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Local model of a qudit: Single particle in optical circuits
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It has been said about quantum interference, that “in reality, it contains the only mystery”. Together
with nonlocality, it is often considered the characteristic feature of quantum theory challenging our classical
understanding of the world. In this work, we are concerned with the restricted setting of a single particle
propagating in multipath interferometric circuits—that is, the physical realization of a qudit—which is host
to many typically quantum mechanical effects including collapse of the wave function and contextuality. In
this paper, we show that this framework can be simulated with classical resources without violating the locality
principle. We present a local ontological model whose predictions are indistinguishable from the quantum case.
In the model, ‘nonlocality’ appears merely as an epistemic effect arising from a level of description by agents
whose knowledge is incomplete. It is notably different from the multiparticle scenarios where entanglement leads
to nonlocal correlations on an ontological level. This result exposes the conceptual difference between single-
and multiparticle phenomena, pointing to the latter as a deeper quantum mystery.
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I. INTRODUCTION

In the Feynman Lectures on Physics, quantum interference
is described as “a phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and which has in
it the heart of quantum mechanics” [1]. Broadly speaking, it
concerns behavior of a particle in the interferometric circuits,
and the problem consists in reconciling the wave and particle
character of the phenomenon. Another difficulty of quantum
formalism is a common-sense explanation for the collapse of
the wave function upon measurement. In some mysterious
way, behavior of a quantum particle depends on knowledge
of what is happening in distant parts of the experimental
setup. Notably, nonlocality of the collapse already manifests
itself in single-particle scenarios, as Einstein first pointed out
during the Fifth Solvay Conference [2] when he metaphorically
called such an influence “spooky action at a distance” [3,4]. A
full-fledged argument against local realism in quantum theory
is due to the profound insight of Bell [5,6], who noted that it
requires two particles to show nonlocal correlations between
measurements in distant arms of an interferometric setup.
Remarkably, all further refinements of the argument exploit
properties of entangled states in multiparticle scenarios—see,
e.g., Refs. [7–9]. This leaves open the question of a possible
local explanation of quantum-interferometric phenomena in
the single-particle case—cf. [10–13].

Quantum mechanics of single-particle phenomena is a rich
source of paradoxes and surprising effects which challenge
our classical understanding of the world. Apart from quantum
interference [14], they include, e.g., interaction-free mea-
surements [15–17], quantum Zeno effect [16–19], Wheeler’s
delayed-choice experiment [20,21], violation of Leggett-Garg
inequalities [22,23], pre- and postselection paradoxes [24,25],
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and contextuality [26–31]. These phenomena are often con-
sidered strictly quantum mechanical effects and some of them,
like contextuality or Leggett-Garg inequalities, are sometimes
treated as signatures of the quantum regime. However, as
suggestive as it might appear, it is not at all clear to what
extent these features are unique to the quantum realm. On
the one hand, there are various models indicating analogies
on the grounds of classical probabilistic theories—see, e.g.,
Refs. [32–43]. On the other hand, none of these results fully re-
construct quantum predictions for general single-particle sce-
narios. Altogether, this makes the question about the distinctive
quantum features an interesting problem. Specifically, it is not
clear whether nonlocality in a single-particle framework is on
par with a multiparticle case, i.e., does not admit existence of a
local hidden variable model [10–13]. A decisive answer would
require either a rigorous no-go proof, such as Bell’s theorem
is for two particles, or a counterexample encompassing all
relevant aspects of quantum interferometric setups.

In this paper we are concerned with a single particle
propagating in general multipath interferometric circuits—that
is, a physical realization of finite-dimensional Hilbert space
H = CN (qudit) [44]—and explicitly construct a local
ontological model which faithfully imitates all quantum-
mechanical predictions. This suggests being cautious of state-
ments about the absolute impossibility of the classical explana-
tion of single-particle interferometric phenomena. Indeed, the
model shows that a local explanation is conceivable and hence
the real quantum mystery should be sought in multiparticle
behavior [5–9].

Our construction is made within the ontological model
framework [27,28,45] which encompasses a broad range of
hidden-variable scenarios. It makes a crucial distinction be-
tween the ontic and epistemic level of description, allowing
for systematic treatment of situations in which access to
information is constrained. The basic idea of the model consists
in defining ontic variables which propagate locally through
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FIG. 1. Ontology of the model and interferometric circuits. On the right, the circuits describe propagation of a particle through a network
of (spatially separated) paths and gates which represent a sequence of transformations. A basic interferometric toolkit consists of free evolution
(empty path), phase shifters Sj , beam splitters Bst (on which two paths cross), and detectors Dj , which inform (CLICK or NO CLICK) about
the presence or absence of a particle in a given path. This selection of gates is general enough to provide a physical realization of any unitary
and projective measurement described by quantum formalism in H = CN [44]. On the left, ontology of the model consists of a single particle
and local fields propagating in each path of the circuit. Each time the particle has the well-defined position q = 1, . . . ,N and the fields are
characterized by amplitude uj and strength τj with j = 1, . . . ,N labeling the paths. In this paper, we show that this ontology, completed
with appropriately defined local stochastic gates, fully reconstructs quantum mechanical predictions for a single particle in the interferometric
circuits.

interferometric circuits built of gates, and the latter determine
the evolution of the system by affecting only those variables
which go into a given gate—see Sec. III. In Sec. IV we take the
perspective of an observer who is unaware or indifferent to the
underlying ontology of the model and analyze the structure
of information which is available to the agents investigating
the model by conducting experiments in every conceivable
circuit. We show that the operational account of the model
is indistinguishable from the quantum-mechanical description
of a qudit (H = CN ). This demonstrates that constraints on
knowledge play an important role in describing a system under
study. In the model, agents whose resources are constrained
and receive incomplete information report a variety of quan-
tumlike effects on an epistemic level, which faithfully imitate
all quantum-mechanical predictions for a single particle in
the interferometric circuits. For the sake of clarity, rigorous
treatment within the ontological model framework is given in
Appendix A and the proofs are delegated to Appendix B.

II. QUANTUM INTERFEROMETRY IN A NUTSHELL

We begin with a brief account of quantum interferometric
circuits. This is meant to introduce the notation and provide
a basis for comparison of the model constructed in this paper
with the standard quantum-mechanical description.

In the following, we consider a standard interferometric
framework for a single particle propagating through a net-
work of spatially separated paths. Evolution of the system is
implemented by gates attached to the paths which represent
nontrivial transformations (with empty paths corresponding to
free evolution). See Fig. 1 (on the right) for illustration. It is
sufficient to consider only a few kinds of gates which form the
basis for construction of complex interferometric circuits [44].
These gates include phase shifters Sj and detectors Dj which
are attached to individual paths and beam splitters Bst on which
two paths cross, with j and s,t indicating the respective paths.
A special role of detectors is to provide an outcome CLICK or

NO CLICK, which attests to the presence or absence of a particle
in a given path.

The quantum description of a single particle in an inter-
ferometric circuit, which consists of N paths associates the
position of the particle with the vectors of computational
basis |1〉, . . . ,|N〉, where |j 〉 represents the fact of the particle
being in the j th path. Generally, the state of the system is
a superposition with the complex coefficients ψj defining a
vector (ray) in H = CN , i.e.,

|ψ〉 =
N∑

j=1

ψj |j 〉 =

⎛
⎜⎝ψ1

...

ψN

⎞
⎟⎠ = �ψ, (1)

with normalization ‖|ψ〉‖2 = ∑
j |ψj |2 = 1 and vectors dif-

fering by an overall phase being equivalent. Evolution im-
plemented by gates corresponds to a sequence of unitary and
projective transformations described as follows. Free evolution
in the j th path acts trivially and the phase shifter Sj introduces
the phase eiω in the relevant path, i.e., we have

ψj

free−→ ψj and ψj

Sj−→ eiω ψj . (2)

The beam splitter Bst located at the crossing of paths s and t

implements a unitary in the subspace spanned by kets |s〉 and
|t〉 given by(

ψs

ψt

)
Bst−→

(
ψ ′

s

ψ ′
t

)
=

(
i
√

R
√

T√
T i

√
R

)(
ψs

ψt

)
, (3)

where R,T are reflectivity and transitivity coefficients (with
the usual convention that the particle gains phase i upon
reflection). Finally, according to the measurement postulate
(von Neumann–Lüders rule), detector Dj is described by the
PVM {Pj , 1 − Pj }, where Pj ≡ |j 〉〈j |, i.e., depending on the
outcome it effects the projection

|ψ〉 Dj−→
{ |j 〉 CLICK,

(1−Pj )|ψ〉
‖(1−Pj )|ψ〉‖ NO CLICK,

(4)
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with the probability that detector Dj CLICKS given by Born’s
rule Prob (Dj | ψ) = |〈j |ψ〉|2 = |ψj |2. Note that the projection
postulate Eq. (4) affects the whole space H = CN in spite of
the fact that the detector Dj is localized only in the j th path.
An explanation of this behavior leads to the notorious problem
concerning the ontological status of quantum states and the
issue of nonlocality of the collapse of the wave function.

These rules provide a mathematical description of a single
particle in the interferometric circuit. It was shown in Ref. [44]
that any unitary and projective measurement in H = CN can
be experimentally realized in a circuit composed of N paths as
a sequence of interferometric gates as defined above. Thus it
provides a convenient physical framework for explorations in
quantum foundations.

III. CONSTRUCTION OF THE MODEL

Our main goal in this paper is the explicit construction
of a classical analog with the same structural components
(comprised of paths and gates arranged into circuits) which
mimics quantum behavior of a particle in the interferometric
circuits as described above. The crux of the matter is to provide
a model with a well-defined underlying ontology which does
not violate the locality principle and yet on an operational level
its predictions are indistinguishable from the quantum case.

A. Ontology of the model

Let us consider circuits composed of N paths labeled with
index j = 1, . . . ,N . When defining the model, we assume that
in the circuit a single particle propagates which has the well-
defined position q = 1, . . . ,N . Additionally, we postulate that
along each path propagates a local field characterized by two
degrees of freedom: (complex) amplitude uj such that |uj | ≤ 1
and (real) strength τj such that 0 ≤ τj ≤ 1. This means that at
each time the system of N paths is fully specified by a point
λ = (q,�u,�τ ) in the ontic state space

� = {
q : q = 1, . . . ,N

}
× {�u ∈ CN : |uj | ≤ 1

}
× {�τ ∈ RN : 0 ≤ τj ≤ 1

}
, (5)

where uj and τj describe the field in the j th path. See Fig. 1
(on the left) for illustration.

