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Probability density of relativistic spinless particles
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In this paper, a conserved current for Klein–Gordon equation is derived. It is shown, for (1 + 1) dimensions,
the first component of this current is non-negative and reduces to |φ|2 in nonrelativistic limit. Therefore, it can be
interpreted as the probability density of spinless particles. In addition, main issues pertaining to localization in
relativistic quantum theory are discussed, with a demonstration on how this definition of probability density can
overcome such obstacles. Our numerical study indicates that the probability density deviates significantly from
|φ|2 only when the uncertainty in momentum is greater than m0c.
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I. INTRODUCTION

The Born interpretation of |ψ |2 as position probability
density is one of the most fundamental axioms of quantum
mechanics because it provides a link between the mathematical
formalism and empirical results [1]. This axiom has been in-
credibly successful in predicting position probability density in
nonrelativistic quantum mechanics. Although in the relativistic
regime, the quadratic relation between position probability
density and wave function has been confirmed by recent
high-accuracy single-photon multislit experiments [2–6], a
satisfactory mathematical expression for position probability
density of relativistic bosons has not yet been found. In
the simplest case, finding a well-defined position probability
density for the free spinless particles is a long-standing problem
(see, e.g., Refs. [7,8]): The time component of the well-known
Klein–Gordon conserved current, J

μ

KG=i(φ∗∂μφ − φ∂μφ∗),
may be negative on some regions of spacetime and cannot
be interpreted as position probability density [9]. One may
suggest to use the |φ|2 as probability density, similar to the
nonrelativistic theory [10–12], in which case it is easy to see
that the Klein–Gordon equation,

�φ + m2φ = 0, (1)
leads to the following continuity equation for |φ|2 [10]:

∂tρB + ∇ · JB = 0, (2)
where

ρB = |φ(x)|2 = N

∫
φ̃(p)φ̃∗(k)ei(p−k)·x d4p d4k, (3)

JB = N

∫
φ̃(p)φ̃∗(k) ei(p−k)·x u(p, k) d4p d4k, (4)

u(p, k) = p + k
p0 + k0

, (5)
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and φ̃(p) is the Fourier-transformation of the wave function.
It should be noted that, despite the fact that |φ|2 is non-
negative and conserved, it cannot be considered as position
probability density: because of the Lorentz length contraction,
the probability density cannot be a scalar [13]. In other words,
J

μ

B = (ρB, JB ) is not a four-vector and therefore cannot be
interpreted as a relativistic probability current density [12].
In addition, Born’s probability density leads to faster-than-
light particle propagation [14,15]. In principle, a reasonable
probability current must satisfy the following conditions:

(I) Lorentz transformation: Jμ′ = �μ′
μ Jμ;

(II) probability conservation: ∂μJμ = 0;
(III) future-orientation: J 0 � 0;
(IV) causal propagation: JμJμ � 0.
The last condition is necessary because it ensures the

causal propagation of particles. In fact, there are several other
currents which have been suggested for the Klein–Gordon
equation [16,17] all of which do not satisfy, at least, one of the
above conditions. The aim of this paper is to propose a proper
expression for relativistic probability current that satisfies all
of the aforementioned conditions.

II. POSITION DISTRIBUTION

According to Eqs. (3) and (4), we suggest the following
expression as the relativistic probability current [18]:

Jμ=
∫

φ̃(p) φ̃∗(k) ei(p−k)·x uμ(p, k) d4p d4k, (6)

where uμ(p, k) is an unknown function that must be deter-
mined by theoretical constrains. In this regard, the condition
(I) implies that the uμ(p, k) is a four-vector. The general form
of a four-vector made by p and k is given by

uμ(p, k) = α(pμ + kμ) + β(pμ − kμ), (7)

where α and β are scalar coefficients. Next, the conservation
condition (II) leads to β = 0. Also, in principle, the coefficient
α should be determined using conditions (III) and (IV). This
procedure in (1 + 1) dimensions is straightforward and a
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possible choice is (see Appendix A)

