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Pechukas-Yukawa formalism for Landau-Zener transitions in the presence of external noise
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Quantum systems are prone to decoherence due to both intrinsic interactions as well as random fluctuations from
the environment. Using the Pechukas-Yukawa formalism, we investigate the influence of noise on the dynamics of
an adiabatically evolving Hamiltonian which can describe a quantum computer. Under this description, the level
dynamics of a parametrically perturbed quantum Hamiltonian are mapped to the dynamics of one-dimensional
classical gas. We show that our framework coincides with the results of the classical Landau-Zener transitions
upon linearization. Furthermore, we determine the effects of external noise on the level dynamics and its impact
on Landau-Zener transitions.
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I. INTRODUCTION

Adiabatic quantum computers (AQCs) offer an alternative
to the standard approach to quantum computing, well suited
for optimization problems. One major challenge to AQCs is
decoherence. A generic AQC is governed by the Hamiltonian
[1–12]

H [λ(t )] = H0 + λ(t )ZHb, (1)

where H0 is an unperturbed Hamiltonian with an easily
achievable nondegenerate ground state, λ is an adiabatically
evolving parameter, and ZHb is a large-bias perturbation term
with Z � 1 [11,13–16]. Due to the fragility of its quantum
states with respect to external and internal sources of deco-
herence, the investigation of state transitions in adiabatically
evolving systems is crucial to the development of AQCs
[13,16].

The Pechukas-Yukawa formalism maps the level dynamics
of Eq. (1) to a one-dimensional (1D) classical gas with long-
range repulsion [13]. It is especially convenient for AQCs,
taking λ to be an adiabatically evolving parameter. An exten-
sion of the formalism describes the dynamics of the quantum
states of the system [11,17] through the evolution of C(t ),
a vector of the expansion coefficients of the quantum state
over the orthonormal state of instantaneous eigenstates of the
Hamiltonian. A wave function, expanded in the instantaneous
eigenstates, is described by the following:

|ψ〉 = ∑
n Cn(t )|n〉. (2)

The above expansion can be used to determine the density
matrices,

ρ(t ) = C(t )
⊗

C∗T (t ). (3)

This provides insight on both the dynamics of occupation
numbers (the probability of remaining in a state after level
“collisions”) and the coherences (interlevel correlations).

Using the Landau-Zener (LZ) model, one assumes that the
level occupation numbers only change due to LZ tunnelings at
avoided level crossings (anticrossings) [13,18]. The LZ proba-
bilities detail the fundamental results of nonstationary quantum
mechanics [19], e.g., the nonadiabatic population transfer at
level crossings and anticrossings in perturbed Hamiltonian
systems or quantum phase transitions [20,21]. The LZ model
has been extended to stochastic systems [19]. This details the
probabilities of state transitions under the influence of random
environmental effects [18,22], which may lead to decoherence
in the system. One source of decoherence is noise; the LZ
model is suitable to describe analytically the decoherence from
external noise [19].

We develop the LZ model in the Pechukas-Yukawa for-
malism to gain insight into the effects of random fluctu-
ations on the evolution of quantum states. This approach
can describe a nonequilibrium interacting system of highly
entangled states, especially the dynamics of a system and its
vulnerability to decoherence. We investigate the compatibility
of the Pechukas-Yukawa formalism and the LZ model to
determine the conditions necessary for the LZ model to be
applicable. We further explore the impact of noise on these
requirements and the behavior of levels approaching the point
of minimum separation under the influence of noise. This paper
aims to develop basic elements of such an approach, which
will be especially useful for, but not necessarily restricted to,
modeling adiabatic quantum computers.

The structure of the paper is as follows: Sec. II gives a brief
overview of the Pechukas equations and the evolution of the
eigenstate coefficients and Sec. III provides the background
of LZ transitions and its application to the Pechukas-Yukawa
model. In Sec. IV, the conditions required for the applicability
of the LZ model within the Pechukas-Yukawa formalism are
investigated. We further outline the conditions required for the
applicability of the LZ approximation (isolated crossings). In
Sec. V, the study is extended to determine the influence of
external noise on these conditions. Discussion and conclusions
are presented in Sec. VI.
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II. THE PECHUKAS MODEL AND THE EVOLUTION OF
EIGENSTATE COEFFICIENTS

For completeness, we outline the approach, first developed
by Pechukas, that maps the level dynamics of an externally
perturbed quantum systems on that of a fictitious classical 1D
gas. It is well suited though not restricted to adiabatic quantum
systems [10,11,13]. The associated Hamiltonian for this gas is
written as