In the following, we explore the stochastic evolution which
requires a probabilistic description and hence consider the set
of all possible probability distributions over the ontic states,
i.e.,

P(�) =
{

p : � −→ [0,1] :
∫

�

p(λ) dλ = 1

}
, (6)

which will be called an epistemic state space. Accordingly, a
general stochastic transformation (or gate) is defined as a map-
ping T : � −→ P(�), where T (λ) specifies the distribution of
final states given the system was in state λ ∈ �. In the model
we will be concerned with a limited choice of transformations
(gates) which are described below.

B. Local interferometric gates

For such defined ontology we need to specify the stochastic
counterparts of the interferometric gates. Note that, to obey the

locality principle, action of the gates should be restricted to the
paths they are attached to, i.e., to modify degrees of freedom
only in the respective paths and the effected transformation
not being dependent on the situation (configuration of gates,
outcomes, or fields) in the other paths.

We start with the description of paths without gates which
correspond to free evolution. It will be assumed that the
amplitude of the field in such a path remains unchanged and
its strength decreases subject to so-called ‘natural ageing’. We
make the following definition of free evolution in the j th path:

uj

free−→ uj and τj

free−→ τj/2. (7)

Phase shifter Sj is a deterministic gate which acts in the j th
path by rotating the phase of the field by eiω and the strength
‘ageing naturally’, i.e., we have

uj

Sj−→ eiωuj and τj

Sj−→ τj/2. (8)

Detector Dj checks for the presence of the particle in the
j th path (i.e., detector CLICKS only if q = j ). Furthermore, we
postulate that the detection modifies the amplitude and strength
of the field in the j th path depending on the result (CLICK or
NO CLICK) in the following way:

uj

Dj−→
{

1 if q = j,

uj if q �= j,
(9)

and

τj

Dj−→
{

1 if q = j,

0 if q �= j.
(10)

In the above definitions it is implicitly assumed that the
particle cannot jump between paths. In other words, if the
particle happens to be in path q = j , then it stays there q −→
q, and otherwise for q �= j it remains outside q −→ q �= j .
The particle may change its location only at the crossing points,
i.e., where the beam splitters are placed, as explained below.

Beam splitter Bst is a gate which brings paths s and t

together and implements the following transformation. Am-
plitude and strength of the fields are modified according to the
recipe(

us

ut

)
Bst−→

(
i
√

R
√

T√
T i

√
R

)(
δτsτ (st) 0

0 δτt τ (st)

)(
us

ut

)
, (11)

and

τs,τt

Bst−→ τ (st)
/2, where τ (st) = max {τs ,τt }. (12)

In plain words, the role of Kronecker δ’s in the diagonal matrix
in Eq. (11) is to suppress the field with weaker strength so that it
does not contribute to the transformed amplitudes at the output.
Note that the strengths of the outgoing fields are subsequently
levelled up to τ (st)

/2—see Eq. (12). Additionally, if the particle
happens to be in one of the crossing paths, i.e. q = s or q = t ,
then it may change its position following the probabilistic rule

q
Bst−→

⎧⎨
⎩q ′ = s with probability |u′

s |2
|u′

s |2+|u′
t |2 ,

q ′ = t with probability |u′
t |2

|u′
s |2+|u′

t |2 ,
(13)

and otherwise, for q �= s and q �= t , it remains outside.
All gates defined above are local (with the interaction

between the paths on the beam splitter being allowed, since it is
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placed at the crossing point). We also note that transformations
effected by free evolution, phase shifters Sj , and detectors Dj

are deterministic, while the beam splitters Bst are nontrivial
stochastic gates.

Notice that the structure of circuits constructed in the
model is analogous to those in the quantum interferometric
framework—see Fig. 1. The difference rests in the underlying
ontology, which in the presented model is given explicitly with
the locality being built in from the outset. In the following
Sec. IV it is shown that the statistical predictions for any
experimental circuit in the model are the same as for its
quantum-mechanical counterpart.

IV. RECONSTRUCTION OF QUANTUM PREDICTIONS

A. Operational desideratum

Imagine an agent without any prior knowledge of the
model trying to understand how it works only by analyzing
results of experiments which they can perform. Clearly, their
conception of the model may diverge from the ‘true’ ontology
described above. This is because their choice of gates in
constructing experimental circuits is constrained, and hence
their knowledge is indirect and to a certain extent incomplete.1

In the following we are interested in determining a minimal
account of the model as seen by the agent, therefore avoiding
any unfounded interpretational commitments. For this reason,
we adopt an operational approach and restrict our attention
solely to the description of experimental predictions in the
circuits built according to the rules of the model.

To construct such a minimal account, we need to identify
what information is in fact available to the agent by investigat-
ing the model in every possible way. The following questions
provide guidance in this process.

(i) Which distributions in P(�) can be prepared by the
agent with limited resources at hand?

Generally, it may be the case that the agent explores only a
restricted range of distributions in P(�), meaning that some
distributions are beyond their reach. It is therefore natural to
ask the following.

(ii) How do these distributions transform under action of
the gates in the model?

What remains is to remove any of the ontological structure that
is redundant. Here is the key to the operational account.

Operational indifference principle. Distributions that are
not distinguishable by means available to the agent, that is
which give the same probabilistic predictions for any
conceivable experiment (circuit), are equivalent from an
operational point of view.

This allows discarding any ontological details which are
irrelevant (or inaccessible) to the agent by treating all in-
distinguishable distributions as a single entity. At this point
one should be able to identify the underlying mathematical
framework and answer the following question.

1Following philosophical grounds, it is strongly evocative of Plato’s
Allegory of the Cave, where prisoners chained in a cave experience
the outside world only by observing shadows cast on the wall and
come up with a distorted picture of the ‘true’ reality outside the cave.

(iii) What is the minimal operational account which
correctly describes the model’s predictions?

In short, we seek for a bare-bones’ description without
preference to any particular interpretation, with the sole pur-
pose of providing a tool for prediction of experimental results.
Such an account should specify the set of possible operational
states which correspond to inequivalent preparation procedures
and provide transformation rules describing the evolution
in conceivable experimental circuits (including measurement
outcomes). In the following points, we show how to construct
such an operational account of the model which makes no
reference to the underlying ontology.

B. Main theorem

Closer analysis of the model reveals the significance of spe-
cial classes of distributions [ �z ] ⊂ P(�) labeled with complex
vectors (rays) �z ∈ CN , that is

�z =
N∑

j=1

zj ej =

⎛
⎜⎝z1

...

zN

⎞
⎟⎠, (14)

with normalization ‖�z‖ = ∑
j |zj |2 = 1 and equivalence up

to the overall phase [see Definition 1 in Appendix A 3 b for
details]. These classes can be shown to form a disjoint family
of subsets in P(�), i.e., we have

[ �z ] ∩ [ �z ′] �= ∅ ⇔ �z = �z ′ (up to phase). (15)

For explicit construction and proofs, see Appendix A.
Interest in these very special classes of distributions [ �z ] ⊂

P(�) is due to their behavior under action of the gates defined
in the model as explained below.2 See Fig. 2 for illustration
and Appendix A for the proof.

Theorem 1. Transformations implemented by free evolu-
tion, phase shifters Sj , detectors Dj , and beam splitters Bst

act congruently on the family of classes
{
[ �z ] ⊂ P(�) : �z ∈

CN,‖�z‖ = 1
}

defined in Eq. (A16). This means that classes
transform as a whole, i.e., all distributions in a given class map
into distributions in some other class

[ �z ] � p −→ p′ ∈ [ �z ′ ], (16)

where the mapping �z −→ �z ′ is determined by the gates
implemented in the circuit according to the following rules.

– Free evolution acts trivially and phase shifter Sj intro-
duces the phase in the relevant component of vector �z,

zj

free−→ zj and zj

Sj−→ eiω zj . (17)

– Detector Dj placed in the j th path CLICKS with
probability

Prob (Dj | �z) = |zj |2, (18)

2We note that Theorem 1 is also valid for parallel configurations
of gates, in which case the evolution is described by the joint
transformation of vector �z given by Eqs. (17)–(20); see Theorem 2
in Appendix A 3 d.
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FIG. 2. Evolution of classes [ �z ] ⊂ P(�). On the left is an illustration of the whole space of probability distributions over�, denoted byP(�),
with disjoint subsets representing classes of interest [ �z ]. These classes transform congruently (as a whole) under action of the gates in the model,
as explained in Theorem 1. In the picture, the initial class [ ej ] undergoes a sequence of transformations [ ej ] → [ �z1] → [ �z2] → [ �z3] [ ek ] ...

[ �z4] ...
.

On the right, evolution of a single class [ �z ] depends on the composition of gates at a given time step in the experiment: conditioned on a CLICK

in detector Dk we have [ �z ] −→ [ ek ]; otherwise, in a case when all detectors remain silent NO CLICK (or there are no detectors at all) we get
[ �z ] −→ [ �z ′ ] with �z ′ determined by the implemented gates.

and depending on the outcome implements the projection of
vector �z,

�z Dj−→
{

ej CLICK,

(1−Pj ) �z
‖(1−Pj ) �z ‖ NO CLICK.

(19)

– Beam splitter Bst at the crossing of two paths s and
t implements the following unitary on the corresponding
components of vector �z,

(
zs

zt

)
Bst−→

(
i
√

R
√

T√
T i

√
R

)(
zs

zt

)
. (20)

Additionally, we have the following property of possible
initial preparations of the system [see Eq. (A19) in Appendix
A 3 c].

Observation 1 (Initial preparations). The agent start with
distributions contained in one of the initial classes
[ e1 ] , . . . ,[ eN ], where ej = (0, . . . ,1 , . . . ,0)T has a single
1 in the j th position, indicating the position of the particle
(CLICK) ascertained by the initial preparation.

