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Probing microscopic models for system-bath interactions via parametric driving
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We show that strong parametric driving of a quantum harmonic oscillator coupled to a thermal bath allows one
to distinguish between different microscopic models for the oscillator-bath coupling. We consider a bath with
an Ohmic spectral density and a model where the system-bath interaction can be tuned continuously between
position and momentum coupling via the coupling angle α. We derive a master equation for the reduced density
operator of the oscillator in Born-Markov approximation and investigate its quasisteady state as a function of the
driving parameters, the temperature of the bath and the coupling angle α. We find that the driving introduces a
strong dependence of the time-averaged variance of position and momentum on these parameters. In particular,
we identify parameter regimes that maximize the α dependence and provide an intuitive explanation of our results.
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I. INTRODUCTION

Accurate models for the interaction between a quantum
system and its environment have been vital for the success
of quantum optics and cold atom systems. For example, they
have paved the way for revolutionizing methods such as laser
cooling [1], and are essential for developing applications in
quantum technologies where decoherence effects need to be
as small as possible. For some systems our understanding of
the system-bath coupling is so accurate that it can be used to
control and engineer these interactions. In this way, the role
of dissipation and decoherence can be transformed from a
detrimental effect into a wanted feature as shown, e.g., in [2–8].

This is in stark contrast to condensed matter systems
where the exact microscopic model underlying the system-bath
coupling is often unknown [9], and thus one has to resort
to phenomenological models. Driving these systems with
intense terahertz radiation opens up unprecedented possibil-
ities to manipulate their quantum dynamics [10–23]. Exam-
ples include the melting of charge density waves [10–12],
the generation of synthetic magnetic fields [13], the control
of heterointerfaces [14–16], the possibility to drive metal-
insulator transitions [17,18], the parametric cooling of bilayer
cuprate superconductors [19], the control of transport modes in
cuprate superconductors [20], or even the controlled creation
of transient superconductivity [21–23]. In order to optimize
the coherent control of these systems even further, it would
be highly desirable to improve our understanding of their
system-bath interactions.

A direct manifestation of system-bath interactions are
decay and decoherence rates that can be directly observed in
an experiment. However, these quantities reveal little about
the microscopic details of the system-bath interaction. The
development of techniques that go beyond measuring decay
and decoherence rates is a highly desirable yet difficult task,
and only few schemes are known to date. For example, some
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information about the local spectral density of a condensed
matter heat bath can be obtained by observing the non-
Markovian behavior of an optomechanical resonator coupled
to it [24]. A scheme for determining the spectral density
based on dynamical decoupling has been developed in [25],
and Ref. [26] suggests measuring the noise spectrum using a
multiple-pulse sequence.

Recently, it has been shown that strongly driven systems can
enter the intriguing regime of environment-governed dynamics
[27] (EGD) where the system dynamics is predominantly
determined by the details of the system-bath interaction, e.g.,
the form of the coupling operator. This strongly driven regime
can be described within the framework of the Floquet-Markov
master equation approach [28–33], which combines ideas from
open quantum systems with Floquet theory [34–36]. A fas-
cinating question is thus whether the environment-dependent
dynamics in the regime of EGD can be employed to infer
microscopic details about the system-bath interaction.

Here we consider a paradigmatic example for system-bath
interactions comprising a parametrically driven oscillator that
is weakly coupled to a thermal bath; see Fig. 1. The system-bath
interaction Hα

I in our model can be tuned continuously from
position to momentum coupling via the parameter α. If the
driving is switched off, all observables are approximately
independent of α since we consider the regime of weak system-
bath interactions. Note that in this regime, the dynamics
of the corresponding classical system is also approximately
independent of α. In particular, this observation rules out the
possibility of determining α by preparing the system in a
coherent state and observing its subsequent time evolution.

Here we show that strong parametric driving of the oscillator
can lead to a strong α dependence of physical observables
via EGD. This dependence allows one to distinguish between
microscopic models for the system-bath interaction. More
specifically, we derive a master equation for the reduced
density operator of the oscillator in Born-Markov approxima-
tion and consider the time-averaged variance of position and
momentum. We find that these observables exhibit a strong
dependence on α due to the parametric driving and identify
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FIG. 1. The system of interest comprises a parametrically driven
harmonic oscillator and a bath of harmonic oscillators with Hamil-
tonians HF

S (t ) and HB, respectively. The system-bath interaction is
described by the interaction Hamiltonian Hα

I , where the parameter
α allows one to continuously adjust the interaction from position
(α = 0) to momentum coupling (α = π/2). The parametric driving
affects both the system and dissipation mechanism as indicated by the
red arrow.

parameter regimes that maximize their α dependence. We find
that our results can be understood in terms of an effective model
with an α-dependent spectral density that is probed at different
Floquet quasifrequencies. This also shows that strong driving
allows investigating other aspects of system-bath interactions
that go beyond measuring the value of α.

The paper is organized as follows. In Sec. II we present our
model and discuss the steps and approximations leading to a
master equation applicable to a strongly driven system. The
presentation of our results in Sec. III begins with a description
of the observables that we use to characterize the quasisteady
state of the oscillator in Sec. III A. Our numerical results for
the time-averaged mean values of the system quadratures as a
function of the coupling angle, bath temperature, and driving
parameters are presented in Sec. III B. In Sec. IV, we introduce
a unitary transformation of the total Hamiltonian in order to
explain the α dependence of our results. Finally, we conclude
with a summary and an outlook for further work in Sec. V.

II. MODEL

Here we describe our theoretical model for a driven har-
monic oscillator coupled to a thermal bath. The isolated system
is described in Sec. II A, and Sec. II B discusses the system-bath
coupling.