H = 1

2

N∑
n=1

v2
n + 1

2

N∑
n�=m

|lmn|2
(xm − xn)2

, (4)

which is derived from the Pechukas equations,

dxm

dλ
= vm,

dvm

dλ
= 2

∑
m�=n

|lmn|2
(xm − xn)3 ,

dlmn

dλ
=

∑
k �=m,n

lmklkn

[
1

(xm − xk )2 − 1

(xk − xn)2

]
. (5)

These equations are derived directly from the quantum
equations of motion for Eq. (1) using Hamilton’s equations of
motion, where xm(λ) = Em(λ) = 〈m|H |m〉, the instantaneous
eigenvalues of the system, vm(λ) = 〈m|ZHb|m〉 and lmn(λ) =
[Em(λ) − En(λ)]〈m|ZHb|n〉 which is skew-Hermitian, satis-
fying lmn = −l∗nm. These represent the “positions,” “veloci-
ties,” and particle-particle repulsion as determined by the “rel-
ative angular momenta” [7,11,13,23]. Unlike the well-known
integrable Calogero-Sutherland model, here the “interparticle
repulsion amplitudes” lmn are not constant and have their own
dynamics. Nevertheless, the system described in Eq. (5) is
also integrable [10]. In this model, all information for the
Hamiltonian dynamics is encoded in its initial condition.

These equations have been extended to the stochastic
sense accommodating noise from random fluctuations in the
environment. Using the central limit theorem, noise arises from
a number of independent identical sources, and therefore it is
reasonable to assume that the sum of its effect is Gaussian.
The contribution of the noise in the Hamiltonian is denoted
through the term δh(λ(t )) [16], H (λ(t )) = H0 + λ(t )ZHb +
δh(λ(t )) [16]. For real eigenvalues, δh is Hermitian. As a
simplification, δh(λ) is taken to be real. It is shown that with
the added stochastic term, the Pechukas mapping still applies
and we can extend Eq. (5) to the closed stochastic Pechukas
equations [16], given by the following:

ẋm = vm + δ̇hmm,

v̇m = 2
∑
m�=n

|lmn|2
(xm − xn)3 + lmnδ̇hnm − δ̇hmnlnm

(xm − xn)2
,

l̇mn =
∑

k �=m,n

lmklkn

[
1

(xm − xk )2 − 1

(xk − xn)2

]

+ (xm − xn)(lmkδ̇hkm − δ̇hmklkm)

(xm − xk )(xn − xk )

+ δ̇hmn(vm − vn) + lmn(δhmm − δhnn)

(xm − xn)
. (6)

The derivative, denoted by “·”, is taken with respect to λ.
It is clear that the mapping retains its structure, whereby if
δh = 0, Eq. (6) reduces to Eq. (5). The stochastic Pechukas
equations (6) are independent of any assumptions on the
nature of the noise, and therefore are applicable to a wide
range of stochastic systems [16,24]. Using this formalism, we
investigate the conditions for the applicability of the LZ model.
We further extend this description to explore the impacts of
external noise on these conditions.

III. LANDAU-ZENER TRANSITION PROBABILITIES

The Pechukas equations (5) are well suited to describe
level crossings and anticrossings in a system. Level crossings
occur whenxm(λ∗) = xn(λ∗) describing degeneracies [25–27],
and as a result lmn(λ∗) = 0 at some level crossing at λ∗ (the
converse is not necessarily true [11,13]). Anticrossings arise
when levels approach a minimum nonzero distance before
repelling [27–30]. The standard approach to model the interac-
tions assumes all other level interactions are negligible, reduc-
ing the system to two interacting levels about λ∗. Anticrossings
are parameterized by the size of the gap at the closest approach
and the asymptotic slope of the curves [27–29]. For an isolated
anticrossing, the energy levels take hyperbolic form: x±(λ) =
x(λ∗) + B(λ − λ∗) ± 1

2 [�2
min + A2(λ − λ∗)]

1
2 , with �min de-

noting the minimum gap size, and B(λ − λ∗) and A(λ − λ∗),
respectively, describing the mean and the difference in the
asymptotic slopes [27,28].

The LZ model is used to describe these interactions through
a statistical distribution of gap sizes, governing the rate of
excitation due to nonadiabatic population transfers. This gives
the probability to remain in its initial state after a level
crossing or anticrossing. For an adiabatic regime independent
of external noise, this probability is given by the following
probability distribution [13,31]:

PLZ = e
− �2

min
4π |〈m|ZHb |n〉|λ̇ . (7)

The transition time, τLZ = �min/λ̇, is defined by the time
interval in which the levels interact in a neighborhood γ

of each other (for a level crossing, this interaction is in-
stantaneous) [19,25,27,32,33]. Under the Pechukas-Yukawa
formalism, one can determine from the initial conditions
whether a system will exhibit quantum phase transitions and
their impacts on the system [20].

