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Quantum measurement can be strong or weak, the former being important in readout and initialization of
quantum objects and the latter being useful for monitoring and maneuvering quantum evolution. However, the
boundary between weak and strong measurement is unclear. Here we show that a phase transition occurs in
sequential quantum measurement, which unambiguously separates the weak and strong measurement by a critical
value of measurement strength or duration. We formulate the probability distribution of the output of a sequence
of quantum measurements as the Boltzmann distribution of an interacting spin model. The measurement results
present phase transitions similar to those in the spin model. In particular the sequential commuting positive
operator-valued measurement is mapped to a long-range Ising model, and a projective measurement emerges
from sequential weak measurements when the strength or the number of measurements becomes above certain
critical values, corresponding to the ferromagnetic phase transition of the spin model. This finding sheds insights
on sequential quantum measurement, and also provides the theoretical foundation for constructing projective
measurements from sequential weak measurements, which have applications in steering the quantum evolution
and initializing quantum systems where strong measurement in a single shot is often not possible.

DOI: 10.1103/PhysRevA.98.012117

I. INTRODUCTION

Quantum measurement is fundamental to quantum mechan-
ics [1–5]. It is also important in quantum technologies includ-
ing quantum computing [6], quantum communication [7], and
quantum sensing [8]. The projective measurements are the
most commonly considered [6]. Generally the measurement
can be the positive operator-valued measurements (POVMs)
[6], including both projective measurements and weak mea-
surements with variable measurement strength. The strong,
projective measurement is useful for readout and initialization
of quantum objects [9–13]; the weak measurement has been
exploited for monitoring [14–21] and maneuvering quantum
evolution [22,23]. In many realistic cases, such as in measuring
weakly coupled nuclear spin qubits, the measurement has to be
weak and sequential or continuous measurements are needed
to determine the qubit state definitely [24,25]. Continuous
quantum measurements have been studied by random walks
in state space [26], quantum Bayesian approach [27], and
stochastic path-integral formalism [28,29]. It was theoretically
discovered that the qubit dynamics may be fundamentally
altered by sequential weak measurement, with a phase tran-
sition between coherent oscillation and quantum Zeno effect
[30]. The boundary between weak and strong measurement,
however, is vague.

In this paper, we discover a phase transition between weak
and strong measurement, separated by a critical measurement
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strength for a given time of continuous measurement or a
critical measurement time for a given measurement strength.
This phase transition is made explicit by the analog between
the probabilities of sequential measurement outputs and ther-
modynamic distributions of interacting spin models [31–38].
We find that for m sequential measurements on a two-level
system (TLS) [4,39–42] the sequential binary results have a
probability distribution equivalent to the Boltzmann distribu-
tion of a classical spin model, with each measurement result
representing a spin 1/2. Here the number of measurements
m can also be understood as the measurement time of a
continuous measurement. The phase transition from weak to
strong measurement in this paper is different from the transition
between the coherent oscillation and quantum Zeno effect
[30]. The spontaneous symmetry breaking in the statistics
of sequential weak measurements is also different from that
in real physical devices introduced in Refs. [43,44] as an
interpretation of projective quantum measurement.

II. STATISTICS OF SEQUENTIAL
QUANTUM MEASUREMENTS

For m successive POVMs on a TLS (e.g., a spin-1/2 qubit),
the probability to obtain the result (α1,α2, . . . ,αm) is

P (α1,α2, . . . ,αm)

= Tr
[
Mαm

· · · Mα2Mα1 |ψ0〉〈ψ0|M†
α1

M†
α2

· · · M†
αm

]
, (1)

where |ψ0〉 is the initial state of the TLS and {Mαk
} (αk = ±1) is

the set of POVM operators for the kth measurement satisfying∑
αk

M†
αk

Mαk
= I . Here the evolution of the TLS between

measurements has been absorbed into the POVM operators.
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Below we will show how to map measurement statistics to
the Boltzmann distribution of a classical lattice spin model,
i.e.,

P (α1,α2, . . . ,αm) = exp [−H (α1,α2, . . . ,αm)], (2)

where H (α1,α2, . . . ,αm) is the Hamiltonian of the lattice spin
model with αk denoting the kth lattice spin (temperature
absorbed into the Hamiltonian). Obviously, the Hamiltonian is
H (α1,α2, . . . ,αm) = −ln[P (α1,α2, . . . ,αm)]. Below we focus
on two exactly solvable cases.