Combining these facts together provides answers to ques-
tions (i) and (ii) from the operational desideratum discussed
above. Since the family of classes is closed under available
transformations, we infer that an agent with a limited choice of
gates at their command remains confined by their explorations
to a restricted subset of distributions in P(�) given by the
union of all classes, i.e.,

⋃ {
[ �z ] : �z ∈ CN , ‖�z‖ = 1

}
� P(�). (21)

See Fig. 2 (on the left). Note that this set has natural coarse
graining (partitioning) into classes [ �z ], which have the prop-
erty that action of the gates in the model is concisely described
as transformation of the labeling vectors �z −→ �z ′. A crucial
observation is that, on the level of classes, these transformation
rules are exactly the same as for the quantum interfero-

metric gates [compare Eqs. (2)–(4) with Eqs. (17)–(20) in
Theorem 1].3

Such a coarse-grained description is just enough for our
purposes. This is because distributions in the same class [ �z ]
give identical measurement predictions, i.e., the probability
of a CLICK in detector Dj is equal to |zj |2. Moreover, since
classes transform as a whole there is no way for the agent
to differentiate between two distributions in the same class
by arranging any complicated circuit from the gates available
in the model. This permits using the operational indifference
principle to observe that all information relevant for predicting
behavior of a system is held by the class itself, that is knowledge
of a particular distribution in [ �z ] is redundant. This means
that label �z plays the role of an operational state which
encodes complete information available to the agent, thereby
answering question (iii) from the operational desideratum
discussed above. See Fig. 2 for an illustration. Notice that
we obtain a full analogy with the quantum description of the
interferometric circuits given in Sec. II, i.e., we have the same
structure (geometry) of operational states which are complex
vectors (rays) in H = CN with identical transformation and
measurement rules given in Eqs. (2)–(4) and Eqs. (17)–(20),
respectively. All things considered, both descriptions are indis-
tinguishable and hence for all practical purposes we can make
the identification

|ψ〉 equiv� [ �z ] (or �ψ equiv� �z ). (22)

In conclusion, we have the following result.
Corollary 1. An operational account of the model boils

down to specification of the state given by the complex vector
(ray) �z ∈ CN with the transformation rules and the statistics of
outcomes (CLICKS) being the same as for the quantum gates.

This means that for all practical purposes, from the per-
spective of an agent unaware or indifferent to the underlying
ontology, the behavior of quantum interferometric circuits and
their counterparts in the presented model are indistinguishable.

3Note that this is a generic feature of any ontological model
reconstructing quantum theory as discussed in Appendix A 2 b.
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V. DISCUSSION

To summarize, we have constructed a local ontological
model which faithfully imitates quantum predictions for a
single particle in the interferometric circuits. The distinction
between the two levels of description is crucial for the analysis
of the model. On the one hand, we have an ontological
description from an omniscient observer having access to all
details of the model, i.e., seeing the structure of the ontic state
space and being familiar with definitions of the gates. On the
other hand, we have an epistemic description concerned only
with the information which is actually available. The latter
adopts an operational perspective of an agent unaware of the
underlying ontology who investigates the model only with
the tools at hand, i.e., building interferometric circuits and
analyzing experimental results (statistics of CLICKS). We have
shown that the operational predictions of the constructed model
are indistinguishable from the quantum-mechanical behavior.
This illustrates the fact that properly chosen constraints for
gaining knowledge can modify the picture on the epistemic
level. In our case, from the local ontology with a classical
probabilistic description in P(�) we see emergent geometry
of the projective space H = CN and the quantum-mechanical
account of a qudit [46].

This result is an explicit counterexample showing the
impossibility of proving nonlocality for a single particle in
the interferometric setups. For the sake of clarity, we address
the question of (non)locality in a different context than the
Bell-type scenario. The latter is concerned with correlations
between measurements on a pair of quantum particles, whereas
here we are concerned with a single quantum particle interact-
ing with a classical apparatus (free evolution, phase shifters,
beam splitters, and detectors) as described by quantum theory
in H = CN without a tensor product structure [44].

At first sight, our conclusion seems to contradict proofs
claiming nonlocality of a single particle [10–13]. However,
we note that these arguments exploit an additional quantum
resource, namely coherent states whose properties rely on
superposition of multiparticle states. This requires the presence
of other particles in the system making the claim of having a
single-particle character of the considered phenomena open to
question [12]. A similar objection applies to recent demon-
stration of the collapse of the wave function using homodyne
detection [47]. In view of the presented model, these proofs
seem to illustrate the nontrivial aspect of an ‘almost’ classical
resource provided by local oscillators (coherent states), as
compared with ‘clean’ single-particle scenarios considered in
this paper.

The single-particle framework is a rich source of paradoxes
and weird phenomena which are often considered as typically
quantum effects without a classical explanation [14–31]. The
latter assertion should be treated with caution, since any
argument for nonclassicality of an effect always depends on
additional assumptions whose plausibility should be properly
assessed. For example, interaction-free measurements assume
a null effect of negative measurement results [15–17], Leggett-
Garg inequalities require noninvasive measurements [22,23],
pre- and postselection paradoxes rest upon contextual effects
[24,25,48–50], etc. Our model illustrates the nontrivial aspect
of these assumptions and shows that mere local state distur-

bance by detectors ushers in the possibility of a classical-like
explanation of single-particle phenomena. A strong point of the
model is that the presented ontology is made ready for any kind
of circuit with an arbitrary number of paths. As such, it provides
exhaustive reconstruction of single-particle phenomena in a
unified framework as opposed to separate models devised for
simulation of particular effects—cf. [32–42].

Let us remark that in the classification of Harrighan-
Spekkens [45] our construction is ψ-ontic (or more precisely
ψ-supplemented), that is, distributions corresponding to dif-
ferent quantum states have nonoverlapping supports. Another
important feature of the model is that it is not outcome-
deterministic. To see this, we observe that measurement of a
general observable is implemented by first evolving the system
and then registering the outcome by an array of detectors,
exactly in the same way as in the real quantum interferometric
experiments [44]. In the model, it is the first stage where beam
splitters introduce randomness into the measurement outcomes
(detectors respond deterministically to the ontic variables
which are stochastically distributed due to the first preparatory
stage of the measurement procedure). We note that in this way
the model goes beyond the standard Kochen-Specker notion of
contextuality [9,26–31], which assumes outcome-determinism
for every observable (our construction is outcome deterministic
only for measurements in the computational basis). It is
therefore consistent with the results on contextuality in the
ontological model framework [27,28,51], showing that with a
lack of outcome-determinism only preparation and transfor-
mation contextuality is upheld. Clearly, our model allows for
different representations of preparation procedures associated
with the same quantum state (preparation contextuality), where
any distribution p ∈ [ �z ] is a valid representation of the same
state |ψ〉 (with the identification �ψ ��z ). This variety is
necessary to accommodate contextual effects which abound
in the quantum regime [9,26–31].

To give a broader perspective, we hasten to note that there
is only a handful of ontological models which reconstruct a
qudit. One of them is the ψ-ontic model by Beltrametti and
Bugajski [52] which essentially is a restatement of the standard
Copenhagen interpretation (where nonlocality of the collapse
of the wave function is built in from the outset). There is also
an interesting proposal by Lewis-Jennings-Barrett-Rudolph
[53] built within the framework of ψ-epistemic models. It
is explicitly nonlocal and, in addition, violates the so-called
preparation independence principle—the latter seems to be
a generic feature of any successful ψ-epistemic approach—
see Refs. [54,55]. The de Broglie–Bohm interpretation of
quantum mechanics [56,57] which postulates local guidance
of particles by a quantum potential should also be mentioned.
For a single particle quantum potential (directly related to
the wave function) lives in a 3D space, and its dependence
on the configuration of the apparatus is a source of nonlocal
effects. Additionally, the de Broglie–Bohm model has many
weird features, such as a complicated spatial description,
“surrealistic” trajectories [58] or excessive contextual effects
[59], which persist even in the simple interferometric setups
whose relevant degrees of freedom reduce to a qudit. In
summary, all these models have built-in nonlocal effects in
the description and therefore do not make a case against the

012118-6



LOCAL MODEL OF A QUDIT: SINGLE PARTICLE IN … PHYSICAL REVIEW A 98, 012118 (2018)

nonlocality of single-particle interferometry discussed in this
paper.

To conclude, let us quote Jaynes [60] on the current
understanding of quantum-mechanical formalism: “But our
present QM formalism is not purely epistemological; it is a
peculiar mixture describing in part realities of Nature, in part
incomplete human information about Nature—all scrambled
up by Heisenberg and Bohr into an omelette that nobody has
seen how to unscramble. Yet we think that the unscrambling is
a prerequisite for any further advance in basic physical theory.
For, if we cannot separate the subjective and objective aspects
of the formalism, we cannot know what we are talking about; it
is just that simple.” Following this line of thought, our model
is an illustration of the idea that careful distinction between
the epistemic aspect of the description and the underlying on-
tological account provides a way towards understanding weird
quantum phenomena as an effect of incomplete knowledge—
which is tenable, at least for the single-particle framework
as the model demonstrates. This gives support to the belief
that unscrambling the quantum omelette should in principle be
possible, albeit it is not yet evident how to construct such a
theory. It seems that nonlocal effects should play a role in the
full reconstruction—as Bell’s theorem suggests—however, it
is not clear to what extent and in what form (see [61] for some
hints). The presented model points to multiparticle behavior as
the real source of the quantum mystery in comparison to single-
particle phenomena, which are less problematic in this respect.
In particular, we have shown that a single-particle framework
in itself is not enough to establish quantum nonlocality, since
in this case “spooky action at a distance” could be understood
as an epistemic effect due to a lack of knowledge, with the
underlying ontology being local from the construction.

APPENDIX A: METHODOLOGY AND ANALYSIS
OF THE MODEL

Here we take an operational perspective of the interfer-
ometric experiments and recast our model in the so-called
ontological model framework [27,28,45]. Then we construct
certain classes of distributions in P(�) and analyze, in Theo-
rem 2, how they evolve under transformations implemented by
a single step in the interferometric circuit. This result allows
one to characterize distributions available to agents exploring
the model and reveals the geometric pattern of transformations
and measurements which is instrumental for the discussion in
Sec. IV.

1. Interferometric experiment: Operational account

It is convenient to think of an experiment in terms of prepa-
ration, transformation, and measurement procedures which in
the interferometric setups build up in a series of sequential
steps. Accordingly, each experiment starts with some well-
defined initial preparation P in

j which ascertains the presence
of a particle in a given path j = 1, . . . ,N . Then the circuit
implements a sequence of transformations, with each step spec-
ified by the parallel configuration of gates acting in different
paths at the same time as described in Sec. II. See Fig. 3 for
illustration. For the purpose at hand we will characterize each
step by grouping paths with gates of the same kind and define

the respective subsets as

F − paths without gates (empty paths),
D − paths with detectors,
S − paths with phase shifters,
B − pairs of paths crossing on beam splitters.