IV. LANDAU-ZENER CONDITIONS ON THE
DETERMINISTIC PECHUKAS-YUKAWA FORMALISM

The applicability of the LZ transition model requires that
both the perturbation parameter λ and level separation are
traversed linearly in time, localized about λ∗. Furthermore,
under the LZ model, the N -level system collapses to a two-
level problem where only the interacting levels [27,29] play
a significant role. This comes from the assumption that level
crossings are locally more dominant than all other interactions
during this period such that contributions from far away levels
can be neglected.

In Pechukas-Yukawa formalism, this is a plausible assump-
tion: due to the “two-body” interactions fast decaying with
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distance, the collisions are practically independent, and the
influence of other “particles” is expected to be small. Our fur-
ther analysis shows that this is actually the case. Furthermore,
we find that the Pechukas-Yukawa formalism can indeed be
simplified to linear level separations. We examine the behavior
of the level separations about λ∗ using a Taylor expansion.
For a level crossing, we have shown that the relative angular
momenta terms are constantly zero and the acceleration terms
independently tend to zero. This demonstrates linear evolution
in level separations. See Appendix A for details.

On the other hand, anticrossings have constant relative
angular momenta β between levels at the level crossing
or anticrossing. In this case, all other relative angular mo-
menta lmi and lni are constants, where Re(lmi ), Re(lni ) =
0 and Im(lmi ), Im(lni ) are bounded in the interval [−1, 1],
independent of all other levels. The difference between the
acceleration terms of the interacting levels is constant, 4|β|2

�3
min

,

at λ∗. For sufficiently small δλ, these terms are negligible,
therefore linearizing the level separations. Details are provided
in Appendix B. Under these approximations, the Pechukas-
Yukawa formalism is reduced to the Calogero-Sutherland
model.

In the setting of bosonic systems, this compares with the
work in [34], where the coupling constant in our system is given
by the golden ratio. It was shown that for coupling strengths
in the interval (1,2), the system can be described as a quasi-
super-solid where the potential energies are of the same order
as the kinetic energies.

Isolated crossings

To satisfy that the noninteracting levels can be ignored in a
LZ transition, we must ensure that level crossings are isolated
from each other. We compare the differences in the transition
times between level crossings or anticrossings in close vicinity
to each other. Given that the transition times do not overlap,
these level crossings and anticrossings can be regarded as
independent of each other.

For level crossings, τLZ → 0. This reflects a strong re-
pulsion between the levels such that the transition time is
instantaneous. Given that multilevel crossings are statistically
negligible and that no more than two levels in close vicinity
cross at a single point so the level crossings are independent of
each other, we devote our attention to two-level anticrossings
occurring in close vicinity with minimum level separations
at λ∗ and λ∗∗ = λ∗ + δ and transition times τLZ and τ

′
LZ ,

respectively, as in Fig. 1. We take symmetric anticrossings
such that τLZ = 2ξ . Recall that in the adiabatic regime,
τLZ = �min/λ̇. These anticrossings are considered isolated
given that their respective transition times do not overlap
such that (λ∗∗ − ξ ‘ ) − (λ∗ + ξ ) > 0. Then, the LZ transition
model is applicable to describe the probabilities of population
transitions.

We denote the distance between levels d(λ) = xm − xn,
where xm > xn, and m and n label the levels involved at an
anticrossing. Levels are considered to be in an anticrossing
when they are in a γ neighborhood of each other about a
local minimum denoted by d(λ∗) = �min, where ḋ (λ∗) = 0.
Expanding d(λ) about λ∗ where δλ = (λ − λ∗), we obtain the

FIG. 1. Two anticrossings in close vicinity to each other.

following (details are provided in Appendix D):

d(λ) = �min + δλ2 4β2

�3
min

. (8)

Let d(λ∗ + ξ ) = γ ; then the minimum separation is ex-
pressed as �min = γ − ξ 2 4β2

�3
min

. Given that levels are within

a distance γ of each other and δ > 1
2λ̇

(γ − 4β2

�3
min

) + ξ
′
, the

anticrossings are considered isolated and one can apply the LZ
model. Next, we extend this investigation of the impact of noise
under these conditions. This enables further understanding of
dissipative influences on the properties of level interactions.