A. Isolated system dynamics

We consider a harmonic oscillator with mass m and time-
dependent frequency ωF (t ). The corresponding Hamiltonian
is given by [37–43]

HF
S (t ) = p2

2m
+ 1

2
mω2

F (t )x2, (1)

where the position and momentum operators x and p obey the
canonical commutation relation [x, p] = ih̄. We assume that
the oscillator frequency ωF (t ) is modulated periodically with
frequency ωL,

ω2
F (t ) = ω2

0[1 + F cos (ωLt + φL)], (2)

where F is the relative modulation amplitude. Throughout
this paper we assume that F = 0 for t < 0. It follows that

the Hamiltonian in Eq. (1) reduces to an ordinary harmonic
oscillator with frequency ω0 and mass m for negative times.
In our model the driving amplitude is suddenly switched on
at t = 0 and held at a constant value for t > 0. Note that the
driving in Eq. (1) breaks the symmetry between position and
momentum variables.

The time-dependent Schrödinger equation associated with
the Hamiltonian in Eq. (1) can be solved [43–47],

ih̄
∂

∂t

ψn(x, t ) = HF
S (t )ψn(x, t ). (3)

The solutions ψn(x, t ) (n = 0, 1, 2...) are described in Ap-
pendix A and reduce to the familiar harmonic oscillator states
for F = 0. It is possible to introduce generalized creation and
annihilation operators that operate on the states ψn(x, t ) like
in the undriven harmonic oscillator [31],

A(t )|ψn(t )〉 = √
n|ψn−1(t )〉, (4a)

A†(t )|ψn(t )〉 = √
n + 1|ψn+1(t )〉. (4b)

Note that the operators A and A† are time dependent.
Time-dependent Hamiltonians do generally not guarantee

the validity of uncertainty relations and commutation relations
[45]. However, the solution to the isolated system dynamics
for our system Hamiltonian in Eq. (1) does not violate the
uncertainty and commutation relations between canonical
position and momentum operators [47].

B. System-bath coupling

We assume that the driven oscillator is weakly coupled to a
heat bath of N harmonic oscillators with the Hamiltonian,

HB =
N∑

r=1

(
p2

r

2mr

+ 1

2
mrω

2
r x

2
r

)
. (5)

Here position and momentum operators of the rth oscillator
with mass mr and frequency ωr are denoted by operators xr

and pr , respectively. The coupling between the bath and system
is described by the Hamiltonian,

Hα
I = −cαB, (6)

where the parameter α in the coupling operator,

cα = cos (α)x + sin (α)
p

mω0
, (7)

describes which degrees of freedom are coupled to the bath.
Note that cα=0 corresponds to position coupling, and cα=π/2

realizes momentum coupling [48–51]. The bath operator B in
Eq. (6) is given by

B =
N∑

r=1

κrxr , (8)

and κr are coupling constants. The system-bath interaction
Hamiltonian in Eq. (6) thus couples the system operator cα

to the position operators of the bath.
With the definitions in Eqs. (1), (5), and (6) we arrive at the

total Hamiltonian for the driven oscillator coupled to the bath,

Hα = HF
S (t ) + HB + Hα

I . (9)
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We assume the coupling to the bath to be weak and describe
the quantum dynamics of the reduced density operator of the
system ρ by a Born-Markov master equation [29],

ρ̇ = − i

h̄

[
HF

S (t ), ρ
]+ Kρ, (10)

where the first term describes the coherent evolution and Kρ

accounts for the interaction with the heat bath at temperature
T ,

Kρ = − 1

h̄2

∫ ∞

0
dτTrB

{[
Hα

I ,
[
H̃ α

I (t − τ, t ), ρB ⊗ ρ(t )
]]}

.

(11)

Here

ρB = exp

(
− HB

kBT

)/
TrB

{
exp

(
− HB

kBT

)}
(12)

is the density operator of the bath in thermal equilibrium and
kB is Boltzmann’s constant. The operator H̃ α

I in Eq. (11) is
defined as

H̃ α
I (t, t0) = [US (t, t0)UB (t, t0)]†Hα

I [US (t, t0)UB (t, t0)],

(13)

where UB (t, t0) = exp[−(i/h̄)HB (t − t0)] describes the free
evolution of the bath. The time evolution operator of the
system is

US (t, t0) =
{
T+ exp

(− i
h̄

∫ t

t0
dt ′
[
HF

S (t ′)
])

, t � t0,

T− exp
(

i
h̄

∫ t0
t

dt ′
[
HF

S (t ′)
])

, t < t0,
(14)

where T+ and T− are the chronological and antichronological
time ordering operators, respectively.

Equation (11) can be evaluated for any system-bath inter-
action that justifies a Born-Markov approximation. In order
to be specific, we assume that the heat bath exhibits an Ohmic
spectral density with a Lorentz-Drude cutoff � � ω0 [29], i.e.,

J (ω) = 1

π
γωm

�2

�2 + ω2
, (15)

where γ is the decay rate. This choice allows us to calculate the
thermal correlation time of the bath explicitly and thus gives us
full control over the validity of the Markov approximation. We
find τB = h̄/(2πkBT ) (see Appendix B), and all considered
temperatures T in Sec. III are chosen such that τB � 1/γ as
required by the Markov approximation. With these assump-
tions Eq. (11) can be written as (see Appendix B)

Kρ = 1

h̄

∫ ∞

−∞
dωJ (ω)n(ω)

∫ ∞

0
dτ eiωτ [c̃α (t − τ, t )ρ, cα]

+ H.c., (16)

where H.c. is the Hermitian conjugate and

n(ω) = 1

eh̄ω/kB T − 1
(17)

is the Bose-Einstein distribution. The operator c̃α is defined as

c̃α (t, t0) = [US(t, t0)]†cαUS(t, t0) (18)

and depends on the driving amplitude F via the time evolution
operator in Eq. (14).

In order to simplify the master equation further we take
advantage of the fact that there exists a complete set of solutions
to the isolated system dynamics. The details of the derivation
are given in Appendix B. We find

ρ̇ = − i

h̄

[
HF

S (t ), ρ
]+ {

Sα
1 (t )[A(t )ρA†(t ) − A†(t )A(t )ρ]

+Sα
2 (t )[A†(t )ρA(t ) − A(t )A†(t )ρ]

+Sα
3 (t )[A(t )ρA(t ) − A(t )A(t )ρ]

+Sα
4 (t )[A†(t )ρA†(t ) − A†(t )A†(t )ρ] + H.c.