A. Case I: Sequential projective measurements

For m successive projective measurements on the TLS,

Mαk
= 1

2 [I + αk(σ̂ · nk)] = |αk〉〈αk|, (3)

where σ̂ = (σx,σy,σz) are the Pauli matrices of the TLS, nk

is the unit vector of the kth measurement axis, and |αk〉
is the eigenstate of σ̂ · nk with eigenvalue αk . Suppose the
initial state of the TLS is |ψ0〉 = |α0〉 with α0 = ±1. The
probability distribution of the measurement results is [4] (see
Appendix A 1)

PI = 1

2m

m∏
k=1

[1 + cos(φk−1,k)αk−1αk], (4)

where φk−1,k = arc cos(nk−1 · nk) ∈ [0,π ] denotes the angle
between the (k − 1)th and kth measurement axes.

The probability distribution for sequential projective mea-
surements [Eq. (4)] is exactly the normalized partition function
of a classical one-dimensional (1D) Ising model with nearest-
neighbor interaction (see Appendix A 2):

HI = −
m∑

k=1

Jk−1,kαk−1αk, (5)

where Jk−1,k = tanh−1[cos(φk−1,k)]. If φk−1,k ∈ [0, π/2),
Jk−1,k > 0 corresponding to a ferromagnetic coupling; if
φk−1,k ∈ (π/2,π ], Jk−1,k < 0 corresponding to an antiferro-
magnetic coupling; if φk−1,k = π/2, Jk−1,k = 0 corresponding
to the noninteracting case.

The correlation function between the results of the j th
measurement and the (j + n)th measurement is the same as
the correlation function of the 1D Ising model [Eq. (5)]:

〈αjαj+n〉 =
j+n∏

k=j+1

tanh(Jk−1,k) =
j+n∏

k=j+1

cos(φk−1,k). (6)

Consider the specific case where J0,1 = J1,2 · · · =
Jm−1,m = J and φ0,1 = φ1,2 · · · = φm−1,m = φ. For the fer-
romagnetic coupling (J > 0, i.e., 0 < cos φ < 1), the cor-
relation function 〈αjαj+n〉 = cosn(φ) shows an exponential
decay with respect to the distance between the two lattice
spins, indicating a paramagnetic phase. If cos φ = 1, the
correlation function is a constant (〈αjαj+n〉 = 1), indicating a
ferromagnetic phase transition for infinite coupling (J = +∞)
or zero temperature. This phase transition can be intuitively
understood: The condition cos φ = 1 indicates that all the
projective measurements are along the same axis, therefore
the first measurement collapses the TLS into an eigenstate of
the projective operator and all the subsequent measurements

will give the same result. The case for the antiferromagnetic
coupling is similar, except that at the antiferromagnetic phase
transition point (cos φ = −1 and J = −∞) the correlation
function becomes 〈αjαj+n〉 = (−1)n.

B. Case II: Sequential commuting POVMs

Consider m sequential commuting POVMs [26] with

Mαk
= 1√

2
[cos(θk)I + sin(θk)αkσz], (7)

where θk ∈ [0,π/4]. The measurement strength is defined by
λk = sin2(2θk). When λk increases from zero to one, the kth
measurement continuously changes from weak measurement
to strong projective measurement.

Suppose the initial state of the TLS is |ψ0〉 = C+
0 |+1〉 +

C−
0 |−1〉 with |±1〉 being the eigenstates of σz and |C+

0 |2 +
|C−

0 |2 = 1. The un-normalized state of the TLS after m

measurements is

|ψm〉 = Mαm
· · · Mα2Mα1 |ψ0〉 = C+

m |+1〉 + C−
m |−1〉, (8)

with

C±
m = 1√

2
[cos (θm) ± sin (θm)αm]C±

m−1

= C±
0

2m/2

m∏
k=1

[cos (θk) ± sin (θk)αk], (9)

and the normalized state is |ψ ′
m〉 = |ψm〉/√〈ψm|ψm〉. Denote

the Bloch vector components of the final state as ri
m =

〈σi〉 = 〈ψ ′
m|σi |ψ ′

m〉 (i = x,y,z) (rm = 1 for a pure state). The
probability distribution for the measurement results is (see
Appendix B 1)

PII = 〈ψm|ψm〉 = 1

2m+1

[(
1 + rz

0

) m∏
k=1

(1 +
√

λkαk)

+(1 − rz
0

) m∏
k=1

(1 −
√

λkαk)

]
, (10)

where rz
0 = |C+

0 |2 − |C−
0 |2.