V. THE IMPACTS OF NOISE ON THE LANDAU-ZENER
CONDITIONS IN THE PECHUKAS-YUKAWA FORMALISM

Depending on the nature of the noise, whether the source is
longitudinal (with only diagonal elements) or transverse (with
only off-diagonal elements), the system behaves differently.
Longitudinal contributions result in decoherence in the system,
whereas transverse noise results in couplings to the environ-
ment [16,19]. Our analysis could be extended to various types
of noise. For concreteness, we consider a single composite
source of longitudinal noise δh such that δ̇h = εηM . Here,
η is white noise, i.e., a random normal-distributed stochastic
process [19,32], M represents a general diagonal matrix, and
ε denotes the noise amplitude. For white noise, which is the
formal derivative of a Wiener process W (t ), the expectation is
zero and the autocorrelation function is given by

〈ηmn(λ), ηmn(λ
′
)〉 = δ(λ − λ

′
),

〈εηmn(λ), εηmn(λ
′
)〉 = ε2δ(λ − λ

′
). (9)

The correlation time τc = 0.
Noise can break the degeneracy at level crossings, resulting

in anticrossings. To ensure the applicability of the LZ model,
we reduce the system from N levels to two. Again, under the
assumption that levels outside the anticrossings are far away
with weaker-coupling interactions, we show that the anticross-
ing is independent of all noninteracting level contributions.
The Pechukas-Yukawa model is highly entangled, and hence
it is important to verify that the conditions required for the LZ
description are met.
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Considering the stochastic Pechukas equations regarding
the relative angular momenta lmn described in Eq. (6), we
obtain a driftless geometric Brownian motion for l̇mn for
levels m and n in an anticrossing. Then, in the region

of the anticrossing, lmn(λ) = lmn(λ∗ − ξ )e− σ2

2 [λ−(λ∗−ξ )]+σW (λ),
where σ = με

�min
. The start time of the levels approaching a

minimum separation in a γ neighborhood of each other is taken
as (λ∗ − ξ ), as in Fig. 1, and μ denotes the difference in the
noise components. The expectation of lmn, E(lmn) = lmn(λ∗ −
ξ ), and variance, Var(lmn) = |lmn(λ∗ − ξ )|2(e

σ2

2 [λ−(λ∗−ξ )] −
1). Here, lmn is a martingale where, in the long-time limit,
lmn → 0 with probability 1. Substituting these to determine
the couplings between noninteracting levels, we find that lmi

and lni are stochastic terms, where Re(lmi ) = 0 and Re(lni ) = 0
with Im(lmi ), Im(lni ) bound with the interval [−1, 1]. For δλ

sufficiently small, these terms are negligible in the anticrossing.
Applying this to the acceleration terms, we find that the
difference in acceleration terms is also a stochastic term, 4|lmn|2

�3
min

.
Given that τLZ is short, the expectation is strongly bounded in
a small interval; choosing δλ sufficiently small, these terms are
also negligible and therefore linearizing the level separations.
Details are provided in Appendix C.

In order for the LZ model to hold in the stochastic sense, it
is necessary to consider anticrossings in close vicinity to each
other, such that they can be regarded as isolated crossings. The
transition time of an anticrossing is changed under the influence
of noise. Of particular interest are the influences of noise on
the minimum separation. These in turn have an impact on both
the probability of transitions and the transition times.

Isolated crossings under the effects of noise

Under the influences of noise on the minimum level sepa-
ration at λ∗, we investigate its impact on the transition time to
determine the conditions required to treat two nearby anticross-
ings independently. We consider two neighboring anticrossings
with minimum level separations at λ∗ and λ∗∗ = λ∗ + δ and
transition times τLZ and τ

′
LZ , respectively, as in Fig. 1. The

anticrossings are considered isolated given that the respective
transition times do not overlap, such that (λ∗∗ − ξ ‘ ) − (λ∗ +
ξ ) > 0. Then, the LZ transition model is applicable to describe
the probabilities of population transitions.

We denote the distance between levels d(λ) = xm − xn,
where xm > xn, and m and n label the levels involved at
an anticrossing. Expanding d(λ) about λ∗, where f (λ) =
− σ 2

2 [λ − (λ∗ − ξ )] + ση[λ − (λ∗ − ξ )], we obtain the fol-
lowing (details are provided in Appendix E):

d(λ) = �min + δλ2

[
4|lmn(λ∗ − ξ )|2

�3
min

e2f (λ∗ ) + εμη̇(λ∗)

]
.

(10)

Let d(λ∗ + ξ ) = γ ; then one obtains an expression for the
minimum separation,

�min = γ − ξ 2

[
4|lmn(λ∗ − ξ )|2

�3
min

e2f (λ∗ ) + εμη̇(λ∗)

]
.

(11)

This describes the relationship between the minimum sepa-
ration and the difference in noise terms, where�min � 0. These
effects on the level separation affect τLZ in the same way.
When μ = 0, d(λ) = �min + δλ2[ 4|lmn(λ∗−ξ )|2

�3
min

e2f (λ∗ )]. Then
the conditions for an isolated anticrossing resemble that of
the deterministic case.