}
, (19)

where the time-dependent functions Sα
i (i ∈ {1, 2, 3, 4}) are

defined in Appendix B. In order to be consistent with the
separation of timescales required by the Markov approxima-
tion [29,52,53], the definitions of Sα

i (i ∈ {1, 2, 3, 4}) involve
a time average to exclude any dynamic faster than the bath
response time [see Eq. (B19)]. In this way we avoid tracking
all the degeneracies in the Floquet eigenenergies [30,54].

We show in Sec. III that Eq. (19) can be approximated by a
simpler master equation in the high-temperature regime, which
we refer to as the high-temperature master equation (HTME).
The HTME is obtained by ignoring the driving term in Eq. (18)
which results in

c̃α (t, t0) → e
i
h̄
H 0

S (t−t0 )cαe− i
h̄
H 0

S (t−t0 ). (20)

With this additional approximation, the HTME can be written
as

ρ̇ = − i

h̄

[
HF

S (t ), ρ
]

+
{γ

2
n(ω0)[a†ρ, a] + γ

2
(n(ω0) + 1)[aρ, a†]

+ γ

2
n(ω0)ei2α[a†ρ, a†]

+ γ

2
(n(ω0) + 1)e−i2α[aρ, a] + H.c.

}
, (21)

where a† and a are the familiar creation and annihilation
operators of the undriven harmonic oscillator.

III. RESULTS

Here we present a systematic study of the quasisteady
state of the driven harmonic oscillator as a function of the
external driving parameters, the temperature of the bath and
the coupling angle α in the system-bath Hamiltonian. In a first
step, we describe how we characterize the quasisteady state of
the oscillator in Sec. III A. The numerical results are shown in
Sec. III B.

We introduce dimensionless parameters which are fre-
quently used to characterize periodically driven systems
[55–57]. For the specific model at hand, b = (2ω0/ωL)2 is
proportional to the ratio of natural and driving frequencies
squared and q = 2Fω2

0/ω
2
L characterizes the effective driving

strength. We further define ζ = h̄ω0/(kBT ), which is propor-
tional to the inverse temperature. In order to be consistent
with the Born-Markov approximation, we set the decay rate
to γ /ω0 = 0.02 and only consider parameters ζ � 3 such
that τBγ = ζγ /(2πω0) � 1. Note that γ enters the master
equation (19) implicitly via the spectral density in Eq. (15).
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FIG. 2. The central panel shows a snapshot of W (X,P ) at time
t0 � 1/γ . The black arrow next to the ellipse indicates its dynamics
consisting of simultaneous squeezing and rotation. The top and right
panel contain the resulting probability distributions of the quadratures
X and P (blue solid line). The red dashed line in the side panels
corresponds to the initial thermal state for t < 0. The width of the
probability distribution is given by

√
〈Y 2〉 with Y = X, P . Driving

parameters are b = 0.1, q = 0.5, and ζ = 0.7 as defined in the text.

A. Observables

A descriptive way to illustrate the quantum state of the
oscillator is given by the Wigner quasiprobability distribution
defined as [58,59]

W (X,P )(t ) = 1

π

∫ ∞

−∞
〈X + Y |ρ(t )|X − Y 〉e−2iPY/h̄ dY.

(22)

In this equation, the density operator ρ(t ) is determined
by Eq. (19) and X and P are dimensionless position and
momentum operators, respectively,

X =
√

mω0

h̄
x, (23a)

P =
√

1

mω0h̄
p. (23b)

For t < 0 the system is in a thermal state, which corresponds
to a circular quasiprobability distribution with equally sized
position and momentum quadratures 〈X2〉 and 〈P 2〉, respec-
tively. Once the driving is switched on at t = 0, the shape of the
Wigner function changes in time. A snapshot of W (X,P )(t0)
at t0 � 1/γ is shown in Fig. 2. In contrast to the thermal
distribution, W (X,P )(t0) has an elliptic shape with a tilted
major axis. The value of 〈X2〉 (〈P 2〉) has decreased (increased)
with respect to the thermal distribution. Even though this is just
an example of the Wigner function at a particular point in time,
the whole dynamics of W (X,P )(t � 1/γ ) can be described
by an ellipse rotating around the origin with period 4π/ωL.
During one revolution the angular velocity of rotation changes
in time, and the ellipse grows and shrinks along its major and
minor axis.

The dynamics of {〈X2〉, 〈P 2〉, 〈XP + PX〉} can be ob-
tained from a closed set of equations since the total Hamil-

FIG. 3. Ratio of the time-averaged quadratures 〈X2〉/〈P 2〉 as a
function of the coupling angle α and for different values of b. We
have chosen q = 0.5, ζ = 10−4.

tonian Hα in Eq. (9) is quadratic and therefore preserves the
Gaussian nature of the initial thermal state [60–65]. This set
of equations is derived from the full master Eq. (19) and
given in Appendix C. A similar closed set of equations can be
obtained from the HTME in Eq. (21), and the corresponding
results are denoted by 〈 . . .〉HTME. In the following we consider
the steady-state regime t � 1/γ and restrict our analysis to
〈X2〉 and 〈P 2〉, where the bar indicates a time average over

the interval �t ≈ 1/γ � 2π/ωL. It follows that
√

〈X2〉 and√
〈P 2〉 characterize the width of the time-averaged Wigner

function in X and P , respectively.

B. Numerical results

Here we systematically investigate the dependence of 〈X2〉
and 〈P 2〉 on the parameters b, ζ , and α. In a first step, we find
that the ratio 〈X2〉/〈P 2〉 is approximately independent of the
coupling angle α as shown in Fig. 3. This ratio only depends
on the driving frequency and strength, and is larger (smaller)
than unity for b > 1 (b < 1). The shape of the time-averaged
Wigner function thus deviates significantly from a circle in the
presence of the parametric driving. The results in Fig. 3 cor-
respond to the high-temperature limit ζ = 10−4. However, we
find that the ratio 〈X2〉/〈P 2〉 is also approximately independent
of ζ for the considered range of values ζ ∈ [10−4, 3].