The lattice spin Hamiltonian corresponding to the probabil-
ity distribution of sequential POVMs is

HII = − ln

{
1

2m+1

[(
1 + rz

0

) m∏
k=1

(1 +
√

λαk)

+ (1 − rz
0

) m∏
k=1

(1 −
√

λαk)

]}
. (11)

Here we have assumed that λ1 = λ2 = · · · = λm = λ. We
identify the order parameter as the measurement polarization
X = q/m − 1/2 with q being the number of measurements
with result α = +1. Then the probability distribution of X is

P (X) = [(1 − λ)/4]m/2Cm(X+1/2)
m

× {cosh[ln(η)mX] + rz
0 sinh[ln(η)mX]

}
, (12)
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FIG. 1. Free energy of the spin model corresponding to a sequential POVM. (a) Free energy as a function of measurement polarization X for
different measurement strengths λ with the measurement time m = 1000. (b) Free energy as a function of X for different m with λ = 0.0004.
Here we use the initial state of the TLS with rz

0 = 0.

where C
j
m is the binomial coefficient and η= (1+√

λ)/
(1 − √

λ). Define the free energy as

F (X) = − ln [P (X)] ≈ mϕ(X)

− ln
{
cosh [ln (η)mX] + rz

0 sinh [ln (η)mX]
}
, (13)

where ϕ(X) = (1/2+X) ln(1/2+X) + (1/2−X) ln(1/2−X)
[45]. In F (X), the first and the second parts represent the
entropy and the internal energy, respectively. F (X) takes the
minimum when ∂F (Xmin)/∂X = 0. After solving for Xmin,
the z component of the Bloch vector of the TLS after m
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FIG. 2. The histogram of the number of samples with respect to the measurement polarization X in the Monte Carlo simulation of sequential
POVMs in case II for different measurement times: (a) m = 50, (b) m = 100, (c) m = 200, and (d) m = 500. The red solid lines represent the
exact probability distribution in Eq. (10). The measurement strength is λ = 0.01. The simulation contains 104 samples of sequential POVMs
from the same initial state (rz

0 = 0).
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FIG. 3. Phase transitions of sequential weak measurement. (a) Critical measurement time mC as a function of the measurement strength
λ. (b), (d) The measurement polarization X and ∂X/∂

√
λ as functions of

√
λ for different measurement times m. (c), (e) X and ∂X/∂

√
λ

as functions of m for different λ. In (b)–(d), the lines without (with) crosses represent the results from the exact model (the long-range Ising
model). Here we use the initial state with rz

0 = 0.

POVMs is

rz
m = sinh [ln (η)mXmin] + rz

0 cosh [ln (η)mXmin]

cosh [ln (η)mXmin] + rz
0 sinh [ln (η)mXmin]

, (14)

and the x and y components are r
x/y
m = r

x/y

0 /

{cosh[ln(η)mXmin] + rz
0 sinh[ln(η)mXmin]}.

To simplify the discussion, we assume that the initial states
of the TLS lie in the equatorial plane of the Bloch sphere with

rz
0 = 0, then the spin Hamiltonian is

HII = − ln

{
1

2

[
m∏

k=1

(1 +
√

λαk) +
m∏

k=1

(1 −
√

λαk)

]}
, (15)

where we have dropped the constant ∝ m in HII. For weak
measurement (λ 
 1), the above Hamiltonian is equivalent to
the long-range ferromagnetic Ising model (see Appendix B 6)
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up to leading-order terms (∝ λ):

HII ≈ −λ

m∑
j<k

αjαk. (16)

The free energy F (X) [Eq. (13)] depends on both the
measurement strength λ and the measurement time m. For a
fixed m, F (X) shows spontaneous symmetry breaking as λ is
increased [Fig. 1(a)]. Similarly, for a fixed m, F (X) also shows
spontaneous symmetry breaking as m is increased [Fig. 1(b)].
This implies a phase transition between the unpolarized phase
and the polarized phase in the two-dimensional parameter
space (λ,m), which is verified by a Monte Carlo simulation
of 104 samples of sequential POVMs (Fig. 2).