Using Eq. (11) in the bound for the transition times, one
obtains the following bound, dependent on the difference
between the noise sources at a single anticrossing (all details
provided in Appendix E):

η(λ∗) >
1

ξεμ
[γ − 2λ̇(δ − ξ ‘ )]

− ξ

εμ

[
4|lmn(λ∗ − ξ )|2

�3
min

e2f (λ∗ )

]
. (12)

Given this bound is satisfied, the two anticrossings are
independent of each other, and as such the LZ model is
applicable.

Therefore, we have shown, from the analysis of the levels
at a level crossing or anticrossing, the conditions that the LZ
model imposes on the Pechukas-Yukawa under the influence
of noise.

VI. DISCUSSION AND CONCLUSIONS

We investigated the compatibility of the LZ transition model
in the Pechukas-Yukawa formalism. Taking as a starting point
all the assumptions that form the basis of the LZ model, we
explored the conditions they impose on the Pechukas-Yukawa
formalism to be applicable. This led to the development of the
understanding of level crossings and anticrossings under this
setting, identifying various properties of the level interaction.
Particularly, we provided a detailed insight into the level repul-
sions extended to the influence of external noise and its impacts
on the minimum separations characterizing anticrossings.

The investigation of level repulsions at an anticrossing
under the influence of longitudinal noise was not possible
without a thorough description of the level dynamics given
by the Pechukas-Yukawa formalism. From this, we built on
prior works by [13] and [16] to gain insight into the level
interactions beyond the LZ probability. Under this description,
one could investigate the differences in scaling properties
observed between edge- and intermediate-state transitions,
observed in [13] and [16]. An attractive development to this
investigation would be to apply the LZ transition probability
to the Pechukas-Yukawa description of quantum states, which
could lead to the exploration of quantum phase transitions
through the initial conditions of the eigenvalues of a quantum
Hamiltonian system. The eigenstate coefficients have been
expressed using the Pechukas equations such that one could
extend this description to obtain both the occupation dynamics
and the coherences of the system, crucial to the development
of AQ—this leads us into our future works. An interesting
extension to these works would be to consider the effects of
different types of noise such as colored noise and the impacts
of transverse components.

Additionally, these results can be used as a a starting
point to gain insight into multistate LZ transitions. The stan-
dard LZ model deals only with the two interacting levels.
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Extension to the multistate problem could yield more interest-
ing physics analytics. The Pechukas-Yukawa model concerns
an interacting system of N entangled levels. It is highly
equipped to consider interacting systems with entangled states.
In further works, it would be useful to consider the detailed
analytics of multiple-level interactions and their influence on
each other’s dynamics. One could extend this description to
determine the impacts of noise using a master equation.
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APPENDIX A: REDUCING SYSTEM LEVELS DOWN TO
TWO-LEVEL CROSSINGS

It is shown below that when there is a level crossing,
all noninteracting levels are considered far apart. Then, the
Pechukas equations can be reduced to only the interacting
levels.

Suppose xm = xn are the interacting levels and all other
levels are far apart, i.e., xm − xk and xn − xk large for k �= n,m,
and angular moment lmklkn are small. Then, the quotient is
small and so one takes the following approximation:

l̇mn =
∑

k �=m,n

lmklkn

[
1

(xm − xk )2 − 1

(xk − xn)2

]
≈ 0. (A1)

By the definition of the Pechukas equations when xm = xn,
lmn = 0 and hence lmn stays constantly zero throughout the
transition time.

Similarly, the other noninteracting angular momenta can be
paired into the following coupled differential equations. All
other terms are negligible. These are approximated as follows:
for i �= m, n,

l̇mi ≈ lmnlni

[
1

(xm − xn)2

]
,

l̇ni ≈ lnmlmi

[
1

(xn − xm)2

]
. (A2)

Applying l’Hopital’s rule on this term twice, we have
shown that this term tends to zero as λ → λ∗, demonstrating
that the relative angular momenta terms can be reduced to
only the interacting levels under this approximation. It follows
that the acceleration terms are also independent of all other
level interactions, determined by the following:

v̇m = 2
∑
i �=n

|lmi |2
(xm − xi )3 + |lmn|2

(xm − xn)3 ,

v̇i = 2
∑

i,j �=m,n

|lij |2
(xi − xj )3 + |lmj |2

(xm − xj )3

+ |lnj |2
(xn − xj )3 . (A3)

Again, the same argument holds for v̇n as does v̇m. Using
the expressions in Eq. (A1), lmi is constant and hence the terms
under the sum in v̇m are negligible. After performing l’Hopital

three times, the expression |lmn|2
(xm−xn )3 was found to tend to zero

as λ → λ∗. Expanding about λ∗, level separation is described
by xm − xn = δλ(vm − vn) + δλ2(v̇m − v̇n) + O(δλ3), where
acceleration terms independently tend to zero at a level cross-
ing. This linearizes level separations in this region during the
LZ transition. For vm = vn, the numerator and denominator in
the acceleration terms identically go to zero, and thus one can
treat v̇m as constant such that for small δλ, level separation can
be taken as linear. This argument holds identically for v̇n. For
the v̇i expression, all terms are negligible.