The previously discussed dependence of 〈X2〉 and 〈P 2〉
allows us to restrict the following analysis to one of the two
quadratures. We choose 〈X2〉 and investigate its dependence
on b, α, and ζ by introducing the short-hand notation,

RX = 〈X2〉/〈X2〉thermal, (24)

where 〈X2〉thermal is the undriven initial thermal value of 〈X2〉.
A value of RX > 1 [RX < 1] thus means that the driving
enhances (reduces) the value of 〈X2〉 compared to its thermal
value.

The dependence of RX on ζ is shown in Figs. 4(a) and
4(b) for position and momentum coupling, respectively. Note
that all values for RX in Fig. 4 differ from unity and hence
the parametric driving changes the value of 〈X2〉 compared
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(a)

(b)

FIG. 4. RX as a function of inverse temperature ζ for q = 0.5,
different driving frequencies, and coupling angle (a) α = 0 and (b)
α = π

2 . Dotted lines of the same color indicate the results obtained
from the evolution of the HTME. Dashed line at RX = 1 in (a) is a
guide to the eye.

to 〈X2〉thermal. Furthermore, we note that the results for RX in
Fig. 4 differ significantly for position and momentum coupling.
Most prominently, RX > 1 for all curves in Fig. 4(b) (mo-
mentum coupling), while RX < 1 for position coupling and
b = 0.1. The reduction of (RX )ζ→0 below unity for position
coupling and fast driving (b � 1) has already been studied in
Refs. [60,66–68]. In general, we find that RX strongly increases
with ζ for both coupling types if b < 1. On the other hand, RX

shows a much weaker dependence on ζ for b > 1. The value
of (RX )b>1 slightly decreases with ζ for position coupling and
remains approximately constant for momentum coupling.

In order to illustrate the significance of the ζ dependence of
RX, we show the results for (RX )HTME obtained via the HTME
in Eq. (21) by the horizontal dotted lines in Fig. 4. Since they
exhibit no ζ dependence, the temperature dependence of RX

predicted by the full master equation is a direct consequence of
the parametric driving on the system-bath coupling. The dif-
ferences between the HTME and full master equation are most
pronounced near ζ = 3 and for b = 0.1. On the other hand, we
find that RX converges to (RX )HTME in the limit ζ → 0 which
can be understood as follows. The thermal correlation time
of the bath τB = h̄/(2πkBT ) [29,53] becomes much smaller
than the typical timescale τS = min(1/ω0, 1/ωL) of the system
dynamics in the high-temperature limit. Consequently, the
time evolution of the system cannot influence the system-bath
coupling.

FIG. 5. RX as a function of coupling angle α for different values
of b, driving strength q = 0.5, and inverse temperature ζ = 10−4.

Next we investigate the α dependence of RX in the high-
temperature limit and for different driving frequencies. The
results are shown in Fig. 5. We observe an increase (decrease)
of RX with increasing α for b < 1 (b > 1). This behavior
is similar to the functional dependence of RX on ζ and b

shown in Fig. 4. We thus find that increasing α or ζ leads to
qualitatively comparable effects. Most importantly, RX shows
a strong dependence on α for b = 0.4 and b = 1.5. Since RX is
monotonously increasing (decreasing) for b = 0.4 (b = 1.5),
one can determine the coupling angle α by comparing 〈X2〉 to
〈X2〉thermal. Note that the α dependence of the results in Fig. 5
is a direct consequence of the counter-rotating terms ∝ e±2iα

in the HTME in Eq. (21).
In order to identify the parameter regime with the strongest

α dependence, we move away from the high-temperature limit
and showRX as a function ofb for different values ofα in Fig. 6.
Here the left and right panels correspond to the parameter
range b < 0.5 and b > 1.45, respectively. For values closer
to b = 1 the solutions become unstable and no steady state
can be achieved. Figure 6 shows that RX exhibits the strongest

FIG. 6. RX as a function of inverse driving frequencies for
different coupling angles α, driving strength q = 0.5, and inverse
temperature ζ = 2. The left and right panel correspond to driving
above and below the resonance frequency, respectively.
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FIG. 7. RX/(RX )ζ→0 as a function of ζ for b = 0.1, q = 0.5, and
different values of α. The values of (RX )ζ→0 can be obtained from
the b = 0.1 curve in Fig. 5.

dependence on α for b ≈ 0.1. In particular, note that the range
of the RX values from α = 0 to α = π/2 is larger than in the
corresponding curve for b = 0.1 in Fig. 5 due to the different
ζ values.

Finally, we focus on b = 0.1 and investigate the ζ depen-
dence of RX for different values of α. We find that RX increases
relative to its ζ → 0 value for all considered values of α as
shown in Fig. 7. The relative increase with ζ is the largest for
α = π/2 and the smallest for α = 0. Furthermore, we find that
small changes in α change the ζ dependence of RX/(RX )ζ→0

most significantly near α = 0.
Two conclusions can be drawn from the results in Fig. 7.

First, increasing the value of ζ increases the spread of RX with
α. It thus becomes easier to determine α via a comparison
of 〈X2〉 and 〈X2〉thermal for smaller temperatures of the bath.
Second, the difference of the ζ dependence of RX for various
choices of α opens up a second route to determining α. For
example, one could increase ζ by a given factor and measure
the corresponding increase in RX. According to Fig. 7, this
increase is a unique function of α. Note that this approach
works best for small α where the ζ dependence of RX is most
sensitive to changes in α.

IV. DISCUSSION OF α-DEPENDENCE

The strong α dependence of the results in Sec. III is a
direct consequence of the driving. In order to see this, we
note that the full master Eq. (19) reduces to the HTME in
Eq. (21) in the case of an undriven system (F = 0). Since
only the counter-rotating terms exhibit an α dependence, all
α-dependent terms are of the order of γ /ω0 for F = 0. In the
regime of weak system-bath coupling γ /ω0 � 1 considered
here, the α dependence is negligibly small. It is thus justified
to perform a rotating-wave approximation [29] in the HTME
which completely removes the α dependence and reduces
the HTME to the standard quantum optical master equation.
With this approximation, the density operator and hence all
expectation values are independent of α in the undriven regime.