The distance between the two valleys in the polarized phase
increases with the measurement strength λ but is independent
of the measurement time m. If mln2(η) < 4, F (X) has only one
minimum at X = 0 corresponding to the unpolarized phase,
while, if mln2(η) > 4, F (X) has two minima located within
(−1/2,0) and (1/2,0) corresponding to the polarized phase.
So the phase transition occurs when m and λ satisfy (see
Appendix B 2)

mln2(η) = mln2

(
1 + √

λ

1 − √
λ

)
= 4. (17)

For a fixed λ, the critical measurement time is mc =
4/ln2[(1 + √

λ)/(1 − √
λ)]; likewise, for a fixed m, the crit-

ical measurement strength is λc = tanh2(m−1/2). For weak
measurement (λ 
 1), the phase boundary is mλ = 1, which
coincides with that for the long-range Ising model [Eq. (16)]
[38] and implies that the weaker the measurement strength the
larger the measurement time that is needed to observe the phase
transition [Fig. 3(a)].

However, the order parameter X as a function of the
measurement time m and measurement strength λ is quite
different for the exact spin model than for the long-range Ising
model [Figs. 3(b) and 3(c)]. In the exact model, for a fixed m, X
quickly increases above the critical measurement strength λc

and then increases linearly with
√

λ as X = ±√
λ/2; for a fixed

λ, X also quickly increases above the critical measurement
time mc and approaches the constant X = ±√

λ/2 as m is
further increased. This implies that in the polarized phase
X is proportional to

√
λ but independent of m. Moreover,

∂X/∂
√

λ or ∂X/∂m shows a finite jump at the critical points
[Figs. 3(d) and 3(e)], which is a signature of second-order
phase transitions. However, for the long-range ferromagnetic
Ising model, it is mλ that influences the ferromagnetic phase
transition, and X = ±1/2 in the ferromagnetic phase.

Moreover, the final state polarization rz
m of the TLS also

shows a phase-transition behavior depending on m and λ

[24,25] (see Appendix B 3). For a fixed m, rz
m keeps almost

unchanged compared to the initial one with λ below the critical
value λc but quickly becomes fully polarized to the north or
south pole asλ increases aboveλc. Similar behavior is observed
for a fixed λ and increasing m. When the state polarization
begins, the TLS has the same probability to be polarized to the
north or south pole, and it has to decide which path to choose.
This is quite similar to the spontaneous symmetry breaking in
statistical physics.

If the initial state of the TLS |ψ0〉 is in the north or south
pole with rz

0 = ±1, the probability distribution is mapped to
m independent paramagnetic classical spins, and there is no
phase transition in this case. If |ψ0〉 is on the Bloch sphere with
|rz

0 | ∈ (0,1), for weak measurement (λ 
 1), the probability
distribution can be mapped to the long-range ferromagnetic
Ising model under an external magnetic field. The measure-
ment polarization X as a function of m and λ changes more
and more smoothly as |rz

0 | increases and the phase-transition
behaviors gradually disappear.

Moreover, we numerically demonstrate that the phase
transition behaviors still persist even if there are small
fluctuations of the measurement strength λk for sequential
POVMs and if sequential POVM operators {Mαk

} do not
exactly commute [46].

III. CONCLUSIONS AND OUTLOOKS

We establish the connections between the probability distri-
bution of sequential quantum measurement on a TLS and the
statistical mechanics of classical spin models. Therefore, the
statistics and phase transitions of the spin chains can be effec-
tively simulated by measuring a single qubit. For sequential
projective measurements, the measurement results simulate
the 1D Ising model with nearest-neighbor interactions; for
sequential commuting POVMs, the measurement is mapped to
ferromagnetic long-range Ising models. We find a polarized-to-
unpolarized phase transition in sequential POVMs dependent
on the measurement time and measurement strength.