This demonstrates the applicability of the Pechukas-
Yukawa formalism to the LZ model as one can indeed reduce
and N -level system down to two, neglecting all other interac-
tions.

APPENDIX B: REDUCING N LEVELS DOWN TO TWO
ANTICROSSINGS WITHOUT NOISE

Anticrossings occur when levels that are approaching each
other reach a local minimum before deflecting away. In such
cases, xm − xn = �min and lmn is not necessarily zero. In
the same way, Eqs. (A1) and (A3) apply. Under the same
approximation that all other levels are far away, again l̇mn = 0
and thus lmn = β, where β is a constant. Considering the
equations for lmi and lni , the only surviving terms are

l̇mi = lmnlni

[
1

(xm − xn)2

]
= lniβ

(
1

�min
2

)
,

l̇ni = lmnlmi

[
1

(xn − xm)2

]
= −lmiβ

∗
(

1

�min
2

)
. (B1)

We obtain coupled differential equations, rewritten as

(l̇mi

l̇ni
) = 1

�2
min

( 0 β

−β∗ 0)(lmi

lni
). The system is readily solved

as

lmi = iβ

|β|
1

2

(
e

i|β|
�2

min + e
−i|β|
�2

min
) = iβ

|β| cos

( |β|
�2

min

)
,

lni = −1

2

(
e

i|β|
�2

min − e
− i|β|

�2
min

) = −i sin

( |β|
�2

min

)
. (B2)

Then, about λ∗, the relative angular momenta lmn are
constants independent of all other levels. We further showed
that lmi and lni are constants with Re(lmi ) = 0 and Re(lni ) = 0
with Im(lmi ) and Im(lni ), bounded between [−1, 1], and hence
the couplings between the levels involved in an anticrossing
and those that are not are weak. This allows for treating the
anticrossing independent of all other levels. Substituting these
results into Eq. (A3), v̇i = 0, the only surviving terms in v̇m and
v̇n are constants; (v̇m − v̇n) = 4|β|2

�min
3 . For sufficiently small δλ,

one can linearize the level separations such that level evolutions
are reduced to only the interacting levels. When LZ transition
times are short, δλ is small throughout the duration of the
anticrossing; then it is justifiable in applying the Pechukas-
Yukawa formalism to the LZ model for anticrossings. In the
case of long transition times, 4|β|2

�min
3 is negligible as τLZ is

directly proportional to �min.
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APPENDIX C: ISOLATED CROSSINGS FOR A
DETERMINISTIC CASE

We denote level separations as d(λ) = x1 − x2, where
d(λ∗) = �min. Let δλ = λ − λ∗; then, expanding about
λ∗, d(λ) = �min + δλ(v1 − v2 + δ̇h11 − δ̇h22) + δλ2( 4β2

�3
min

+
δ̈h11 − δ̈h22) + O(δλ3). Given that d(λ) reaches a local mini-
mum at λ∗, then v1 − v2 + δ̇h11 − δ̇h22 = 0.

Take d(λ∗ + ξ ) = γ such that one could rearrange the
equation to obtain

�min = γ − ξ 2 4β2

�3
min

. (C1)

In order to ensure that anticrossings can be treated in-
dependently, (λ∗∗ − ξ

′
) − (λ∗ + ξ ) > 0 where λ∗∗ = λ∗ + δ.

Recall τLZ = �min

λ̇
= 2ξ for a symmetric anticrossing. Then it

is essentially τLZ < 2(δ − ξ
′
). One could rearrange this bound

for �min,

γ − ξ 2 4β2

�3
min

< 2λ̇(δ − ξ
′
). (C2)

Given that δ > 1
2λ̇

(γ − 4β2

�3
min

ξ 2) + ξ ‘, the conditions for anti-
crossings to be treated independently are satisfied.