Note that the approximate α independence in the absence
of the driving is not only a feature of our quantum model

described in Sec. II, but extends to the corresponding classical
model if γ /ω0 � 1. The equations of motion for the classical,
dimensionless position, and momentum variables X and P for
F = 0 are

dX
dτ

= − γ

ω0
sin2 (α)X + P

(
1 + γ

2ω0
sin (2α)

)
, (25a)

dP
dτ

= − γ

ω0
cos2 (α)P − X

(
1 − γ

2ω0
sin (2α)

)
, (25b)

where we ignored noise terms and introduced τ = tω0. These
equations coincide with the equations of motion for 〈X〉 and
〈P 〉 derived from the HTME, and all α-dependent terms are
proportional to γ /ω0. The classical motion thus only exhibits
a significant α dependence for extremely strong damping of
the order of γ ≈ ω0, which is outside the parameter range
considered here.

Having established that the strong α dependence of our
results is a consequence of the driving, we now investigate
its origin in more detail. According to [27], our results are
a manifestation of EGD which can be explained in terms of
quasidegeneracies of the Floquet eigenenergies of the quantum
problem. Due to the infinite number of Floquet eigenenergies
in our problem, the aim of this section is to give an alternative
and more intuitive picture for the strong α dependence of our
results. To this end we show in Appendix D that the total
Hamiltonian Hα in Eq. (9) is unitarily equivalent to

Hα = HF
S (t ) + HB + Hα

I + Hshift, (26)

where HF
S (t ) and HB remain unchanged and Hshift is given in

Appendix D. The latter term describes small shifts of the bath
and system frequencies and will be neglected in the following.
The transformed interaction Hamiltonian Hα

I is given by

Hα
I = −xBα, (27)

where

Bα =
N∑

r=1

κr

(
cos (α)xr − sin (α)

mrω0
pr

)
. (28)

In contrast to Hα
I in Eq. (6), the system-bath coupling in Hα

I is
mediated by the position coordinate of the oscillator coupled
to an α-dependent superposition of position and momentum
operators of the bath modes. In this way, the α dependence has
been entirely moved from the coupling operator to the bath.

Following the steps in Appendix B we derive a master
equation for the density operator ρU from the transformed
Hamiltonian Hα; see Appendix D. We have explicitly verified
that ρU and ρ lead to the same results for all parameters
investigated in Sec. III B. In the derivation of the master
equation for ρU , the linear superposition of bath operators in
Eq. (28) gives rise to an α-dependent spectral density,

J α (ω) = J (ω)

[
cos (α)2 +

(
ω

ω0

)2

sin2 (α)

]
, (29)

which is the product of the Ohmic spectral density J (ω) in
Eq. (15) and an α-dependent function. We show J α (ω) for the
two extreme cases α = 0 and α = π/2 in Fig. 8. While J 0(ω)
and Jπ/2(ω) are identical at ω = ±ω0, they differ significantly
for |ω| �= ω0.
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FIG. 8. The dash-dotted yellow (solid blue) line corresponds to
the bath spectral density J α=0(ω) [J α=π/2(ω)]. The green dashed
vertical lines mark the undriven system frequency ±ω0. The scaled
Floquet quasifrequencies εr = (μ + rωL)/ω0 for q = 0.5 and b =
0.1 are indicated by black dashed vertical lines.

We are now in a position to understand the α dependence of
the results in Sec. III B. In general, the system-bath interaction
is determined by the values of J α (ωc ) at the characteristic
frequencies ωc of the classical solution of the undamped
harmonic oscillator (see Appendix E for details). We have
found that all observables in Sec. III B are independent of α

for an undriven oscillator. In this case, the resonance frequency
ω0 is the only characteristic frequency involved in the system
dynamics. However, the spectral density in Eq. (29) satisfies
J α (±ω0) = J (±ω0) for all α, and hence the system-bath
interaction is independent of α.

This picture changes significantly if the driving is switched
on. The driving leads to new characteristic frequencies ωc =
±μ + rωL, with r ∈ Z and where μ is the quasifrequency of
the Floquet spectrum closest to ω0 of the underlying classical
model of a driven but undamped harmonic oscillator. Since the
spectral density J α depends strongly on α for |ω| > ω0 (see
Fig. 8), the parametric driving leads to α-dependent results.

V. SUMMARY AND CONCLUSION

We have shown that parametric driving of a harmonic
oscillator coupled to a heat bath allows one to distinguish
between different microscopic models for the system-bath
interaction. More specifically, we have considered a bath with
an Ohmic spectral density that couples to a linear superposition
of the position and momentum degrees of freedom of the
oscillator. This superposition is parametrized via the coupling
angle α which allows one to continuously change the character
of the coupling from position to momentum coupling. We
have systematically investigated the dependence of the time-
averaged expectation values of 〈X2〉 and 〈P 2〉 on the driving
parameters, temperature T of the bath, and α. While 〈X2〉/〈P 2〉
is approximately independent of α and T , we have shown
that RX = 〈X2〉/〈X2〉thermal shows a strong dependence on

temperature and on the coupling angle α. This dependence on
the coupling angle could be used to determine α by measuring
〈X2〉 (〈X2〉thermal in the presence (absence) of the parametric
driving. We have found that RX exhibits the strongest depen-
dence on α for large driving frequencies ωL � ω0 and for bath
temperatures with kBT � h̄ω0. In this regime, RX also displays
a characteristic dependence on inverse temperature for each
value of α, thus offering an additional route to determine the
value of α in the interaction Hamiltonian.