In this paper, we focus on the mapping of the measurement
statistics of binary-outcome POVMs on a TLS to the statistics
of classical Ising models with spin 1/2. An interesting problem
is to study the measurement statistics of general multioutcome
POVMs on a TLS or a multilevel system (see Appendix D),
which may be mapped to the statistics of classical Ising models
of higher spins that exhibit richer phase transition behaviors
[47,48].
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APPENDIX A: SEQUENTIAL PROJECTIVE MEASUREMENTS

1. Derivation of the probability distribution

In case I, the projective measurements on the TLS are defined as

Mαk
= 1

2 [I + αk(σ̂ · nk)] = |αk〉〈αk|, (A1)
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where αk = ±1 represents the binary measurement results. The probability to obtain the measurement result (α1,α2, . . . ,αm) is

P (α1,α2, . . . ,αm) = Tr
[
Mαm

· · ·Mα2Mα1ρ0
]
, (A2)

where ρ0 = (I + α0σ̂ · n0)/2 and Mαk
(•) = Mαk

(•)M†
αk

. For the Pauli matrices, we have the following relation:

(I + α1σ̂ · n1)(I + α0σ̂ · n0)(I + α1σ̂ · n1) = 2(I + α0α1n1 · n0)(I + α1σ̂ · n1), (A3)

where we have used

(σ̂ · n1)(σ̂ · n0) = n1 · n0 + iσ̂ · (n1 × n0),

(σ̂ · n1)(σ̂ · n0)(σ̂ · n1) = 2(n1 · n0)(σ̂ · n1) − σ̂ · n0, (A4)

so the probability distribution can be directly derived as

P (α1,α2, . . . ,αm)

= 1

22m+1
Tr[(I + αmσ̂ · nm) · · · (I + α1σ̂ · n1)(I + α0σ̂ · n0)(I + α1σ̂ · n1) · · · (I + αmσ̂ · nm)]

= 1

22m
(I + α0α1n1 · n0)Tr[(I + αmσ̂ · nm) · · · (I + α2σ̂ · n2)(I + α1σ̂ · n1)(I + α2σ̂ · n2) · · · (I + αmσ̂ · nm)]

= 1

2m

m∏
k=1

[1 + cos(φk−1,k)αk−1αk], (A5)

where φk−1,k = arc cos(nk−1 · nk) ∈ [0,π ].

2. 1D Ising model with nearest-neighbor interactions

The Hamiltonian of the 1D Ising model with nearest-neighbor interactions is

HI(α1,α2, . . . ,αm) = −
m∑

k=1

Jk−1,kαk−1αk. (A6)

To be consistent with the quantum measurement model, we take the open boundary condition with α0 = ±1. In thermal
equilibrium, the probability for the m spins to be in the configuration (α1,α2, . . . ,αm) obeys the Boltzmann distribution

P ′(α1,α2, . . . ,αm) = exp

(
m∑

k=1

Jk−1,kαk−1αk

)

=
[

cosh(α0J0,1)
m∏

k=2

cosh(Jk−1,k)

]
m∏

k=1

[1 + tanh(Jk−1,k)αk−1αk], (A7)

where we have set β = 1/T = 1. The partition function of the 1D Ising model is

Z =
∑

{α1,α2,...,αm}
P ′(α1,α2, . . . ,αm) =

∑
α1=±1

∑
α2=±1

· · ·
∑

αm=±1

eJ01α0α1eJ12α1α2 · · · eJm−1,mαm−1αm, (A8)

where eJk−1,kαk−1αk can be written as a matrix as follows:

eJk−1,kαk−1αk =
[

eJk−1,k e−Jk−1,k

e−Jk−1,k eJk−1,k

]
=
[

1 1
1 −1

][
cosh(Jk−1,k) 0

0 sinh(Jk−1,k)

][
1 1
1 −1

]
, (A9)

so we have

eJ01α0α1eJ12α1α2 · · · eJm−1,mαm−1αm

=
[
eJ01α0 0

0 e−J01α0

][
eJ12 e−J12

e−J12 eJ12

]
· · ·
[

eJm−1,m e−Jm−1,m

e−Jm−1,m eJm−1,m

]

= 2m−2

[
eJ01α0 0

0 e−J01α0

][
1 1
1 −1

]{ m∏
k=2

[
cosh(Jk−1,k) 0

0 sinh(Jk−1,k)

]}[
1 1
1 −1

]

= 2m−2

[
eJ01α0

(∏m
k=2 cosh(Jk−1,k) +∏m

k=2 sinh(Jk−1,k)
)

eJ01α0
(∏m

k=2 cosh(Jk−1,k) −∏m
k=2 sinh(Jk−1,k)

)
e−J01α0

(∏m
k=2 cosh(Jk−1,k) −∏m

k=2 sinh(Jk−1,k)
)

e−J01α0
(∏m

k=2 cosh(Jk−1,k) +∏m
k=2 sinh(Jk−1,k)