(A1)

In the following, we refer to each step in the circuit by
specifying parallel configuration of gates by the partition
G ≡ {F ,D,S,B }. In a case when D = ∅, we denote the
corresponding transformation by T G . In a case when there are
one or more detectors in the paths (i.e., D �= ∅), we speak
of a measurement at the given time step and denote it by
MG ≡ {MG

k }, where k ∈ D ∪ {∅} labels possible outcomes
with k ∈ D associated to a CLICK in the respective detector Dk

and k = ∅ standing for the negative measurement result (i.e.,
none of the detectors CLICK).

Clearly, the definition of preparations P extends to any
sequence of transformations T G and measurementsMG which
start from a given initial preparation P in

j . Similarly, general
transformation T is understood as any sequence of transfor-
mations T G , and a general measurement M obtains by first
transforming the system by T and then measuring MG . It
was shown in Ref. [44] that a single-particle interferometric
framework is a practical way of physical realization of a
qudit, i.e., every quantum state |ψ〉, unitary U , and PVM
{�k} in H = CN can be realized as an appropriate preparation
P , transformation T , and measurement M procedure in the
N -path interferometric circuit.

Let us be more specific about each step in the interferometric
circuit. See Fig. 3 for illustration. Quantum theory describes
initial preparation P in

j by vector |j 〉 from the computational
basis |1〉, . . . ,|N〉, and general preparations P are associated
with vectors (rays) |ψ〉 in H = CN—cf. Eq. (1). According
to the definitions of interferometric gates in Eqs. (2)–(4)
transformation T G is described as follows:

|ψ〉 T G−→ |ψ ′〉 =
∏
k∈S

Sk

∏
{s,t}∈B

Bst |ψ〉. (A2)

For a measurement MG ≡ {MG
k }, we have

|ψ〉 MG
k−→ |ψ ′〉 = |k〉, (A3)

if detector Dk CLICKS, which happens with probability equal
to Prob (Dk| ψ) = |ψk|2. Otherwise, in case of negative mea-
surement result denoted by ∅ (i.e., NO CLICK in all detectors
Dk for k ∈ D), we get4

|ψ〉 MG
∅−→ |ψ ′〉 ∼

∏
j∈D

(1 − Pj )
∏
k∈S

Sk

∏
{s,t}∈B

Bst |ψ〉,

(A4)

which happens with probability equal to Prob (∅| ψ) = 1 −∑
k∈D |ψk|2. Above we have used matrix representation of the

4To simplify the notation we use the proportionality symbol “∼”
which expresses the need of subsequent renormalization |ψ ′〉 �
|ψ ′〉/‖|ψ ′〉‖ due to nonunitary projections in the representation of
measurements—cf. Eq. (4).
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Interferometric 
experiment

Operational 
account

Quantum 
description

Ontological 
description

FIG. 3. Operational account of interferometric experiment. A source ascertains the presence of a particle in a given path j = 2. After initial
preparation P in

j the system undergoes a sequence of transformations T G and measurements MG which depend on the composition of gates G
at a given time in the circuit. In the box at the bottom, a schematic illustration of quantum vs ontological model description is given. Quantum
theory describes preparation procedures by state vectors |ψ〉 ∈ CN (with initial preparations associated with vectors in the computational basis),
transformations T G are represented by unitaries U and measurements MG ≡ {MG

k } by PVM’s {�k}, with Born’s rule describing the statistics
of outcomes—see Eqs. (A2)–(A5). The ontological model describes the experiment by evolution of a distribution p ∈ P(�) over the underlying
ontic state space � which starts from some well-defined initial distribution pin

j with transformations T G represented by stochastic mappings ΓT G

and measurements MG ≡ {MG
k } represented by collections of stochastic mappings {ΓMG, k} with outcomes specified by the response functions

ξMG
k —see Eqs. (A7)–(A10).

respective gates in H = CN , which follows from Eqs. (2)–(4),
i.e.,

Pj =

⎛
⎜⎜⎜⎝

0 . . .
1

. . .
0

⎞
⎟⎟⎟⎠, Sk =

⎛
⎜⎜⎜⎝

1 . . .
eiω

. . .
1

⎞
⎟⎟⎟⎠,

Bst =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . .
i
√

R . . .
√

T
...

. . .
...√

T . . . i
√

R
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

where Pj ≡ |j 〉〈j | is a projector on the j th component, Sk

stands for phase shifter Sk which introduces phase eiω in the
kth component leaving the remaining ones unchanged, and Bst

represents beam splitter Bst mixing components {s,t} without
affecting the rest with some real coefficients R and T satisfying
R + T = 1. Clearly, matrices Sj and Bst are unitary.

Any successful model of an interferometric experiment
should have the same operational structure of preparations,
transformations, and measurements encoded in the sequential
design of circuits and recover quantum predictions as described
in Eqs. (A2)–(A4).

2. Ontological model framework: General remarks

In this work we follow the ontological model framework
which recasts hidden variable models in the operational setting
[27,28,45]. It assumes that the system is always in a well-
defined state picked from the underlying ontic state space, i.e.,
λ ∈ �, but due to constraints depending on the specifics of
the model’s preparations, transformations and measurement
procedures are described in probabilistic terms. Accordingly,
in the ontological model each preparation procedure P is
specified by a distribution pP ∈ P(�), where P(�) denotes
the space of probability distributions over �. TransformationT
is represented stochastically by a mapping ΓT : � −→ P(�)
with ΓT (λ)(λ′) describing probability of transition from state λ

to state λ′, i.e., a system prepared in pP after the transformation
is described by pP (λ) −→ p

P ′ (λ
′) = ∫

λ
ΓT (λ)(λ′) p(λ) dλ.

Measurement M ≡ {Mk} is modeled via response functions
ξM
k (λ) of the apparatus to the underlying ontic state, i.e., for a

system described by distribution pP probability of outcome k

is given by Prob (k|P,M) = ∫
�

ξM
k (λ) pP (λ) dλ and after the

measurement the state transforms via the associated stochastic
mapping ΓM,k : � −→ P(�) which depends on the outcome
k.5

5Clearly, a probabilistic framework imposes natural constraints on
the components of the models. We require that for preparations
pP (λ) ≥ 0 and

∫
�

pP (λ) dλ = 1, for transformations ΓT (λ)(λ′) ≥ 0
and

∫
�

ΓT (λ)(λ′) dλ = 1 ∀ λ′, and for measurements ξM
k (λ) ≥ 0 and∑

k ξM
k (λ) = 1 ∀ λ.
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Operational interpretation of a physical theory treats prepa-
rations, transformations, and measurements as primitive ele-
ments. It is merely concerned with specification of probabilities
Prob (k|P,T ,M) of different outcomes k resulting from a
given measurement procedure M ≡ {Mk} for a system pre-
pared according to procedure P and transformation procedure
T without further inquiry about the underlying reality. For
example, quantum theory formulated in operational terms
associates preparations P with kets |ψ〉 in the Hilbert space
H, while transformations T are represented by unitaries
|ψ〉 −→ U |ψ〉 and measurements M ≡ {Mk} are described
by PVMs {�k}. The statistics of outcomes is given by Born’s
rule Prob(k|ψ) = |〈ψ |�k|ψ〉|2 with the von Neumann–Lüders

rule |ψ〉 k−→ �k|ψ〉/‖�k|ψ〉‖ specifying postmeasurement
states—cf. Fig. 3 (at the bottom).

The ontological model framework seeks to explain pre-
dictions of operational theory by postulating the existence
of ontic states λ ∈ � (hidden variables) which mediate be-
tween the consecutive stages of the experiment according
to the prescriptions given above. For example, in the onto-
logical model of quantum theory the statistics of outcomes
which are obtained from the formula Prob(k|P,T ,M) =∫
�

ξM
k (λ′) ΓT (λ)(λ′) pP (λ) dλ dλ′ should reproduce the quan-

tum statistics given by Prob(k|ψ,U,{�k}) = |〈ψ |U †�kU |ψ〉|2
with state |ψ〉, unitary U , and PVM {�k} representing the
respective preparation P , transformation T , and measurement
M procedures—cf. Fig. 3 (at the bottom).

a. Contextuality issue

In the operational formulation of a theory there is a natural
notion of equivalence which groups preparations, transforma-
tions, and measurements into equivalence classes of indis-
tinguishable procedures, i.e., two procedures are equivalent
if their exchange does not change statistical predictions in
any conceivable experiment [27]. This makes the specifics of
equivalent procedures redundant and it is enough to keep the
label of the whole class to derive predictions of the theory. Note
that this is exactly how the quantum theory is laid out: there
are many ways to prepare a system in state |ψ〉, realize unitary
transformation U , or implement a measurement PVM {�k},
and quantum theory only uses the class labels |ψ〉, U , and
{�k} to provide the statistics of outcomes in any experiment.

In the ontological model we can have two situations. If
equivalent procedures are represented in the same way, i.e.,
for preparations by the same distribution pP ∈ P(�), for
transformations by the same stochastic mapping ΓT : � −→
P(�), and for measurements by the same response function
ξM
k (λ), then the model is called noncontextual. Otherwise,

when the representation within the equivalence class varies,
then the model is contextual. One can make a further distinc-
tion between preparation, transformation, and measurement
(non)contextuality if the situation concerns the respective
type of procedure. It has been shown that quantum theory
is preparation and transformation contextual [27,28,51] and
measurement contextual [26,29–31] (with the latter under
additional assumption of outcome-determinism).

b. Generic structure of distributions in P(�)

For the purpose at hand let us look closer into the contextual
structure of preparations and group together distributions

pP associated with equivalent preparation procedures into
separate classes in P(�). Since we are interested in modeling
the quantum theory, in which case equivalent preparations are
represented by states |ψ〉, we will denote the corresponding
class of distributions with the same label ψ in square brackets
and define

[ψ] ≡ {
pP : P is represented by |ψ〉} ⊂ P(�). (A6)

We can make three simple observations which are valid
in every ontological model that are derived from the very
notion of equivalent preparations. First, these classes are
disjoint in P(�), i.e., [ψ] ∩ [ψ ′] �= ∅ ⇔ |ψ〉 �= |ψ ′〉. Second,
these classes transform congruently [ψ] −→ [ψ ′] under any
transformation T or measurement M. This is derived from
the fact that distributions in the same equivalence class corre-
spond to indistinguishable preparations and therefore after any
experimental procedure have to be indistinguishable as well,
i.e., belong to the same class again [ψ] � p

1
, p

2
−→ p′

1
, p′

2
∈

[ψ ′]. Third, since the model reproduces quantum predictions,
the mapping ψ −→ ψ ′ must follow the rules of quantum
theory with the unitaries U and PVMs {�k} associated to the
respective transformations T and measurements M with the
statistics of outcomes for every distribution pP ∈ [ψ] given by
Born’s rule.