Our results have been obtained within the framework of
a master equation in the Born-Markov approximation that
accounts for the modification of the system-bath interaction
due to the parametric driving. In order to be consistent with the
Markov approximation, we describe the time evolution of the
reduced density operator of the oscillator on a coarse-grained
time axis with resolution �t , where �t is much smaller
than 1/γ and much larger than the bath correlation time. We
compare our results to a simpler master equation that neglects
the influence of the driving on the dissipative part and where
all counter-rotating terms are kept. We find that this HTME
agrees with the full master equation in the high-temperature
limit where h̄ω0 � kBT , but deviates significantly otherwise.
We thus conclude that the influence of the parametric driving
on the system-bath coupling must be taken into account in
general.

The α dependence of our results can be understood within
the general framework of EGD introduced in [27], where the
dependence of the system dynamics on the coupling operator
is explained in terms of quasidegeneracies of the Floquet
spectrum. In addition, we have provided a complementary
and intuitive explanation of the α dependence of our results
by applying a unitary transformation to the total system-bath
Hamiltonian. In this transformed picture, the position variable
of the oscillator couples to an α-dependent superposition of
bath variables which results in an α-dependent spectral density
J α . Since the system-bath coupling is determined by the values
of J α at the Floquet quasifrequencies associated with the
parametric driving, the density operator obtained from this
master equation depends on α if the system is driven.

Our results open up several directions for future investiga-
tions. The explanation of theα dependence of our results via the
unitarily equivalent model giving rise to an α-dependent spec-
tral density shows that strong parametric driving allows one to
probe an unknown spectral density if the microscopic coupling
mechanism between the system and the bath is known. Further-
more, this approach could be extended to investigate systems
with several competing dissipation mechanisms or to the non-
Markovian regime of strong damping which is often encoun-
tered in solid-state materials. This could either be achieved by
using the Feynman-Vernon path integral formalism [60] or the
stochastic Liouville–von Neumann equation [69]. Eventually,
an improved understanding of system-bath interactions in these
systems paves the way to control and engineer their quantum
dynamics via strong driving. For example, cooling of a driven
harmonic oscillator coupled to a non-Markovian bath can be
achieved via optimal control techniques [65,70]. This could
allow one to prepare the oscillator in nonclassical, squeezed
states [71–74].
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APPENDIX A: SOLUTION OF THE DRIVEN HARMONIC
OSCILLATOR

Here we describe the solutions ψn(x, t ) to the time-
dependent Schrödinger equation in Eq. (3) following the
approach in [46,47] that is based on dynamical invariants
[41,75]. We write the solutions as

ψn(x, t ) = 1√
2nn!

(
mωI

πh̄g−(t )

) 1
4

e
−i

g0 (t )
2h̄g− (t ) x

2

e−i�(t )(n+ 1
2 )

× e
− mωI

2h̄g− (t ) x
2

Hn

(√
mωI

h̄g−(t )
x

)
, (A1)

where

�(t ) =
∫ t

0
dt ′

ωI

g−(t ′)
(A2)

is a global phase,

ωI = 1

m

√
g+(t )g−(t ) − g2

0 (t ) (A3)

is a time-independent constant frequency, and Hn are the
Hermite polynomials of degree n. The functions g+(t ), g+(t ),
and g+(t ) in Eq. (A1) are defined as

g+(t ) = m2ḟ1(t )ḟ2(t ), (A4a)

g0(t ) = −m

2
[ḟ1(t )f2(t ) + f1(t )ḟ2(t )], (A4b)

g−(t ) = f1(t )f2(t ), (A4c)

where fi (t ) (i ∈ {1, 2}) are two linearly independent solutions
of the classical harmonic oscillator. These functions obey

f̈i (t ) + ω2(t )fi (t ) = 0, (A5)

and we impose the initial condition fi (0) = 1 at t = 0 and
require f1(t ) = f2(t )∗. For t < 0 where the driving is absent
we thus find f1,2(t < 0) = e±iω0t , and consequently g0(t <

0) = 0. Furthermore, as g−(t < 0) = 1 the chosen initial
conditions result in ωI = ω0 such that ψn(x, t ) reduces to
the harmonic oscillator eigenstates. These states form an
orthogonal basis and the states ψn(x, t ) remain orthogonal for
t � 0, i.e., 〈ψn(t )|ψm(t )〉 = δn,m as the time dependence of the
argument mωI

h̄g−(t ) of the integral in the equal time norm can be
eliminated by a change of variables. It follows that the states
|ψn(t )〉 in Eq. (A1) span a complete basis at all times.

We define generalized creation and annihilation operators
A† and A that act on the states |ψn(t )〉 as described in Eq. (4).
The annihilation operator is given by [31]

A(t ) = 1√
2

[√
mω0

h̄
h1(t )x +

√
1

h̄mω0
h2(t )p

]
, (A6)

and the complex functions h1(t ) and h2(t ) are defined as

h1(t ) = exp (i�(t ))
√

ωI

ω0g−(t )

(
1 + i

g0(t )

mωI

)
, (A7a)

h2(t ) = i exp (i�(t ))

√
ω0g−(t )

ωI

. (A7b)

Since [x, p] = ih̄ and h1(t )h∗
2(t ) − h∗

1(t )h2(t ) = −2i, the
equal-time commutation relation [A(t ), A†(t )] = 1 is satisfied.

APPENDIX B: MASTER EQUATION DERIVATION

Here we discuss the derivation of the master equation in
Sec. II B. Our approach builds on the work presented in [31],
but considers a more general system-bath coupling, does not
use the Floquet basis states, and employs the weakest possible
rotating-wave approximation in order to be consistent with the
Born-Markov approximation.