)
]
. (A10)
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The partition function is the summation of all the elements of the above matrix:

Z =
∑

α1=±1

∑
αm=±1

〈α1|eJ01α0α1eJ12α1α2 · · · eJm−1,mαm−1αm |αm〉 = 2m cosh(α0J0,1)
m∏

k=2

cosh(Jk−1,k). (A11)

So the normalized probability distribution is

P (α1,α2, . . . ,αm) = P ′(α1,α2, . . . ,αm)

Z
=

m∏
k=1

[1 + tanh(Jk−1,k)αk−1αk]. (A12)

The correlation function between the j th spin (j � 1) and the (j + n)th (n � m − j ) spin is obtained by taking the derivatives
of the partition function with respect to the coupling strength:

〈αjαj+n〉 = 〈αjαj+1αj+1αj+2 · · · αj+n−1αj+n〉

= 1

Z

∑
{α1,α2,...,αm}

αjαj+1αj+1αj+2 · · · αj+n−1αj+n exp

(
m∑

k=1

Jk−1,kαk−1αk

)

= ∂

∂Jj,j+1

∂

∂Jj+1,j+2
· · · ∂

∂Jj+n−1,j+n

ln (Z)

=
j+n∏

k=j+1

tanh(Jk−1,k). (A13)

APPENDIX B: SEQUENTIAL COMMUTING POVMs

1. Derivation of the probability distribution

In the main text, we have directly derived the probability distribution by considering the changes of the TLS states caused by
sequential POVMs. Here we will give equivalent derivations using the density matrix formulism. In case II, the POVMs on the
TLS are defined as

Mαk
= 1√

2
[cos(θk)I + sin(θk)αkσz], (B1)

where θk ∈ [0,π/4]. The measurement strength λk is defined by λk = sin2(2θk).
After m successive commuting POVMs, the un-normalized density matrix of the TLS is

ρk = Mαk
· · ·Mα2Mα1ρ0 = Ak + Bkσ̂ · nk, (B2)

and the normalized density matrix is ρ ′
k = ρk/Tr(ρk) = (I + rkσ̂ · nk)/2 with rk = Bk/Ak and nk denoting the length and direction

of the Bloch vector, respectively. The relation between ρk and ρk−1 is fully captured by the transfer matrix⎡
⎢⎢⎢⎢⎣

Ak

Bx
k

B
y

k

Bz
k

⎤
⎥⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎢⎢⎣

1 0 0
√

λkαk

0
√

1 − λk 0 0

0 0
√

1 − λk 0
√

λkαk 0 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ak−1

Bx
k−1

B
y

k−1

Bz
k−1

⎤
⎥⎥⎥⎥⎦. (B3)

Note that the above transfer matrix can be diagonalized with the same transformation matrix for any k, so we have⎡
⎢⎢⎢⎢⎣

Am

Bx
m

B
y
m

Bz
m

⎤
⎥⎥⎥⎥⎦ = 1

2m+1

⎡
⎢⎢⎢⎢⎣

1 0 0 1

0
√

2 0 0

0 0
√

2 0

1 0 0 −1

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∏
k=1

⎡
⎢⎢⎢⎢⎣

1 + √
λkαk 0 0 0

0
√

1 − λk 0 0

0 0
√

1 − λk 0

0 0 0 1 − √
λkαk

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×

⎡
⎢⎢⎢⎢⎣

1 0 0 1

0
√

2 0 0

0 0
√

2 0

1 0 0 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

A0

Bx
0

B
y

0

Bz
0

⎤
⎥⎥⎥⎥⎦, (B4)

012117-7



MA, WANG, LEONG, AND LIU PHYSICAL REVIEW A 98, 012117 (2018)

with the initial condition ρ0 = (I + r0σ̂ · n0)/2, i.e., (A0,B
x
0 ,B

y

0 ,Bz
0) = (1,rx

0 ,r
y

0 ,rz
0)/2, and we have the solution

Am = 1

2m+2

[(
1 + rz

0

) m∏
k=1

(1 +
√

λkαk) + (1 − rz
0

) m∏
k=1

(1 −
√

λkαk)