α(p, k) = ξ√
(p + k)2

, (8)

where ξ = 1
2 ( k0

|k0| + p0

|p0| ). So, finally, we get the uμ(p, k) as
follows:

uμ(p, k) = ξ
pμ + kμ√
(p + k)2

. (9)

Equation (9) can be rewritten as uμ = |ξ |γ (1, u), in which u
is the velocity vector defined in Eq. (5) and γ = (1 − u2)−1/2

is the corresponding Lorentz coefficient. In fact, the expres-
sion (6) is the simplest covariant generalization of Eqs. (3)
and (4). The only difference between this expression and the
Born probability current J

μ

B is the factor |ξ |γ :

ρ(x) = N

∫
|ξ |γ φ̃(p)φ̃∗(k) ei(p−k)·x d4p d4k, (10)

J(x) = N

∫
|ξ |γ u φ̃(p)φ̃∗(k)ei(p−k)·x d4p d4k. (11)

The factor γ comes naturally in accordance with Lorentz
contraction and the factor |ξ | prohibits the occurrence of
Zitterbewegung behavior [19,20]. In Appendix A, it is shown
that, for massive particles in (1 + 1) dimensions, Eqs. (10)
and (11) can be rewritten in position representation as follows:

ρ = |D+φ+|2 + |D−φ+|2 + |D+φ−|2 + |D−φ−|2, (12)

J = (|D+φ+|2 − |D−φ+|2 + |D+φ−|2 − |D−φ−|2)c, (13)

where φ± are positive- and negative-frequency components of
wave function, φ = φ+ + φ−, and D± are pseudo-differential
operators which are defined as follows:

D± ≡
√√√√1

2

(√
1 − λ2

c

d2

dx2
∓ iλc

d

dx

)
, (14)

in which λc ≡ h̄/mc is the Compton wavelength. From
Eqs. (12) and (13) it is clear that, the probability density is
unambiguously positive definite and |J/ρ| � c.

It is clear that when the wave function only has a positive-
energy part [21], φ = φ+, the Klein Gordon equation leads to

ih̄
∂φ

∂t
=

√
−∇2 + m2φ, (15)

and Eqs. (12) and (13) reduce to the following simpler forms:

ρ = |D+φ|2 + |D−φ|2, (16)

J = (|D+φ|2 − |D−φ|2)c. (17)

In this case, in the nonrelativistic regime (c → ∞), Eq. (15)
reduces to the nonrelativistic Schrödinger equation, also
Eqs. (16) and (17) reduce to nonrelativistic probability density
|φ|2 and the conventional Schrödinger probability current,
(h̄/m)Im(φ∗∂xφ), respectively.

For comparing the relativistic probability density (16) with
|φ|2, in Fig. 1, we plot χ (a measure of deviation from Born

(a)

(b)

FIG. 1. (a) The first component of Klein–Gordon current J 0
KG

(dashed line), the Born probability density ρB (dash-dotted line),
and the relativistic probability density ρ (solid line) referring to the
Gaussian wave function (19) with σp/mc = 1000 and p̄/mc = 0.
(b) Represents the χ for Gaussian wave function (19).

probability), which is defined as

χ =
∫ ∞

−∞
|ρ − |φ|2|dx, (18)

for this Gaussian wave function

φ̃(p) = Ne−(p−p̄)2/σ 2
p . (19)

From Fig. 1(b) it is clear that, when momentum uncertainty is
small compared with mc, relativistic probability density devia-
tion from Born probability density is negligible, even assuming
that the group velocity of the wave packet is comparable with
velocity of light.