In a first step we rewrite the dissipative term Kρ in Eq. (11)
as follows [29,30,54],

Kρ = 1

h̄2

∫ ∞

0
dτ

(
i

2
D(τ )[cα, {c̃α (t − τ, t ), ρ}]

− 1

2
D1(τ )[cα, [c̃α (t − τ, t ), ρ]]

)
, (B1)

where {Q,W } = QW + WQ is the anticommutator for oper-
ators Q, W and we introduced following [29] the dissipation
kernel,

D(τ ) = i〈[B, B̃(−τ )]〉 = i[B, B̃(−τ )], (B2)

and the noise kernel,

D1(τ ) = 〈{B, B̃(−τ )}〉. (B3)

We find

D(τ ) = 2h̄

∫ ∞

0
dωJ (ω) sin ωτ, (B4a)

D1(τ ) = 2h̄

∫ ∞

0
dωJ (ω) coth(h̄ω/2kBT ) cos ωτ, (B4b)

and

J (ω) =
N∑

n=1

κ2
n

2mnωn

δ(ω − ωn) (B5)

is the spectral density. As described in the main text we assume
that J (ω) is Ohmic with a Lorentz-Drude cutoff as given in
Eq. (15). The longest thermal correlation time is then given
by [29] τB = max[h̄/(2πkBT ),�−1]. We set � = 105ω0 such
that for all considered parameters τB = h̄/(2πkBT ). With the
identities J (ω) = −J (−ω) as well as −n(−ω) = n(ω) + 1
we obtain Eq. (16).

The solution of the master Eq. (10) withKρ as in Eq. (16) is
greatly simplified by projecting it onto the states |ψn(t )〉 which
solve the full Schrödinger equation of the driven oscillator. The
matrix elements of the density operator of the system in this
basis are denoted by

ρnm(t ) =〈ψn(t )|ρ(t )|ψm(t )〉, (B6)

012122-8



PROBING MICROSCOPIC MODELS FOR SYSTEM-BATH … PHYSICAL REVIEW A 98, 012122 (2018)

and evolve only due to the system-bath coupling. We find

ρ̇nm(t ) =
∑
k,l

[
C̄α

nk (t )ρkl (t )Cα
lm(t )

−Cα
nk (t )C̄α

kl (t )ρlm(t )
]+ H.c., (B7)

where

Cα
nm(t ) = 〈ψn(t )|cα|ψm(t )〉, (B8a)

C̄α
nm(t ) = 1

h̄

∫ ∞

−∞
dω J (ω)n(ω)

×
∫ ∞

0
dτ eiωτCα

nm(t − τ ). (B8b)

In order to evaluate these matrix elements, we express the
coupling operator cα in Eq. (7) in terms of the generalized
creation and annihilation operators A(t ) and A†(t ),

cα = sα
1 (t )A†(t ) + sα

2 (t )A(t ), (B9)

where

sα
1 (t ) = i

√
h̄

2mω0
[sin (α)h1(t ) − cos (α)h2(t )] (B10)

is a complex-valued function and sα
2 (t ) = [sα

1 (t )]∗. The matrix
element in Eq. (B8a) thus reads

Cα
nm(t ) = sα

1 (t )A†
nm + sα

2 (t )Anm, (B11)

and the time-independent matrix elements of the creation and
annihilation operators are given by

A†
nm = 〈ψn(t )|A†(t )|ψm(t )〉 = √

m + 1δn,m+1, (B12a)

Anm = 〈ψn(t )|A(t )|ψm(t )〉 = √
mδn,m−1. (B12b)

Next we discuss the evaluation of C̄nm in Eq. (B8b).
With the help of Eq. (B11), we find

C̄α
nm(t ) = s̄α

1 (t )A†
nm + s̄α

2 (t )Anm, (B13)

where

s̄α
i (t ) = 1

h̄

∫ ∞

−∞
dω J (ω)n(ω)

∫ ∞

0
dτ eiωτ sα

i (t − τ ). (B14)

In order to evaluate Eq. (B14), we choose a sufficiently large
time interval [ti , tf ] of length Tif = tf − ti to avoid artefacts
from the Gibbs effect [76] and represent sα

i in terms of the first
Nk terms of its discrete Fourier series,

sα
i (ti < t < tf ) ≈

kmax∑
k=−kmax

F[sα
i ](ωk )eiwkt . (B15)

Here wk = 2πk
Tif

are the discrete frequencies with integer index

k, kmax = Nk−1
2 , and the Fourier coefficients F[sα

i ](ωk ) are

defined as

F[sα
i ](ωk ) = 1

Tif

∫ tf

ti

sα
i (t )e−iwkt dt. (B16)

The expansion in Eq. (B15) allows us to evaluate the integrals
in Eq. (B14). We find

s̄α
i (t ) =π

h̄

kmax∑
k=−kmax

J (wk )n(wk )eiwktF[sα
i ](ωk ), (B17)

where we employed the identity
∫∞

0 dteiωt = πδ(ω) + P (i/ω)
and neglected the principal part.

We now return to the master Eq. (B7). Substituting
Eqs. (B11) and (B13) in Eq. (B7) results in a differential
equation for ρnm with time-dependent coefficients sα

i (t )s̄α
j (t ).

In order to be consistent with the Born-Markov approximation
we average these time-dependent terms over the correlation
time of the bath τB times a constant factor f . In order to
make sure that the bath cannot introduce any dynamics faster
than τB , we set f = 10 in Eq. (B19). This is necessary since
the Markov approximation assumes that the system does not
evolve appreciably over this timescale. We find

ρ̇nm(t ) =
∑
k,l

{Sα
1 (t )[AnkρklA

†
lm − A

†
nkAklρlm]

+Sα
2 (t )[A†

nkρklAlm − AnkA
†
klρlm]

+Sα
3 (t )[AnkρklAlm − AnkAklρlm]

+Sα
4 (t )[A†

nkρklA
†
lm − A

†
nkA

†
klρlm]} + H.c.,

(B18)

where

Sα
1 (t ) = 1

f τB

∫ t

t−f τB

dt ′s̄α
2 (t ′)sα

1 (t ′), (B19a)

Sα
2 (t ) = 1

f τB

∫ t

t−f τB

dt ′s̄α
1 (t ′)sα

2 (t ′), (B19b)

Sα
3 (t ) = 1

f τB

∫ t

t−f τB

dt ′s̄α
2 (t ′)sα

2 (t ′), (B19c)

Sα
4 (t ) = 1

f τB

∫ t

t−f τB

dt ′s̄α
1 (t ′)sα

1 (t ′). (B19d)

By converting Eq. (B18) into an operator-valued equation
we obtain Eq. (19) in the main text.

