃(ei(θ−δ/2))}j−1

×
(−λ̃[ei(θ−δ/2)] ei(θ+η(θ )) |c+|/c+

ei(θ−δ/2)

)
dθ

2π

(n→∞)−→ 0,

which is an exponentially decay to 0. Therefore, Jj (n) does
not contribute to the limit density. Let us turn to Ij (n). In
this case θ ∈ � and by Lemma 1 λ̃ becomes a unit complex
value. We find that for fixed y ∈ R+ the integral I[ny](n) is

expressed by

I[ny](n) = eiσ 〈v(+)
0 , ψc〉

∫
�

ei{n[yκ (θ )−θ]+βn (θ )}|ũ(ei(θ−δ/2))〉 dθ

2π
,

where βn(θ ) = ([ny] − ny)κ (θ ) = O(1) and σ = δ/2 −
arg(a). Here |ũ〉 is expressed by

|ũ(ei(θ−δ/2))〉 =
(

eiω(θ )[| sin θ/c+|2 −
√

| sin θ/c+|2 − 1]
ei(θ−δ/2)

)
,

where

eiω(θ ) = −i
|a+||c+|
a+c+

eiδ/2sgn(sin θ )ei[κ (θ )−θ].

We set g(θ ) := yκ (θ ) − θ . The singular points of g(·) on
[0, 2π ) are described by {θ (1)

∗ , . . . , θ
(4)
∗ }. Now we can apply

the following kind of extended stationary phase method. This
lemma is obtained by following Ref. [31] even if we modify
the function in the exponent by adding a function ω(x) with
some conditions. We skip the proof in this paper.

Lemma 2. (An extended stationary phase method) Let h :
[x∗, b] → R be a C2 function and h′(x∗) = 0, h′′(x∗) �= 0 and
h′(x) �= 0. (x∗ < x � b). Let ω : [x∗, b] × N → R be a C1

function with respect to x ∈ [x∗, b], and satisfy the following
condition:

sup
x,n

|w(x, n)|, sup
x,n

|w′(x, n)| < c1,

|w(n, x) − w(n, x ′)| < c2|x − x ′|,

where c1 and c2 are constant, which are independent of x and
n. Then for n → ∞ we find∫ b

x∗
ei[nh(x)+ω(x,n)] dx = 1√

n

√
π

2|h′′(x∗)|eisgn[h′′(x∗ )π/4]

× ei[nh(x∗ )+ω(x∗,n)] + O(1/
√

n).
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In our case Lemma 2 implies

e−iσ I[ny](n)/〈v(+)
0 , ψc〉

=
4∑

j=1

1√
n

√
2π

|yκ ′′(θ (j )
∗ )|

eisgn[κ ′′ (θ (j)
∗ )π/4]

× ei[nκ (θ (j )
∗ )+βn(θ (j )

∗ )]|ũ(ei(θ∗−δ/2))〉 1

2π
+ O(1/

√
n).

Hence, for the square norm we find

||I[ny](n)||2 = 1

n

[
P+

4∑
j=1

1

|yκ ′′(θ (j )
∗ )|

× ||ũ(
ei(θ (j )

∗ −δ/2)
)||2 1

2π
+ cross terms

]

+ O(1/n).

Since yκ ′(θ∗) − 1 = 0, using the formula of (A4) we obtain

1

π |yκ ′′(θ (j )
∗ )|

= y2fK (y; |a+|),

||ũ(
ei(θ (j )

∗ −δ/2)
)||2 = 1 + |f̃ (

ei(θ (j )
∗ −δ/2)

)|2 = 2

1 + y
.

Since

∫ y

0
||I[nx](n)||2 dx = 1

n

⎡
⎣ [ny]∑

j=1

||Ij (n)||2 + O(1)

⎤
⎦,

and the “cross terms” contain “ein(θ (�)
∗ −θ

(m)
∗ )+βn(θ (�)

∗ )−βn(θ (m)
∗ )”, we

can use Lemma 2 again and find

[ny]∑
j=1

||Ij (n)||2 (n→∞)−→
∫ y

0
P+

4x2

1 + x
fK (x; |a+|) dx.

This implies that

lim
n→∞

∞∑
j=1

∣∣∣∣ψ (sur)
n (j )

∣∣∣∣2 = P+N (|a+|),

where

N (|a+|) =
∫ |a+|

0

4x2

1 + x
fK (x; |a+|) dx.

The conditional limit density for the positive half-line is then
given by performing a proper normalization:

ρ (+)(x) = P+
N (|a+|)

4x2

1 + x
fK (x; |a+|).

For the negative half-line we proceed analogously and obtain
the conditional limit density ρ (−)(x). We note that the limiting
value of the survival probability (2) is given by

lim
n→∞ P (sur)

n = lim
n→∞

∞∑
j=1

||ψ (sur)
n (j )||2 + lim

n→∞

−∞∑
j=−1

||ψ (sur)
n (j )||2

= P+N (|a+|) + P−N (|a−|).

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,
1687 (1993).