This is a generic situation for any ontological model of
quantum theory, i.e., on the level of classes [ψ] ⊂ P(�) the
structure is always the same, no matter what the underlying
ontology is. This comes from the different perspectives taken
by the operational and ontological interpretations of the theory.
Namely, from the operational point of view only the rela-
tions between whole equivalence classes [ψ] are important
(which provides enough information to predict experimental
results), while the ontological account is concerned with the
fine-grained description in terms of distributions in P(�)
(which explain behavior of the system by the properties of
the underlying ontic state λ ∈ �).

We shall take these observations as a clue in the analysis of
the model described in the paper. Namely, by having a well-
defined ontology of the model we will characterize distribu-
tions accessible to agents investigating the model, distinguish
classes of indistinguishable distributions, and analyze their
transformation properties. It should be enough to come up
with the minimal operational account of the model which will
be compared with the quantum description of interferometric
experiments; see Sec. IV.

3. Analysis of the model

We begin with a brief recount of the model presented in the
paper in the ontological model framework. We then distinguish
certain classes of distributions in P(�) which will be used to
characterize the full set of distributions available to agents ex-
ploring the model (i.e., distributions describing general prepa-
ration procedures P which can be prepared in conceivable
experiments), and particularly identify distributions associated
with initial preparation procedures P in

j . Finally, we state our
main result, Theorem 2, concerning transformation properties
of these classes following the evolution implemented at each
step of the interferometric experiment.
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a. Ontological model of interferometric experiments

Let us be more precise concerning the ontological frame-
work for the model described in the paper. Note that our con-
struction is made to exactly mimic the design of interferometric
experiments. That is, each experiment starts from some initial
preparation procedure P in

j which asserts the presence of a
particle (CLICK) in a given path followed by a sequence of
transformations T G and measurementsMG ; see Appendix A 1
and Fig. 3 for illustration. These components determine the op-
erational structure of the model. The ontology postulated in the
model is defined in Eq. (5) and interpreted as a single particle
(with positionq) and fields (characterized by amplitudesuj and
strengths τj ) propagating locally through the circuit. Accord-
ingly, the state of the system at a given time is fully character-
ized by the ontic state λ = (q,�u,�τ ) ∈ �. Definitions of interfer-
ometric gates in Eqs. (7)–(13) are crucial for our construction.
All these gates act locally in the respective paths and combine
into transformations T G and measurements MG implemented
in the consecutive steps of the interferometric experiment.

To be complete, we will write out explicitly in the on-
tological framework the form of transformations T G and
measurements MG implemented by a parallel configuration
of gates G = {F ,D,S,B } corresponding to a single step in the
circuit. For transformation T G (i.e., no detectors D = ∅) we
get deterministic behavior

ΓT G (λ) = δ(q,�u′,�τ ′), (A7)

if q /∈ ⋃
B (i.e., when the particle does not hit any of the

beam splitters), and otherwise due to the stochastic behavior
in Eq. (13), we have

ΓT G (λ) = |u′
s |2

|u′
s |2 + |u′

t |2
δ(s,�u′,�τ ′) + |u′

t |2
|u′

s |2 + |u′
t |2

δ(t,�u′,�τ ′),

(A8)

if q ∈ {s,t} ∈ ⋃
B (i.e., when the particle hits the beam splitter

Bst ). In both cases components of vectors �u′ and �τ ′ are the
same—they are determined by the configuration of gates G
and given by the definitions in Eqs. (7)–(12). For the above
we have used standard notation for the Dirac δ-functions
δλ′(λ) ≡ δ(λ − λ′) ≡ δ(q − q ′) δ(�u − �u′) δ(�τ − �τ ′). Now, for
measurement MG ≡ {MG

k } (i.e., when detectors are present
D �= ∅) response functions associated with the respective
outcomes k ∈ D ∪ {∅} are as follows:

ξMG

k (λ) =
{

1 if q = k,

0 if q �= k,
(A9)

for k ∈ D (associated with CLICK or NO CLICK in detector Dk),
and for the negative measurement result k = ∅ (none of the
detectors CLICK), we have

ξMG

∅
(λ) =

{
1 if q /∈ D,

0 if q ∈ D.
(A10)

Notice that the response functions at a given time step are
deterministic6 and no coincidences in different detectors oc-
cur. Finally, evolution of the system after the measurement

6 However, for the general measurement procedure M the situation
is different. If the system is subject to some transformation T before
the measurement MG , then in general, due to the stochastic character

ΓMG ,k(λ) is described by the same Eqs. (A7) and (A8), where
the dependence on the outcome k is implicit in the description
of the detectors in Eqs. (9) and (10).

Having defined all these components, it is possible using
the standard rules of probability calculus to trace the evolution
of any distribution inP(�) via any complicated circuit one can
think of. In the following, we will be interested in some specific
initial distributions associated with the initial preparation
procedures P in

j which have to be explicitly characterized in
the model. It is convenient to postpone their description until
we will have defined in the next section some special classes
of distributions in P(�); see Appendix A 3 c.

In order to say that the ontological model described in the
paper reconstructs behavior of a single quantum particle in
the interferometric circuit we need to show that the statistics
of outcomes in every conceivable experiment, calculated with
the rules of Eqs. (A7)–(A10), are exactly the same as those
calculated by the rules of quantum theory, Eqs. (A2)–(A4),
for the corresponding gates and initial preparations P in

j . In
other words, this means that on an operational level, i.e.,
disregarding the underlying ontology, predictions of the model
are indistinguishable from the predictions of quantum theory.
Our discussion in the paper is based on the operational
indifference principle desideratum described in Sec. IV A. It
consists in the analysis of a full set of distributions in P(�)
accessible to agents exploring the model (i.e., distributions
describing general preparation procedures P which can be
prepared in conceivable experiments). In the following part
we characterize this set which appears to be composed from
classes of distributions with certain properties, and investigate
its structure under transformations T G and measurements MG

given in Eqs. (A7)–(A10).

b. Classes of interest in P(�)

What is crucial for the analysis of the model is some
distinguished classes of distributions [ �z ] in P(�) labeled
with (normalized) complex vectors �z ∈ CN . Our construction
proceeds in three steps. In Step 1 certain subsets in the ontic
state space � are defined, which are then used in Step 2 as the
supports of auxiliary distributions in P(�). Finally, in Step 3
probabilistic mixtures of the latter will define the distributions
in classes of interest [ �z ] ⊂ P(�). See Fig. 4 for illustration.

Step 1. Let us consider special subsets of the ontic state
space �i

�z ⊂ � labeled by integers i ∈ {1, . . . ,N} and complex
vectors �z ∈ CN defined as follows:

(q,�u,�τ ) ∈ �i
�z

def⇐⇒
⎧⎨
⎩

(a) q = i,

(b) τi = τ > 0,

(c) �τ �u ∼ �z,
(A11)

where �τ �u is a vector obtained from �u by retaining field
amplitudes corresponding to the highest field strength

τ := max {τ1 , . . . ,τN },

of transformations, the response function for such a compound
measurement is probabilistic as well.
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FIG. 4. Construction of classes of interest [�z ] ⊂ P(�). Distributions p ∈ [ �z ] are defined to have support in
⋃N

i=1 �i
�z with cumulative

probability over the respective subsets �i
�z equal to |zi |2, where �z ∈ CN is a normalized vector defined up to the overall phase—see Definition 1

and construction in Steps 1–3. Since all �i
�z are disjoint, distributions in different classes have nonoverlapping supports, e.g., compare p ∈ [ �z ]

and p′ ∈ [ �z ′]. Among all these classes there are a few special ones [ ej ] for j = 1, . . . ,N , which describe initial preparations P in

j with the
particle in a given path.

and the remaining ones equal to zero. Technically, it is
implemented by the diagonal matrix

�τ := diag (δτ1τ , . . . , δτN τ ), (A12)

which picks out those entries of �u which correspond to the
highest strength τ . In our notation, the symbol “∼” stands for
proportionality, i.e., �z ∼ �z ′ iff �z = α �z ′ for some α ∈ C, α �=
0. In plain words, these conditions express the following
requirements:

(a) the particle is present in the ith path,
(b) the field in the ith path has maximal strength (nonvani-

shing, possibly equal to strengths in other paths), and
(c) the vector of field amplitudes with highest strengths �τ �u

is proportional to �z.
Clearly, for different labels i and �z (up to proportionality)

these subsets are disjoint, i.e., we have

�i
�z ∩ �

j

�z ′ �= ∅ ⇔ i = j and �z ∼ �z ′, (A13)

and �i
�z = �i

�z ′ for �z ∼ �z ′.
Step 2. Then, we introduce auxiliary classes of probability

distributions with support in �i
�z and denote

[ �z ]i := {
p ∈ P(�) : supp p ⊂ �i

�z
} ⊂ P(�). (A14)

By virtue of Eq. (A13) these classes form a disjoint family of
subsets in P(�), i.e., we have

[ �z ]i ∩ [ �z ′]j �= ∅ ⇔ i = j and �z ∼ �z ′, (A15)

and [ �z ]i = [ �z ′]i for �z ∼ �z ′.
Step 3. Now, we are ready to define classes of distributions

which play a central role in our analysis of the model.
Definition 1. With each normalized vector �z ∈ CN , such

that ‖�z‖ := ∑N
i=1 |zi |2 = 1, we associate the following class

of probability distributions:

[ �z ] :=
{ N∑

i=1

|zi |2 pi : pi ∈ [ �z ]i

}
⊂ P(�). (A16)

See Fig. 4 for illustration. This means that distributions in
[ �z ] have support in

⋃N
i=1 �i

�z with cumulative probability over

the respective subsets �i
�z equal to |zi |2 (otherwise the shape of

distributions are arbitrary). Another way to characterize classes
of interest is to write [ �z ] = ∑N

i=1 |zi |2 [ �z ]i , which means that
its elements are convex combinations of distributions in [ �z ]i’s
with weights |zi |2. As a consequence of Eq. (A15) we observe
that such defined classes are disjoint subsets in P(�), i.e., we
have

[ �z ] ∩ [ �z ′] �= ∅ ⇔ �z ∼ �z ′, (A17)

and [ �z ] = [ �z ′] for �z ∼ �z ′.

c. Initial preparations

Any prediction of experimental behavior rests upon knowl-
edge of initial preparation of the system. In general, it is
an intrinsic characteristic of the source which provides an
ensemble of systems with a given distribution of the ontic
states. However, if no information about the source is available,
then the agent who is given some unknown (possibly random)
source must prepare initial ensembles of the systems on their
own. Here is a generic scheme of how to proceed in such a case.