APPENDIX C: CLOSED SET OF EQUATIONS
OF MOTIONS FOR FULL MASTER EQUATION

A closed set of differential equations for the components
of the vector v = (〈X2〉, 〈P 2〉, 〈XP + PX〉)ᵀ with position-
momentum correlator D = XP + XP can be derived from
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the full master equation and is given by

d

dt
v1 = ω0v3 + {−iv1[h1(h∗

2S
α
1 + h2S

α
3 )+h∗

1(h2S
α
2 + h∗

2S
α
4 )] + −iv3 + 1

2
[h2(h∗

2S
α
1 + h2S

α
3 ) + h∗

2(h2S
α
2 + h∗

2S
α
4 )] + H.c.},

(C1)

d

dt
v2 = −ω2(t )

ω0
v3 + {iv2[h2(h∗

1S
α
1 + h1S

α
3 ) + h∗

2(h1S
α
2 + h∗

1S
α
4 )] + iv3 + 1

2
[h1(h∗

1S
α
1 + h1S

α
3 ) + h∗

1(h1S
α
2 + h∗

1S
α
4 )] + H.c.},

(C2)

and

d

dt
v3 = 2ω0v2 − 2

ω2(t )

ω0
v1 + {iv1[h1(h∗

1S
α
1 + h1S

α
3 ) + h∗

1(h1S
α
2 + h∗

1S
α
4 )] − iv2[h2(h∗

2S
α
1 + h2S

α
3 ) + h∗

2(h2S
α
2 + h∗

2S
α
4 )]

− 1

2
[(h∗

1h2 + h∗
2h1)(Sα

1 + Sα
2 ) + 2h1h2S

α
3 + 2h∗

1h
∗
2S

α
4 ] − v3[Sα

1 − Sα
2 ] + H.c.}. (C3)

In case of the HTME, we obtain

dv

dt
= Mα

i v + Aw cos (ωLt )Mtv + Iα, (C4)

where

Mα
i =

⎛
⎜⎝

−2γ sin2 (α) 0 γ

2 sin (2α) + ω0

0 −2γ cos2 (α) γ

2 sin (2α) − ω0

γ sin (2α) − 2ω0 γ sin (2α) + 2ω0 −γ

⎞
⎟⎠ (C5)

determines the isolated system dynamics,

Mt =
⎛
⎝ 0 0 0

0 0 −ω0

−2ω0 0 0

⎞
⎠ (C6)

accounts for the external driving, and

Iα = [2n(ω0) + 1]γ

⎛
⎝ sin2 (α)

cos2 (α)
− sin (2α)

⎞
⎠ (C7)

is the inhomogeneity in Eq. (C4).

APPENDIX D: UNITARY TRANSFORMATION LEADING
TO Hα

The unitary transformation relating the total Hamiltonian
Hα to Hα in Eq. (26) is given by

U = e
− i

h̄

sin (α)
ω0

x
∑

r κr xr . (D1)

This transformation leaves the position operators of the sys-
tem and bath unchanged, i.e., xr = U †xrU and x = U †xU .
However, the momentum operators transform as

U †prU = pr − sin (α)

ω0
κrx, (D2a)

U †pU = p − sin (α)

ω0

N∑
r=1

κrxr . (D2b)

The term Hshift in Eq. (26) is given by

Hshift =
⎡
⎣ 1

2ω2
0

N∑
r=1

κ2
r

mr

x2 − 1

2mω2
0

(
N∑

r=1

κrxr

)2
⎤
⎦ sin2 (α).

(D3)

APPENDIX E: MASTER EQUATION RESULTING
FROM Hα

Following the steps in Appendix B, the transformed Hamil-
tonian Hα gives rise to the following master equation,

ρ̇U = − i

h̄

[
HF

S (t ), ρU

]
+ {Uα

1 (t )[A(t )ρUA†(t ) − A†(t )A(t )ρU ]

+Uα
2 (t )[A†(t )ρUA(t ) − A(t )A†(t )ρU ]

+Uα
3 (t )[A(t )ρUA(t ) − A(t )A(t )ρU ]

+Uα
4 (t )[A†(t )ρUA†(t ) − A†(t )A†(t )ρU ] + H.c.

}
,

(E1)

where the operators A are the same as in Appendix B and

Uα
1 (t ) = 1

f τB

∫ t

t−f τB

dt ′ūα
2 (t ′)u1(t ′), (E2a)

Uα
2 (t ) = 1

f τB

∫ t

t−f τB

dt ′ūα
1 (t ′)u2(t ′), (E2b)
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Uα
3 (t ) = 1

f τB

∫ t

t−f τB

dt ′ūα
2 (t ′)u2(t ′), (E2c)

Uα
4 (t ) = 1

f τB

∫ t

t−f τB

dt ′ūα
1 (t ′)u1(t ′). (E2d)

As in Appendix B, τB is the bath correlation time and f =
10. The function u1 in Eq. (E2) is given by

u1(t ) = −i

√
h̄

2mω0
h2(t ), (E3)

where h2(t ) is defined in Eq. (A7) and only depends on the
parameters of the classical parametric oscillator. Furthermore,

u2(t ) = [u1(t )]∗ and

ūα
i (t ) = 1

h̄

∫ ∞

−∞
dω Jα (ω)n(ω)

∫ ∞

0
dτ eiωτui (t − τ ), (E4)

where J α given in Eq. (29). By calculating the discrete Fourier
transform F[ui] of ui and neglecting principle value integrals
analogous to Eq. (B17), Eq. (E4) can be written as

ūα
i (t ) ≈π

h̄

kmax∑
k=−kmax

J α (wk )n(wk )eiwktF[ui](ωk ). (E5)

Since u1 ∝ h2 and u2 ∝ h∗
2, Eq. (E5) shows that the system-

bath interaction is determined by the spectral density J α (wk )
evaluated at the characteristic frequencies ωk = ωc of the
classical harmonic oscillator solutions.
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