[2] E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998).
[3] D. Meyer, J. Stat. Phys. 85, 551 (1996).
[4] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and

Path Integrals, International Series in Pure and Applied Physics
(McGraw-Hill, New York, 1965).

[5] S. P. Gudder, Found. Phys. 18, 751 (1988).
[6] S. Gudder, Quantum Probability (Academic Press, New York,

1988).
[7] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in Proc.

33th STOC) (ACM, New York, 2001), p. 50.
[8] N. Shenvi, J. Kempe, and K. B. Whaley, Phys. Rev. A 67, 052307

(2003).
[9] B. L. Douglas and J. B. Wang, J. Phys. A 41, 075303 (2008).

[10] N. Konno, Quantum Inform. Process. 1, 345 (2002).
[11] N. Konno, Quantum Inf. Comput. 2, 578 (2002).
[12] N. Konno, J. Math. Soc. Jpn. 57, 1179 (2005).
[13] G. Grimmett, S. Janson, and P. F. Scudo, Phys. Rev. E 69, 026119

(2004).
[14] N. Inui, N. Konno, and E. Segawa, Phys. Rev. E 72, 056112

(2005).
[15] T. Miyazaki, M. Katori, and N. Konno, Phys. Rev. A 76, 012332

(2007).
[16] K. Watabe, N. Kobayashi, M. Katori, and N. Konno, Phys. Rev.

A 77, 062331 (2008).
[17] M. Hinarejos, A. Perez, E. Roldan, A. Romanelli, and G. J. de

Valcarcel, New J. Phys. 15, 073041 (2013).

[18] T. Machida and C. M. Chandrashekar, Phys. Rev. A 92, 062307
(2015).

[19] T. Machida, C. M. Chandrashekar, N. Konno, and T. Busch,
Quantum Inf. Comput. 15, 1248 (2015).

[20] M. J. Cantero, F. A. Grünbaum, L. Moral, and L. Velázquez,
Commun. Pure Appl. Math. 63, 464 (2010).

[21] B. Simon, Orthogonal polynomials on the unit circle. Part
1: Classical Theory, American Mathematical Society Collo-
quium Publication, Vol. 54 (American Mathematical Society,
Providence, 2004).

[22] N. Konno and E. Segawa, Quantum Inf. Comput. 14, 1165
(2014).

[23] D. Damanik, J. Erickson, J. Fillman, G. Hinkle, and A. Vu,
J. Approx. Theory 208, 59 (2016).

[24] A. Suzuki, Quantum Inform. Process. 15, 103 (2016).
[25] A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, and J. Wa-

trous, in Proc. Thirty-Third Annual ACM Symp. on Theory of
Computing (ACM, New York, 2001), p. 37.

[26] N. Konno, T. Namiki, T. Soshi, and A. Sudbury, J. Phys. A 36,
241 (2003).

[27] T. Yamasaki, H. Kobayashi, and H. Imai, Phys. Rev. A 68,
012302 (2003).

[28] E. Bach, S. Coppersmith, M. P. Goldschen, R. Joynt, and J.
Watrous, J. Comput. System Sci. 69, 562 (2004).
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014055 (2009).

[37] T. Nitsche et al., Sci. Adv. 4, eaar64444 (2009).
[38] J. Bourgain, F. A. Grünbaum, L. Velázquez, and J. Wilkening,

Commun. Math. Phys. 329, 1031 (2014).
[39] N. Konno, T. Luczak, and E. Segawa, Quantum Inform. Process.

12, 33 (2013).

012136-8

https://doi.org/10.1007/BF01458701
https://doi.org/10.1007/BF01458701
https://doi.org/10.1007/BF01458701
https://doi.org/10.1007/BF01458701
https://doi.org/10.1103/PhysRevLett.100.020501
https://doi.org/10.1103/PhysRevLett.100.020501
https://doi.org/10.1103/PhysRevLett.100.020501
https://doi.org/10.1103/PhysRevLett.100.020501
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1007/s00220-012-1645-2
https://doi.org/10.1103/PhysRevA.78.032306
https://doi.org/10.1103/PhysRevA.78.032306
https://doi.org/10.1103/PhysRevA.78.032306
https://doi.org/10.1103/PhysRevA.78.032306
https://doi.org/10.1088/0031-8949/2009/T135/014055
https://doi.org/10.1088/0031-8949/2009/T135/014055
https://doi.org/10.1088/0031-8949/2009/T135/014055
https://doi.org/10.1088/0031-8949/2009/T135/014055
https://doi.org/10.1126/sciadv.aar6444
https://doi.org/10.1126/sciadv.aar6444
https://doi.org/10.1126/sciadv.aar6444
https://doi.org/10.1126/sciadv.aar6444
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1007/s00220-014-1929-9
https://doi.org/10.1007/s11128-011-0353-8
https://doi.org/10.1007/s11128-011-0353-8
https://doi.org/10.1007/s11128-011-0353-8
https://doi.org/10.1007/s11128-011-0353-8