Since we are interested in single-particle scenarios, first
the presence of a single particle (CLICK) in the system
should be verified. This property can be confirmed by siev-
ing an unknown ensemble through the array of detectors
D1,D2, . . . ,DN placed in each path and retaining only those
cases when a single detection occurred. In this way the agent
carries out an effective initial preparation P in

j which attests
to the presence of a single particle (CLICK) in a given path
j = 1, . . . ,N . Note that, on the ontological level, selection
of events with a single CLICK in detector Dj results in an
ensemble distributed over the ontic states (q,�u,�τ ) ∈ � subject
to the following conditions:

q = j, uj = 1, τj = 1,

uk = ?, τ k = 0, for k �= j,
(A18)

where uk’s depend on the unknown source; see Eqs. (9) and
(10). A quick look at definitions in Eqs. (A11), (A14), and
(A16) reveals that such distributions have support in �

j
ej

, and
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hence are included in class

[ ej ] ⊂ P(�) (if Dj CLICKS), (A19)

where ej = (0, . . . ,1, . . . ,0)T has a single 1 in the j th po-
sition. In conclusion, the agent starts in one of the classes
[ e1 ] , . . . ,[ eN ], which correspond to the initial preparation
of the system with a single particle (CLICK) in a given path. It
is the content of Observation 1 is Sec. IV B.7

d. Operational account of the model: Geometry of classes

It appears that the structure of classes [ �z ] ⊂ P(�) given
in Definition 1, Eq. (A16), is closed under transformations
(circuits) considered in the model. Here is the key result
describing behavior of these classes under action of the gates
for any transformation T G and measurement MG as defined
by Eqs. (A7)–(A10). See Fig. 2 for illustration.

Theorem 2. Parallel configuration of gates G acts con-
gruently on the family of classes

{
[ �z ] ⊂ P(�) : �z ∈ CN,

‖�z‖ = 1
}

defined in Eq. (A16). This means that each class
transforms as a whole with all distributions in a given class
mapping into distributions in some other class

[ �z ] � p −→ p′ ∈ [ �z ′ ], (A20)

where the mapping �z −→ �z ′ depends on the configuration of
gates G ≡ {F ,D,S,B } and measurement outcomes (CLICKS).
It is specified by the following rules.

– For the system described by a distribution in class [ �z ]
detector Dj CLICKS with probability

Prob (Dj | �z ) = |zj |2 , (A21)

and conditioning (postselecting) on a CLICK in Dj leaves
the system in a state described by a distribution p′ ∈ [ ej ],
i.e.,

�z Dj−→ �z ′ = ej (CLICK). (A22)

With each run of the experiment, either one of the
detectors CLICK or all detectors remain silent (negative
measurement result), with the latter happening with
probability Prob (∅| �z ) = 1 − ∑

j∈D |zj |2.
– In the case of a negative measurement result (NO CLICK

in all detectors Dj for j ∈ D) or no measurement at
all (no detectors D = ∅) transformation implemented
by the gates is given by

�z −→ �z ′ ∼
∏
j∈D

(1 − Pj )
∏
k∈S

Sk

∏
{s,t}∈B

Bst �z, (A23)

with the order of matrices in the product being irrelevant.8

7 In the above we have assumed no prior knowledge of the source
and hence the need of initial filtering of the unknown ensemble. We
note that it could have been bypassed if the agent was granted access
to a single-particle source with all paths blocked except one (as is
usually assumed in the quantum scenarios). This can be easily realized
within the model by postulating that the source injects particles (with
nonvanishing amplitudes and strengths) into a given path and the
blocks remove particles, resetting the strength of the field to zero. It
can be observed that it boils down to preparation of distributions in
one of the classes in Eq. (A19) again.

8 Due to nonunitary projections, the length of �z ′ in Eq. (A23) may
be less than 1. Hence the proportionality symbol “∼” expresses the

It is straightforward to convince oneself that Theorem 1 of
Sec. IV B follows from Theorem 2. Both are in fact equivalent,
with the latter being a more rigorous version for parallel config-
urations of gates G formulated in the operational framework
for interferometric experiments. The proof of Theorem 2 is
given in Appendix B.

APPENDIX B: PROOFS

In the following we prove our main result Theorem 2 stated
in Appendix A about transformation properties of classes
[ �z ] ⊂ P(�) implemented by a single step in the circuit.
Note that classes [ �z ] are defined in Eq. (A16) as convex
combinations of distributions from auxiliary classes [ �z ]i with
supports in subsets �i

�z [see Eqs. (A11) and (A14)]. It is thus
natural to look first at the evolution of distributions in auxiliary
classes [ �z ]i and in particular their supports �i

�z . We give such a
description in Lemma 1. Then, by linearity of transformations,
we shall extend this result to arbitrary distributions in [ �z ]
concluding with the proof of Theorem 2.

Remark. Recall that gates defined in the model act locally
in the respective path of the circuit with the interaction
between the paths allowed only on the beam splitters. All the
gates are deterministic apart from the beam splitters which
introduce a stochastic component into the evolution. Each step
in the circuit is defined by the parallel configurations of gates
G ≡ {F ,D,S,B } whose individual (local) action is given in
Eqs. (7)–(13). Joint action of the gates in the respective paths
combines into the evolution of the whole ontic state space �

as discussed in Appendix A 3 a; see Eqs. (A7)–(A10).
Remark. In the proofs, we consider N to be fixed and

assume all complex vectors �z = ∑
j zj ej ∈ CN to be normal-

ized, i.e., ‖�z‖ = ∑
j |zj |2 = 1.

1. Helpful Lemma

We begin with a technical lemma describing transformation
of distributions in auxiliary classes [ �z ]i ⊂ P(�) defined in
Eq. (A14) implemented by a single step in the circuit. See
Fig. 5 for illustration.

Lemma 1. Suppose that the system is described by a dis-
tribution p ∈ [ �z ]i . Then, the parallel configuration of gates
specified by G ≡ {F ,D,S,B } implements a transformation
with the following properties.

– If there is a detector placed in the ith path (i.e., when
i ∈ D), then Di CLICKS with certainty and afterwards
the system is described by the distribution p′ ∈ [ ei ]i ,
i.e., we get

[ �z ]i � p
Di−→ p′ ∈ [ ei ]i (CLICK), (B1)

and all other detectors Dj with j �= i remain silent.
– If there is no detector in the ith path (i.e., when i /∈ D),

then none of the detectors CLICK and afterwards the
system is described by a distribution p′ characterized by

need for subsequent renormalization �z ′ � �z ′
/‖�z ′‖ [cf. analogous issue

in the description of quantum measurement in Eq. (4)].
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FIG. 5. Evolution of distributions in auxiliary classes [ �z ]i ⊂ P(�). Distributions p ∈ [ �z ]i are defined to have support in �i
�z and their

evolution p −→ p′ depends on the composition of gates G ≡ {F,D,S,B }. If there is a detector in the ith path (i.e., for i ∈ D), then it CLICKS

and afterwards p′ ∈ [ ei ]i (at the top left). In the remaining cases (i.e., for i /∈ D) all the detectors remain silent and the evolution is as follows.
If the ith path does not go into a beam splitter (i.e., for i /∈ ⋃

B), then we get p′ ∈ [ �z ′ ]i . Otherwise, if the ith path goes into the beam splitter
Bst (i.e., for i ∈ {s,t} ∈ B), then distribution p evolves into a mixture of distributions p′

s ∈ [ �z ′ ]s and p′
t ∈ [ �z ′ ]t , which is weighted with

probabilities proportional to |z′
s |2 and |z′

t |2.

vector8

�z ′ ∼
∏
j∈D

(1 − Pj )
∏
k∈S

Sk

∏
{s,t}∈B

Bst �z, (B2)

with the following two cases.
- In the case when the ith path does not go into a beam

splitter (i.e., when i /∈ ⋃
B), then we get

[ �z ]i � p −→ p′ ∈ [ �z ′ ]i . (B3)

- Otherwise, if the ith path goes into the beam splitter
Bst (i.e., when i ∈ {s,t} ∈ B), then

[ �z ]i � p −→ p′ = |z′
s |2

|z′
s |2 + |z′

t |2
p′

s

+ |z′
t |2

|z′
s |2 + |z′

t |2
p′

t , (B4)

with distributions p′
s ∈ [ �z ′]s and p′

t ∈ [ �z ′]t . It holds
for |z′

s |2 + |z′
t |2 �= 0.

Proof of Lemma 1. Throughout the proof we take p ∈
[ �z ]i . From the definition of Eq. (A14), the ontic state (q,�u,�τ ) ∈
� of the system described by distribution p is certainly in the
subset �i

�z ⊂ � , meaning that it satisfies three conditions of
Eq. (A11),

(a) q = i, (b) τi = τ > 0, (c) �τ �u ∼ �z, (B5)

where

τ := max {τ1, . . . ,τN }, (B6)

�τ := diag (δτ1τ , . . . ,δτN τ ). (B7)

In the following we seek the form of distribution p′ obtained
from p as a result of transformation implemented by the
parallel configuration of gates G ≡ {F ,D,S,B }. Our strategy
is to take an ontic state in support of p, i.e., satisfying

conditions in Eq. (B5), and check its properties after the
transformation. This provides knowledge about the support of
distribution p′ which compared with conditions in Eqs. (A11)
and (A14) will prove the result.