APPENDIX D: REDUCING N LEVELS DOWN TO TWO
ANTICROSSINGS WITH NOISE

When noise is present in a system, level interactions
are always nondegenerate, occurring with anticrossings. To
determine the applicability of the Pechukas-Yukawa formalism
under dissipative influences, it is necessary to ensure that level
interactions in an anticrossing are independent of all other
interactions. Again, xm − xn = �min at some λ∗ (denoting the
point of minimum separation) and lmn is not necessarily zero.
Similarly to Eq. (A1), we have the following for the coupling
between levels at an anticrossing:

l̇mn =
∑

k �=m,n

lmklkn

[
1

(xm − xk )2 − 1

(xk − xn)2

]

+ (xm − xn)(lmkδ̇hkm − δ̇hmklkn)

(xm − xk )(xn − xk )

+ δ̇hmn(vm − vn) + lmn(δ̇hmm − δ̇hnn)

(xm − xn)
. (D1)

We consider a single source of composite longitudinal
noise. Again, we assume all noninteracting levels are far away
with weak couplings such that lmklkn are small for k �= n,m.
This simplifies the relative angular momenta dynamics to the
following:

l̇mn ≈ lmn(δ̇hmm − δ̇hnn)

(xm − xn)

≈ lmn

�min

εμη, (D2)

where ε denotes the noise amplitude, μ is a constant giving the
difference between the noise components, and η represents
a white-noise stochastic term. Let σ = εμ

�min
. We separately

consider real and imaginary components. In each component,

we observe a driftless geometric Brownian motion,

Ṙe(lmn) = σRe(lmn)η,

˙Im(lmn) = σ Im(lmn)η. (D3)

Using the Euler-Maruyama method to solve these stochastic
differential equations, we rewrite the expression for Re(lmn) as
dRe(lmn) = σRe(lmn)dW . Integrating these terms, where we
zero out noise at λ∗ − ξ , we obtain the following:

∫ λ

λ∗−ξ

dRe(lmn)

lmn

= σdW. (D4)

Applying Ito’s formula,

d{Ln[Re(lmn)]}= dRe(lmn)

lmn

−1

2

1

Re(lmn)2
dRe(lmn)dRe(lmn),

(D5)

where dRe(lmn)dRe(lmn) is the quadratic variation of the
stochastic differential equation such that dRe(lmn)dRe(lmn) =
σ 2Re(lmn)2dλ. Substituting this into the integral, we have

∫ λ

λ∗−ξ

d{Ln[Re(lmn)]} + σ 2

2
= σdW. (D6)

Then,

Ln

{
Re[lmn(λ)]

Re[lmn(λ∗ − ξ )]

}
= −1

2
σ 2[λ − (λ∗ − ξ )] + σW (λ).

(D7)

Exponentiating the result, we find that Re[lmn(λ)] =
Re[lmn(λ∗ − ξ )]e− σ2

2 [λ−(λ∗−ξ )]+σW (λ). Using the same method
to solve for the imaginary components, we have Im[lmn(λ)] =
Im[lmn(λ∗ − ξ )]e− σ2

2 [λ−(λ∗−ξ )]+σW (λ). Combining these terms,

lmn(λ) = lmn(λ∗ − ξ )e− σ2

2 [λ−(λ∗−ξ )]+ση(λ) in the region of
the transition time. This term has the expectation,
E(lmn) = lmn(λ∗ − ξ ), and variance Var(lmn) = |lmn(λ∗ −
ξ )|2(e

σ2

2 [λ−(λ∗−ξ )] − 1). Here, (λ∗ − ξ ) represents the start
time of levels approaching a minimum separation in a γ

neighborhood of each other. This describes lmn as a martingale
where for λ → ∞, lmn → 0 with probability 1, which follows
from the law of iterative logarithm.

The equations for lmi are given by the following:

l̇mi =
∑

k �=m,i;i �=n

lmklki

[
1

(xm − xk )2 − 1

(xk − xi )2

]

+ (xm − xi )(lmkδ̇hkm − δ̇hmklki )

(xm − xk )(xi − xk )

+ δ̇hmn(vm − vi ) + lmi (δhmm − δhii )

(xm − xi )

+ lmklkn

[
1

(xm − xk )2 − 1

(xk − xn)2

]

+ (xm − xn)(lmkδ̇hkm − δ̇hmklkn)

(xm − xk )(xn − xk )

+ δ̇hmn(vm − vn) + lmn(δhmm − δhnn)

(xm − xn)
. (D8)
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The equations are identical for lni . Again, under the same
assumptions used for l̇mn, we obtain the following pairs of
coupled differential equations:

l̇mi ≈ lmnlni

[
1

(xm − xn)2

]
= lmnlni

(
1

�min
2

)
,

l̇ni ≈ lnmlmi

[
1

(xn − xm)2

]
= −l∗mnlmi

(
1

�min
2

)
. (D9)

Taking a matrix of ordinary differential equations, we have(
l̇mi

l̇ni

)
= f (λ)

�2
min

(
0 lmn(λ∗ − ξ )

−l∗mn(λ∗ − ξ ) 0

)(
lmi

lni

)
,

(D10)

where f (λ) = e
σ2

2 [λ−(λ∗−ξ )]+ση(λ), capturing the stochastic el-
ement. Diagonalizing the matrix and changing bases to the
eigenvectors, we can simply integrate the decoupled set of
equations. We obtain the following:

lmi = ilmn

2|lmn|
(

e
i

f (λ)