Finally, note that, although the expression for probability
density in terms of wave function (16) is nonlocal, there is no
inconsistency with special relativity. In fact, this nonlocality is
essential to introduce a self-consistent relativistic probability
density; since the relativistic wave function can propagate
outside the light cone, a local relation between wave func-
tion and probability density, for instance ρ = |φ|2, leads to
faster-than-light particle propagation [14,15]. In the following
section, the relativistic requirements imposed on the definition
of probability density is further discussed together with an
account of how our suggested expression satisfy them.
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III. LOCALIZATION AND CAUSALITY

It is well known there are some problems with the concept
of a “localized particle” in relativistic quantum mechanics
[22–34]. The notion of localization is closely related to the con-
cept of position probability density. In this section we briefly
review these problems and demonstrate how our definition of
relativistic probability density can circumvent such obstacles.

One of the earliest attempts to analyze the notion of
localized particle in relativistic quantum mechanics was made
by Newton and Wigner. In 1949 they uniquely derived a
relativistic position operator and its eigenstates by using some
justifiable postulates about the exact localized states [23].
However, the Newton–Wigner position operator, although
arising from seemingly reasonable postulates, suffers from the
following drawbacks:

(1) A state which is exactly localized in one reference
frame, i.e., an eigenstate of the Newton–Wigner position
operator, is not localized in other reference frames [23].

(2) The definition of position probability density based
on the Newton–Wigner position operator, i.e., ρNW =
|ψNW |2 [21], leads to faster-than-light particle propaga-
tion [24–26].

These difficulties indicate that the Newton–Wigner posi-
tion operator is not quite acceptable. Moreover, it has been
shown that, for a general case, any strict localization leads
to superluminal propagation [27–31]. An apparent way out
of this problem is to assume that such strict localization is
not possible. This implies that a proper relativistic self-adjoint
position operator does not exist [26,31], and hence defining
the position distribution via the projection-valued measure
associated with the position operator is not realizable [35].
A possible treatment is to introduce a reasonable probability
density without recourse to a position operator [27], as the
one presented in this paper. It must be emphasized that the
problem of superluminal propagation is not just the charac-
teristic behavior of the Newton–Wigner probability density.
Hegerfeldt proved [27,28,30], on very general grounds and for
any reasonable definition of probability density, that a particle
initially localized with probability 1 in a finite volume of
space, immediately develops infinite “tails.” In what follows,
we prove a theorem that shows how our probability density
keeps the particle from strict localization, which is the main
requirement of Hegerfeldt theorem. This is similar to what
Thaller proved for the case of Dirac probability density [26].

Theorem. Let ρ be the probability density associated with
an arbitrary positive-energy wave function φ, presented in
Eq. (16). Then

Supp(ρ) = R, (20)

where Supp(ρ) stands for support of ρ which is defined as

Supp(ρ) ≡ Closure of {x ∈ R | ρ(x) 
= 0}.
Proof. From Eq. (16) it is clear that, for a particle to be

strictly localized in a compact subset ofR, the supports ofD+φ

and D−φ should be compact subsets of R. On the other hand,
by the Paley–Wiener–Schwartz theorem [36,37], the Fourier
transform of a compactly supported function is guaranteed to
be analytic anywhere on the complex plane. But the Fourier
transform of D+φ and D−φ cannot be simultaneously analytic

since they are related to each other by

˜D+φ(p) = 1

m
(
√

p2 + m2 + p)˜D−φ(p). (21)

The branch cut in (p2 + m2)1/2 at p = im means both ˜D+φ

and ˜D−φ cannot be analytic when p is imaginary with
magnitude m. Hence, this proves the theorem. �

The above theorem implies that there is no state for which
the probability of finding the particle in a set � is 1 unless
� = R. Nevertheless, the strict localization of a particle is
irrelevant for most practical purposes, and it is quite sufficient
to adopt an appropriate notion of localization with adjustable
precision. It must be emphasized that, although our probability
density has tails extending to infinity, arbitrarily small values
of position uncertainty are possible. In fact, for any point of
space a ∈ R, there is a sequence of wave functions {φn}∞n=1
whose corresponding probability density sequence {ρn}∞n=1 ap-
proaches δ(x − a); see Appendix B. This fact indicates that the
particle could be localized arbitrarily sharply in the vicinity of
any given point. This notion of “arbitrary precise localization”
differs from the one introduced by Newton and Wigner; i.e.,
“exact localization,” and was initially employed by Bracken
and Melloy for the case of free Dirac electrons [32–34]. It nat-
urally avoids the problems plaguing Newton–Wigner’s exact
localization; First, the localization defined in this sense has the
correct properties under Lorentz transformations because Jμ is
a covariant vector [32]; second, since the velocity of probability
flow, J/ρ, is less than the speed of light, the propagation of
the particle is guaranteed to be causal.

IV. MOMENTUM DISTRIBUTION

Since the position probability density deviates from |φ(x)|2
in the relativistic regime, one may raise the question of whether
momentum probability distribution also deviates from |φ̃(p)|2.
To answer this question, we note that, based on the quantum
theory of measurement, each physical measurement can be
described as a position measurement: In principle, the variables
that account for the outcome of an experiment are ultimately
particle positions [38–41]. This fact has been made clear by
Bell [38]:

In physics the only observations we must consider are
position observations, if only the positions of instrument
pointers .... If you make axioms, rather than definitions and
theorems, about the “measurement” of anything else, then you
commit redundancy and risk inconsistency.

In this regard, it is shown in nonrelativistic quantum me-
chanics that the Born rule for any observable can be derived by
considering the Born rule on the position of particles [38–40].
Here we aim to propose a derivation of relativistic momentum
probability density from the relativistic position probability
density (16). The given argument is based on Feynman’s
method for initially confined systems; namely, the time-of-
flight measurements [39,42–44]. Suppose the wave function
is initially confined to a region � centered around the origin
x0 = 0 and is negligible elsewhere. After allowing the wave
function to freely propagate for a considerable amount of time,
a measurement of the position x of the particle is effected.
The probability of the particle’s momentum to lie inside the
element dp around the point p at t = 0 is equal to probability
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FIG. 2. Plot of the relativistic and nonrelativistic momentum
probability density referring to the Gaussian wave function (19) with
p̄ = 0.

of finding the particle’s position in the element dx around the
point x = vt provided the limit t → ∞ is taken in order to
discard the effect of uncertainty in initial position. So we have

g(p)dp = lim
t→∞ [ρ(x, t )dx]x=vt , (22)

where g(p) represents the momentum probability density
and v = p/E. Using the relativistic position probability den-
sity (16), Eq. (22) leads to

g(p) = m2

E3
lim
t→∞ t (|D+φ|2 + |D−φ|2)x=pt/E. (23)

In the nonrelativistic regime (c → ∞) Eq. (23) leads to

g(p) = 1

m
lim
t→∞[t |φ(x, t )|2]x=pt/m. (24)

In this case, the Schrödinger equation for an initially confined
wave function leads to φ(pt/m, t ) ∼ t−1/2φ̃(p) at t → ∞ and
so Eq. (24) reduces to the Born rule in momentum space,
g(p) = |φ̃(p)|2 [39,42]. But finding an explicit expression
for momentum probability density in the relativistic regime
is not straightforward, so a numerical calculation of g(p)
for the Gaussian wave packet (19) is presented in Fig. 2.

This numerical study indicates that the relativistic momentum
probability density deviates significantly from the Born rule
only when the width of the wave function in momentum space
is greater than mc.