First part: Eq. (B1) (Case i ∈ D). We begin by noting
that Prob(q = i) = 1 and Prob(q �= i) = 0. This means that
detector Di placed in the ith path CLICKS with certainty and
detectors in other paths Dj with j �= i remain silent (since
by definition detectors react only to the particle present in the
respective path). Moreover, after detection the particle remains
in the same path

q −→ q ′ = q = i. (B8)

Second, along with a CLICK, detector Di modifies the
amplitude and strength of the field in the ith path as described
by Eqs. (9) and (10), i.e., we get

ui −→ u′
i = 1, τi −→ τ ′

i = 1. (B9)

Third, a quick look at Eqs. (7)–(12) reveals that the strength
of the fields in other paths decreases, which entails that τm −→
τ ′
m < 1 for m �= i. Together with the previous equation it gives

τ ′ := max {τ ′
1, . . . ,τ

′
n} = 1 = τ ′

i , (B10)

and hence after the transformation we obtain �τ ′ :=
diag (δτ ′

1τ
′ , . . . , δτ ′

N τ ′) = diag (0 , . . . ,1 , . . . 0) with a single 1
in the ith place. This gives the identity

�τ ′ �u′ = ei . (B11)

Putting all this together, we infer that for any configuration
of gates with Di in the ith path (i.e., for i ∈ D) after the
transformation the system is left in the ontic state (q ′,�u′,�τ ′)
satisfying the conditions

(a) q ′ = i, (b) τ ′
i = τ ′ > 0, (c) �τ ′ �u′ ∼ ei . (B12)
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In consequence, any distribution p ∈ [ �z ]i is transformed into a
distribution p′ ∈ [ ei ]i [see Eqs. (A11) and (A14)]. This proves
the first part of Lemma 1, Eq. (B1).

Second part: Eqs. (B2)–(B4) (Case i /∈ D). We look at the
second part of Lemma 1 when there is no detector in the ith
path (i.e., i /∈ D). Clearly, in this situation all detectors remain
silent (NO CLICK), since the particle is in the ith path (i.e.,
q = i /∈ D).

Let us begin by writing explicitly how the strength of the
field changes in each path for a given configuration of gates
G ≡ {F ,D,S,B }. From Eqs. (7)–(12) we have

τl −→ τ ′
l = τl/2 for l ∈ F , (B13)

τk −→ τ ′
k = τk/2 for k ∈ S, (B14)

τj −→ τ ′
j = 0 for j ∈ D, (B15)

τr −→ τ ′
r = τ (st)

/2 for r ∈ {s,t} ∈ B, (B16)

where τ (st) := max {τs,τt }. Along with the defining condition
τi = τ in Eq. (B5) and Eq. (B6), it entails that τ ′

m ≤ τ/2 for
all paths m = 1, . . . ,N . Furthermore, it follows that τ ′

i = τi/2

(since i /∈ D and in case i ∈ {r,s} ∈ B we have τ (st) = τi).
Therefore, we get

τ ′ := max {τ ′
1, . . . ,τ

′
N } = τ ′

i = τ/2 > 0. (B17)

This fact, together with Eqs. (B13)–(B16), will be used in
the following analysis to compare �τ ′ :=diag (δτ ′

1τ
′ , . . . ,δτ ′

N τ ′)
with �τ of Eq. (B7).

Next, we investigate transformation properties of the vector
of field amplitudes �u. Since action of each gate is limited to
the path(s) it is attached to, the effect of each separate gate can
be written in the following way [see Eqs. (7) and (12)]:

�u f ree−→ �u′ = �u, (B18)

�u Sk−→ �u′ = Sk �u, (B19)

�u Dj−→ �u′ = �u, (B20)

�u Bst−→ �u′ = Bst �(st)
τ �u, (B21)

where

�(st)
τ := diag (1, . . . ,δτsτ (st) , . . . ,δτt τ (st) , . . . ,1), (B22)

with all 1’s on the diagonal except entries s and t which
depend on τ (st) := max {τs ,τt }. Recall that we consider the
case q = i /∈ D, and hence for all j ∈ D we have q �= j ,
which explains the trivial action of the detectors in Eq. (B20).
Taking all this together, joint transformation implemented by
a parallel configuration of gates F , D, S , and B boils down to
the product

�u −→ �u′ =
∏
k∈S

Sk

∏
{s,t}∈B

Bst �(st)
τ �u. (B23)

Now, we will justify the following matrix identity:

�τ ′

( ∏
k∈S

Sk

∏
{s,t}∈B

Bst �(st)
τ

)
︸ ︷︷ ︸

L

=
( ∏

j∈D
(1 − Pj )

∏
k∈S

Sk

∏
{s,t}∈B

Bst

)
�τ

︸ ︷︷ ︸
R

, (B24)

where �τ ′ :=diag (δτ ′
1τ

′, . . . ,δτ ′
Nτ ′). For proof, we observe that

on both sides all matrices in the products are diagonal except
for matrices Bst with 2 × 2 blocks acting in entries {s,t}
(without overlap for differentBst ). Therefore, we have the same
block-diagonal structure of the matrix both on the left (L) and
on the right (R) hand side, which consists of 1 × 1 blocks
in entries l ∈ F , j ∈ D, k ∈ S and 2 × 2 blocks in entries
{s,t} ∈ B. Thus it is enough to verify each block separately
in the identity. For 1 × 1 blocks, in the respective entries we
have

Lll = δτ ′
l τ

′ · 1
(B13)
(B17)= 1 · δτlτ = Rll , (B25)

Lkk = δτ ′
kτ

′ · (Sk)kk

(B14)
(B17)= (Sk)kk · δτkτ = Rkk, (B26)

Ljj = δτ ′
j τ

′ · 1
(B15)
(B17)= 0

(A5)= 0 · δτj τ = Rjj . (B27)

For 2 × 2 blocks, in the subspace restricted to the respective
entries {r,s} ∈ B, we have

L{s,t} =
(

δτ ′
s τ

′ 0
0 δτ ′

t τ
′

)(
i
√

R
√

T√
T i

√
R

)(
δτsτ (st) 0

0 δτt τ (st)

)
(B28)

and

R{s,t} =
(

i
√

R
√

T√
T i

√
R

)(
δτsτ 0
0 δτt τ

)
. (B29)

In order to show L{s,t} = R{s,t} we use Eqs. (B16) and (B17)
to check the following three cases.

Case τs ,τt < τ . We have τ ′
s = τ ′

t = τ (st)
/2 < τ/2 = τ ′, and

hence

L{s,t} = 0 = R{s,t}. (B30)

Case τs = τt = τ . We have τ ′
s = τ ′

t = τ (st)
/2 = τ/2 = τ ′,

which gives

L{s,t} =
(

i
√

R
√

T√
T i

√
R

)
= R{s,t}. (B31)

Case τs < τt = τ . We have τ ′
s = τ ′

t = τ (st)
/2 = τ/2 = τ ′, and

consequently

L{s,t} =
(

i
√

R
√

T√
T i

√
R

)(
0 0
0 1

)
= R{s,t}. (B32)

(For the case τt < τs = τ similar reasoning holds.)
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Having verified the identity in Eq. (B24) we can write

�τ ′ �u′
(B23)
(B24)=

( ∏
j∈D

(1 − Pj )
∏
k∈S

Sk

∏
{s,t}∈B

Bst

)
�τ �u

(B5)∼
∏
j∈D

(1 − Pj )
∏
k∈S

Sk

∏
{s,t}∈B

Bst �z , (B33)

which proves that after transformation the following condition
holds:

(c) �τ ′ �u′ ∼ �z ′, (B34)

with vector �z ′ given in Eq. (B2).
Finally, let us check the position of the particle after the

transformation if we know that at the beginning it is in path
q = i. Clearly, change of the path is possible only on a beam
splitter and hence we have two cases.

Case 1. If the ith path does not go into a beam splitter (i.e.,
for i /∈ ⋃

B), then the particle remains in the path q −→ q ′ =
q = i. Hence, together with Eq. (B17), we get

(a) q ′ = i, (b) τ ′
i = τ ′ > 0. (B35)

A quick comparison of Eqs. (B34) and (B35) with definitions
in Eqs. (A11) and (A14) reveals that, in that case, distribution
p ∈ [ �z ]i becomes transformed into a distribution with support
in �i

�z ′ , meaning that p′ ∈ [ �z ′]i . This proves Eq. (B3) with
vector �z ′ given in Eq. (B2).

Case 2. Otherwise, if the ith path crosses with another path
on the beam splitterBst , i.e., for i ∈ {s,t} ∈ B, then the particle
may change its position either to path s or t with the respective
probabilities specified by Eq. (13), i.e., we get

q −→
⎧⎨
⎩q ′ = s with probability |u′

s |2
|u′

s |2+|u′
t |2 ,

q ′ = t with probability |u′
t |2

|u′
s |2+|u′

t |2 .
(B36)

Let us note that in this case Eqs. (B16) and (B17) entail that

(b) τ ′
s = τ ′

t = τ ′ > 0. (B37)

Specifically, this means that �τ ′ restricted to entries {s,t}
equals the identity. Therefore, from Eq. (B34) we have(

u′
s

u′
t

)
∼

(
z′
s

z′
t

)
, (B38)

which allows one to replace u’s with z’s in Eqs. (B36) whenever
|z′

s |2 + |z′
t |2 �= 0. We thus obtain

(a)

⎧⎨
⎩q ′ = s with probability |z′

s |2
|z′

s |2+|z′
t |2 ,

q ′ = t with probability |z′
t |2

|z′
s |2+|z′

t |2 .
(B39)

This result, along with Eqs. (B34) and (B37), should be
compared with definitions in Eqs. (A11) and (A14). We can
conclude that, in the case of the beam splitter placed in
the ith path, the system initially described by distribution
p ∈ [ �z ]i after the transformation has support in �s