�2
min

|lmn| + e
−i

f (λ)

�2
min

|lmn|
)

= ilmn

|lmn| cos

(
f (λ)

�2
min

|lmn|
)

,

lni = −1

2

(
e
i

f (λ)

�2
min

|lmn| − e
−i

f (λ)

�2
min

|lmn|
)

= −i sin

(
f (λ)

�2
min

|lmn|
)

. (D11)

Then, lmi and lni are stochastic terms, where Re(lmi ) = 0
and Re(lni ) = 0 with Im(lmi ), Im(lni ) bounded in the interval
[−1, 1]. Again, the couplings between levels involved in an
anticrossing and those that are not are weak and so can be
regarded as negligible in the anticrossing. Applying these
relative angular momenta formulas to the acceleration terms
(again modeling the noise to be a longitudinal composite
source), we have the following:

v̇m = 2
∑
i �=n

|lmi |2
(xm − xi )3 + 2δ̇hmiRe(lmi )

(xm − xi )2

+ |lmn|2
(xm − xn)3 + 2δ̇hmnRe(lmn)

(xm − xn)2 ,

v̇i = 2
∑

i,j �=m,n

|lij |2
(xi − xj )3 + 2δ̇hmiRe(lmi )

(xm − xi )2

+ |lmj |2
(xm − xj )3 + 2δ̇hmiRe(lmi )

(xm − xi )2

+ |lnj |2
(xn − xj )3 + 2δ̇hmiRe(lmi )

(xm − xi )2 . (D12)

All terms are negligible for vi under the assumption that the
level separation in this region is negligible.

For the difference between v̇m and v̇n, all terms under the
sum are negligible except for 4|lmn|2

�min
3 , which is independent

of all other levels. To determine the effects of the stochastic
terms on the difference between accelerations, we consider the

expectation during τLZ . The expectation of |lmn|2 is given by

|lmn|2 = Re(lmn)2 + Im(lmn)2,

E|lmn|2 = E[Re(lmn)2] + E[Im(lmn)2]

= Var[Re(lmn)] + Var[Im(lmn)]

+E2[Re(lmn)] + E2[Im(lmn)]

= |lmn(λ∗ + ξ )|2e σ2

2 [λ−(λ∗−ξ )]. (D13)

Then the expectation of the difference between the acceleration

terms is given by 4|lmn(λ∗+ξ )|2
�3

min
e

σ2

2 [λ−(λ∗−ξ )]. These dynamics

are bounded between [ 4|lmn(λ∗+ξ )|2
�3

min
,

4|lmn(λ∗+ξ )|2
�3

min
eξσ 2

], where λ ∈
[λ∗ − ξ, λ∗ + ξ ]. For longer τLZ , this motion is under stricter
bounds, as τLZ is directly proportional to �min. Taking δλ suffi-
ciently small, the difference in acceleration terms is negligible,
linearizing the level separations. Then it is observed that indeed
the Pechukas-Yukawa formalism under the influence of noise
is applicable to the LZ model, reducing the system from N
levels to 2.

APPENDIX E: ISOLATED CROSSINGS FOR A
STOCHASTIC CASE

Under the influences of noise, the level separa-
tions expanded about λ∗ are given by d(λ) = �min +
δλ2[ 4|lmn(λ∗−ξ )|2

�3
min

e2f (λ∗ ) + εμη̇(λ∗)]. Let us denote the level

separation at the final instant by d(λ∗ + ξ ) = γ ; then one can
once again rearrange for �min:

�min = γ

− ξ 2

[
4|lmn(λ∗ − ξ )|2

�3
min

e2f (λ∗ ) + εμη̇(λ∗)

]
. (E1)

Again, for symmetric anticrossings, one obtains the follow-
ing bound:

γ − ξ 2

[
4|lmn(λ∗ − ξ )|2

�3
min

e2f (λ∗ ) + εμη̇(λ∗)

]
< 2λ̇(δ − ξ ‘ ).

(E2)

Integrating over the transition time on both sides and rearrang-
ing for η(λ∗), we reduce the bound to the following:

η(λ∗) >
1

ξεμ
[γ − 2λ̇(δ − ξ ‘ )]

− ξ

εμ

[
4|lmn(λ∗ − ξ )|2

�3
min

e2f (λ∗ )

]
. (E3)

This provides a bound on the system, accounting for noise.
Given the noise at λ∗ satisfies this bound, the conditions for
level crossings to be treated independently hold. Then, the LZ
model is applicable. These equations detail a system with a
single composite source of longitudinal noise and its impact
on the probability of isolated level crossings. These can be
explored for various cases under different types of noise.
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