V. CONCLUSION AND OUTLOOK

In this paper, in a simple case of single free spinless particle
in (1 + 1) dimensions, we have extracted a “reasonable” proba-
bility density current. By “reasonable” we mean that the current
(i) is manifestly covariant, (ii) is conserved, (iii) has a non-
negative first component, (iv) does not lead to faster-than-light
particle propagation, and (v) reduces to the Born probability
current density in the nonrelativistic limit. These conditions
naturally give rise to the given probability density current.
Therefore, at least in (1 + 1) dimensions, a probabilistic inter-
pretation of relativistic spinless wave function is possible. Ex-
tending this study to (3 + 1)-dimensional interacting particle
systems will be the next step. Such systems should be described
by quantum field theory. The state of a system in quantum field
theory is an arbitrary vector in the appropriate Fock space and
may well involve a superposition of states of different particle
numbers; namely, |�〉 = ∑

n

∫
φ̃n(p1, . . . , pn) |p1, . . . , pn〉.

It evolves according to the appropriate Schrödinger equation
i∂t |�〉 = H |�〉, where H is the Hamiltonian operator in the
Schrödinger picture. In the presence of interaction this equation
leads to a system of coupled integro-differential equations
for multiparticle wave functions, φn; a recurrent procedure in
the literature of light-front quantization [45]. In future works,
we aim to find a probabilistic interpretation for these wave
equations in position space.
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APPENDIX A

In this Appendix, we derive Eqs. (8), (12), and (13) in (1 +
1) dimensions. Without loss of generality, the wave function
can be expanded as a linear combination of plane waves:

φ(x) =
∑

n

Ane
ipn·x. (A1)

Plugging this into Eq. (6) and using Eq. (7) yields

J 0 ± J 1 =
∑
n,m

AnA
∗
mα(pn, pm)(p±

n + p±
m )ei(pn−pm )·x, (A2)

where p±
n = p0

n ± p1
n. In (1 + 1) dimensions, the conditions

JμJμ � 0 and J 0 � 0 lead to

J 0 ± J 1 � 0, (A3)

for arbitrary wave functions. Therefore, we can consider

α(pn, pm) = [F±(pn)] [F±(pm)]∗ + [F±(pn)]∗ [F±(pm)]

p±
n + p±

m

,

(A4)
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which leads to the following positive-definite expression for
J 0 ± J 1:

J 0 ± J 1 =
∣∣∣∣∣
∑

n

F±(pn)Ane
ipn·x

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

n

[F±(pn)]∗Ane
ipn·x

∣∣∣∣∣
2

,

(A5)

where F±(pn) is an unknown function which must be deter-
mined. Since the only scalar that can be made by pn is the rest
mass, a dimensional analysis leads to |α(pn, pn)| = 1

2m0
; the

factor 1/2 is a convention and can be absorbed in normalization
constant. Therefore,

F±(pn) = eiλ±(pn )
√

p±
n /2m0. (A6)

Whether one substitutes F+ or F−, the resulting α is the same.
This fact can be used to determine phase of F± as λ±(pn) =
±lπ , where l is an integer number. Then we have

α(pn, pm) = [
√

p±
n ] [

√
p±

m]∗ + [
√

p±
n ]∗ [

√
p±

m]

2m0(p±
n + p±

m )
. (A7)

A straightforward but tedious calculation shows that α(pn, pm)
can be rewritten as Eq. (8), which ensures that α(pn, pm) is a
scalar. Also from Eqs. (A5) and (A6), it is clear that

J 0 =
∣∣∣∣∣∣
∑

n

√
p+

n

4m0
Ane

ipn·x |2 + |
∑

n

⎡
⎣

√
p+

n

4m0

⎤
⎦

∗

Ane
ipn·x

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
∑

n

√
p−

n

4m0
Ane

ipn·x |2 + |
∑

n

⎡
⎣

√
p−

n

4m0

⎤
⎦

∗

Ane
ipn·x

∣∣∣∣∣∣
2

,

(A8)

J 1 =
∣∣∣∣∣∣
∑

n

√
p+

n

4m0
Ane

ipn·x |2 + |
∑

n

⎡
⎣

√
p+

n

4m0

⎤
⎦

∗

Ane
ipn·x

∣∣∣∣∣∣
2

−
∣∣∣∣∣∣
∑

n

√
p−

n

4m0
Ane

ipn·x |2 − |
∑

n

⎡
⎣

√
p−

n

4m0

⎤
⎦

∗

Ane
ipn·x

∣∣∣∣∣∣
2

.