�z ′ ∪ �t
�z ′

with cumulative probability over the respective sets given
by Eq. (B39). In other words, the system is described by a
probabilistic mixture

p′ = |z′
s |2

|z′
s |2 + |z′

t |2
p′

s + |z′
t |2

|z′
s |2 + |z′

t |2
p′

t , (B40)

with p′
s ∈ [ �z ′]s and p′

t ∈ [ �z ′]t , which proves Eq. (B4) with
vector �z ′ given in Eq. (B2). �

2. Proof of Theorem 2

Now, we are ready to prove our main result.
Proof of Theorem 2. Let us consider a situation where the

system is described by a distribution p ∈ [ �z ]. Recall that
Definition 1, Eq. (A16) specifies distributions in [ �z ] as convex
combinations of distributions in auxiliary classes pi ∈ [ �z ]i ,
i.e., we have

p =
N∑

i=1

pi pi , (B41)

with

pi = |zi |2, supp pi ⊂ �i
�z. (B42)

Clearly, since �z is normalized we have
∑

i pi = ‖�z‖2 = 1.
In the following we are interested in the shape of distribution

p′ which is obtained from p because of transformation via the
parallel configuration of gates G ≡ {F ,D,S,B }. For proof
of Theorem 2 we will find convex decomposition of p′ =∑

i p′
i p′

i into a mixture of distributions p′
i ∈ [ �z ′ ]i and then

compare it with Definition 1, Eq. (A16).
We begin with two simple observations about distribution

p in Eq. (B41). Since distributions pi have disjoint supports,
see Eq. (A13), and q = i only for the ontic state (q,�u,�τ ) ∈ �

in support of pi , then we have

Prob (q = i) = pi, (B43)

Prob (q,�u,�τ | q = i) = pi(q,�u,�τ ). (B44)

Furthermore, the sum in Eq. (B41) can be split into four groups
by collecting together the terms associated with the same kind
of gate attached to the relevant path, i.e.,

p =
∑
l∈F

pl pl+
∑
j∈D

pj pj +
∑
k∈S

pk pk+
∑

r∈⋃
B
pr pr , (B45)

since F ,D,S,
⋃

B partition the set of all paths labeled with
{1, . . . ,N}.

Throughout the proof we will use the following auxiliary
notation:

�w′ :=
∏
j∈D

(1 − Pj )
∏
k∈S

Sk

∏
{s,t}∈B

Bst �z , (B46)

which relates to vector �z ′ in Eqs. (A23) and (B2) as follows:

�z ′ = �w′
/‖ �w′‖. (B47)

Recall that in both Theorem 2 and Lemma 1 we use the
convention in which vector �z ′ is normalized.8

First part: Eqs. (A21) and (A22). Because detectors react
only to particles in a given path we get that detector Dj CLICKS

if and only if q = j . From Eqs. (B42) and (B43) it happens
with probability

Prob (Dj | �z) = Prob (q = j ) = |zj |2. (B48)

Note that because the system is always in a well-defined
ontic state (which means that the position of the particle is
definite), simultaneous detection in different detectors at the
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same time (i.e., more than one CLICK) is impossible. Moreover,
a negative outcome in all detectors NO CLICK occurs only if
q /∈ D, which happens with probability equal to Prob (∅| �z ) =
1 − ∑

j∈D Prob (q = j ) = 1 − ∑
j∈D |zj |2.

To conclude, we observe that a CLICK in detector Dj

provides additional knowledge that q = j . This entails up-
date of the initial probability distribution p to the condi-
tional distribution pj ∈ [ �z ]j given in Eq. (B44). Then from
Lemma 1, Eq. (B1) we infer that after detection (i.e., postse-
lection on a CLICK in detector Dj ) the system is described by
a distribution p′ ∈ [ ej ]j . Since in this case from Definition 1,
Eq. (A16) we have [ ej ]j = [ ej ], then

[ �z ] � p
Dj−→ p′ ∈ [ ej ] (CLICK). (B49)

This proves the first part of Theorem 2, Eqs. (A21) and (A22).
Second part: Eq. (A23). Now we consider a case when

none of the detectors CLICKS (i.e., q /∈ D) or there are no
detectors at all (i.e., D = ∅). Observe that since distributions
pi ∈ [ �z ]i in Eq. (B45) are supported in �i

�z (for which q = i),
then additional knowledge of q /∈ D entails an update of the
initial probability distribution p to the following form:

p −→ p̃ =
∑
l∈F

p̃l pl +
∑
k∈S

p̃k pk +
∑

r∈⋃
B
p̃r pr , (B50)

where we have used renormalized coefficients,

p̃i = pi∑
j /∈D pj

(B42)= |zi |2∑
j /∈D |zj |2 , (B51)

for i ∈ F ∪ S ∪ ⋃
B. It will be convenient to rewrite the last

sum more explicitly as

p̃ =
∑
l∈F

p̃l pl +
∑
k∈S

p̃k pk +
∑

{s,t}∈B
(p̃s ps + p̃t pt ). (B52)

In the following we are interested in the transformation
of p̃ under action of the parallel configuration of gates G ≡
{F ,D,S,B }. Since supports of distributions pi are disjoint,
we can simplify our task by individually analyzing each term
in Eq. (B52) and then collecting together all the results.

From Lemma 1, Eq. (B3) for l ∈ F and k ∈ S , we get

p̃l pl −→ p̃l p′
l ,

p̃k pk −→ p̃k p′
k,

(B53)

where p′
l ∈ [ �z ′]l and p′

k ∈ [ �z ′]k with label �z ′ given in
Eq. (B2). As for the coefficients p̃i defined in Eq. (B51), we
observe that∑

j /∈D
|zj |2 =

∥∥∥∥ ∏
j∈D

(1 − Pj ) �z
∥∥∥∥2

=
∥∥∥∥ ∏

k∈S
Sk

∏
{s,t}∈B

Bst

∏
j∈D

(1 − Pj ) �z
∥∥∥∥2

(B46)= ‖ �w′‖2, (B54)

where the first equality comes from the definition of projectors
Pj , the second is due to preservation of the norm under unitary∏

k∈S Sk

∏
{s,t}∈B Bst , and the third draws on commutativity

of all factors in the product (matrices are either diagonal or

block-diagonal with nonoverlapping blocks). Now, because of
the fact that the product in Eq. (B46) consists of factors acting
separately in the respective components, we have

w′
l = zl for l ∈ F ,

|w′
k| = |zk| for k ∈ S.

(B55)

Substitution of Eqs. (B54) and (B55) into Eq. (B51), gives

p̃l = |w′
l|2

‖ �w′‖2

(B47)= |z′
l|2 =: p′

l ,

p̃k = |w′
k|2

‖ �w′‖2

(B47)= |z′
k|2 =: p′

k. (B56)

Therefore, for the first two sums in Eq. (B52), we get∑
l∈F

p̃l pl +
∑
k∈S

p̃k pk −→
∑
l∈F

p′
l p′

l +
∑
k∈S

p′
k p′

k. (B57)

Now, we proceed to the analysis of terms in the last sum
in Eq. (B52). From Lemma 1, Eq. (B4), we obtain (note that
we are interested in the case when p̃s + p̃t �= 0, which entails
|z′

s |2 + |z′
t |2 �= 0)

p̃s ps + p̃t pt −→ p̃s

( |z′
s |2

|z′
s |2 + |z′

t |2
q ′

s + |z′
t |2

|z′
s |2 + |z′

t |2
q ′

t

)

+ p̃t

( |z′
s |2

|z′
s |2 + |z′

t |2
r ′
s + |z′

t |2
|z′

s |2 + |z′
t |2

r ′
t

)
,

(B58)

with q ′
s ,r

′
s ∈ [ �z ′]s and q ′

t ,r
′
t ∈ [ �z ′]t and the label �z ′ given by

formula (B2). By regrouping terms on the right side, we get

p̃s ps + p̃t pt −→ |z′
s |2

|z′
s |2 + |z′

t |2
(p̃sq ′

s + p̃t r ′
s)

+ |z′
t |2

|z′
s |2 + |z′

t |2
(p̃sq ′

t + p̃t r ′
t ), (B59)

and observe that

p′
s := p̃sq ′

s + p̃t r ′
s

p̃s + p̃t

, p′
t := p̃sq ′

t + p̃t r ′
t

p̃s + p̃t

(B60)

are properly normalized distributions with the property that
p′

s ∈ [ �z ′]s and p′
t ∈ [ �z ′]t . Therefore, Eq. (B58) can be rewrit-

ten in the form

p̃s ps + p̃t pt −→ |z′
s |2(p̃s + p̃t )

|z′
s |2 + |z′

t |2
p′

s + |z′
t |2(p̃s + p̃t )

|z′
s |2 + |z′

t |2
p′

t .

(B61)

A closer look at the first coefficient reveals that

|z′
s |2(p̃s + p̃t )

|z′
s |2 + |z′

t |2
(B51)= |z′

s |2∑
j /∈D |zj |2

|zs |2 + |zt |2
|z′

s |2 + |z′
t |2

(B47)
(B54)= |w′

s |2
‖ �w′‖2

|zs |2 + |zt |2
|w′

s |2 + |w′
t |2

= |w′
s |2

‖ �w′‖2

(B47)= |z′
s |2 =: p′

s , (B62)

where in the penultimate equality the last fraction cancels out.
The latter is due to the fact that the only nontrivial action on
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components {s,t} in Eq. (B46) comes from the matrix Bst ,
which gives (

w′
s

w′
t

)
=

(
i
√

R
√

T√
T i

√
R

)(
zs

zt

)
, (B63)

and since it is a unitary transform it preserves the norm |w′
s |2 +

|w′
t |2 = |zs |2 + |zt |2. Clearly, the same reasoning applies to the

second term in Eq. (B61), which equals to

|z′
t |2(p̃s + p̃t )

|z′
s |2 + |z′

t |2
= |z′

t |2 =: p′
t . (B64)

Hence, for the last sum in Eq. (B52), we get∑
{s,t}∈B

(p̃s ps + p̃t pt ) −→
∑

{s,t}∈B
(p′

s p′
s + p′

t p′
t ). (B65)

Having analyzed all terms in Eq. (B52) we use results from
Eqs. (B56), (B57), (B62), (B64), and (B65), which together
with Eq. (B50) provide the following decomposition:

p −→ p′ =
N∑

i=1

p′
i p′

i , (B66)

where p′
i ∈ [ �z ′]i and p′

i = |z′
i |2 with vector �z ′ given in

Eq. (B2). (Clearly, for i ∈ D we have p′
i = |z′

i |2 = 0.) By
comparing with Definition 1, Eq. (A16), we can determine
that

[ �z ] � p −→ p′ ∈ [ �z ′], (B67)

which concludes the proof of the second part of Theorem 2,
Eq. (A23). �
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