(A9)

Finally, using the definition (14) of D± operators, Eqs. (A8)
and (A9) reduce to Eqs. (12) and (13).

APPENDIX B

In this Appendix, we show that there is a sequence of
positive-energy wave functions, {φn}∞n=1, whose corresponding
probability density sequence, {ρn}∞n=1, approaches δ(x − a) as
a generalized function [46]. This argument is closely similar
to that of Bracken and Melloy [32] for the case of a Dirac
electron.

Consider following sequence of positive-energy wave func-
tions:

φn(x) =
∫ √

m

nE(p)
f

(p

n

)
eip(x−a)dp, (B1)

in which Ep = (p2 + m2)1/2 and f (p) is a normalized Gaus-
sian function,

∫ |f (p)|2dp = 1, defined as

f (p) = (1/m
√

π )
1
2 e−p2/2m2

. (B2)

Substituting Eq. (B1) into Eq. (16) gives

ρn(x) = 1

n

∣∣∣∣
∫

S+(p)f (p)eip(x−a)dp

∣∣∣∣
2

+ 1

n

∣∣∣∣
∫

S−(p)f (p)eip(x−a)dp

∣∣∣∣
2

, (B3)

where S± = √
Ep ± p/2Ep. By using the convolution theo-

rem, the Fourier transform of the probability density ρ̃n(p)
can be written as

ρ̃n(p) = Rn(p)
e−ipa

√
2π

, (B4)

in which

Rn(p) = 1

n

∫
f

(
q − p

n

)
f

(q

n

)
�(q − p, q )dq, (B5)

�(q, p) = S+(q )S+(p) + S−(q )S−(p). (B6)

Since the Fourier transform of δ(x − a) is e−ipa/
√

2π , we need
to show that limn→∞ Rn(p) = 1. For this, we consider q = nr

and rewrite Rn(p) as

Rn(p) =
∫

f
(
r − p

n

)
f (r )�(nr − p, nr )dr. (B7)

A straightforward calculation shows that �(q, p) can be
rewritten as

�(q, p) = G1(q )G1(p) + G2(q )G2(p), (B8)

in which

G1(p) =
√

Ep + m

2Ep

, (B9)

G2(p) = p√
2Ep(Ep + m)

. (B10)

By Taylor’s theorem, we have

f
(
r − p

n

)
= f (r ) − p

n
f ′

(
r − η

p

n

)
, (B11)

Gi (nr − p) = Gi (nr ) − p

n
G′

i (nr − θp), (B12)

where 0 � η � 1 and 0 � θ � 1. Using equations (B11)
and (B12), Eq. (B7) reads

Rn(p) = An(p) + Bn(p) + Cn(p) + Dn(p), (B13)

where

An(p) =
∫

|f (r )|2�(nr, nr )dr, (B14)

Bn(p) = −p

n

∫
f ′

(
r − η

p

n

)
f (r )�(nr, nr )dr, (B15)

Cn(p) = p2

n

∫
f ′

(
r − η

p

n

)
f (r )ϒ (nr − θp, nr )dr, (B16)
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Dn(p) = −p

∫
|f (r )|2ϒ (nr − θp, nr )dr, (B17)

ϒ (q, p) = G′
1(q )G1(p) + G′

2(q )G2(p). (B18)

Finally, after tedious calculations we get

An(p) = 1, (B19)

lim
n→∞ Bn(p) = lim

n→∞ Cn(p) = lim
n→∞ Dn(p) = 0, (B20)

which show that the probability density sequence {ρn(x)}
converges to δ(x − a) as n tends to infinity.
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