]
,

Bx
m = 1

2m+1
rx

0

m∏
k=1

√
1 − λk,

By
m = 1

2m+1
r

y

0

m∏
k=1

√
1 − λk,

Bz
m = 1

2m+2

[(
1 + rz

0

) m∏
k=1

(1 +
√

λkαk) − (1 − rz
0

) m∏
k=1

(1 −
√

λkαk)

]
, (B5)

so the probability to obtain the measurement result (α1,α2, . . . ,αm) is

PII(α1,α2, . . . ,αm) = Tr[ρm] = 2Am

= 1

2m+1

[(
1 + rz

0

) m∏
k=1

(1 +
√

λkαk) + (1 − rz
0

) m∏
k=1

(1 −
√

λkαk)

]
, (B6)

and the density matrix of the TLS after m measurements is ρ ′
m = (I + rmσ̂ · nm)/2 with

rx
m = Bx

m

Am

= 2rx
0

∏m
k=1

√
1 − λk(

1 + rz
0

)∏m
k=1 (1 + √

λkαk) − (1 − rz
0

)∏m
k=1 (1 − √

λkαk)
,

ry
m = B

y
m

Am

= 2r
y

0

∏m
k=1

√
1 − λk(

1 + rz
0

)∏m
k=1 (1 + √

λkαk) + (1 − rz
0

)∏m
k=1 (1 − √

λkαk)
, (B7)

rz
m = Bz

m

Am

=
(
1 + rz

0

)∏m
k=1 (1 + √

λkαk) − (1 − rz
0

)∏m
k=1 (1 − √

λkαk)(
1 + rz

0

)∏m
k=1 (1 + √

λkαk) + (1 − rz
0

)∏m
k=1 (1 − √

λkαk)
.

It can be easily shown that if the initial state of the TLS is a pure state with r0 = ±
√

(rx
0 )2 + (ry

0 )2 + (rz
0)2 = ±1, then the final

state of the TLS after m POVMs is always a pure state with rm = ±
√

(rx
m)2 + (ry

m)2 + (rz
m)2 = ±1.

2. Minimum of free energy and phase transitions

Assume that all the sequential measurements are the same with λ1 = λ2 = · · · = λm = λ. The probability distribution becomes

PII(α1,α2, . . . ,αm) = 1

2m+1

[(
1 + rz

0

) m∏
k=1

(1 +
√

λαk) + (1 − rz
0

) m∏
k=1

(1 −
√

λαk)

]
. (B8)

The measurement polarization is defined as X = q/m − 1/2 with q being the number of measurements with result α = +1.
Then the probability distribution of X is

P (X) = [(1 − λ)/4]m/2Cm(X+1/2)
m

{
cosh [ln (η)mX] + rz

0 sinh [ln (η)mX]
}
, (B9)

where η = (1 + √
λ)/(1 − √

λ). In Fig. 4, we plot P (X) as a function of X for different measurement times m, measurement
strength λ, or initial state polarization of the TLS rz

0 . First we consider the unpolarized initial state with rz
0 = 0: for a fixed m,

P (X) has the maximum at X = 0 for a small λ and two symmetric maxima at about X = ±λ/2 as λ is large enough [Fig. 4(a)];
for a fixed λ, P (X) has the maximum at X = 0 for a small m and two equal maxima at about X = ±λ/2 as m is large enough
[Fig. 4(b)]. If the initial state has finite polarization with rz

0 �= 0, we find similar phenomena except that the two maxima of P (X)
are unequal and the difference between the two maxima is proportional to rz

0 [Figs. 4(c) and 4(d)].
The probability distribution satisfies the normalization condition

Z =
m∑

q=0

P (q/m − 1/2) = 1. (B10)

For a large m, the above integration is overwhelmingly dominated by the maximum term Pmax(q/m − 1/2) with q = mX,
i.e.,

Z ≈ Pmax(X). (B11)
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FIG. 4. Probability distribution of a sequential POVM. (a) Probability distribution P (X) of measurement polarization X for different
measurement strengths λ with the measurement time fixed at m = 1000. (b) Modified probability distribution

√
mP (X) of measurement

polarization X for different measurement times m with the measurement strength fixed at λ = 0.09. In (a) and (b), the initial state of the TLS
is in the equatorial plane of the Bloch sphere with rz

0 = 0 and r0 = 1. (c) and (d) are similar to (a) and (b) but with rz
0 = 0.2 and r0 = 1.

We define the free energy as

F (X) = − ln [P (X)] ≈ mϕ(X) − ln
{
cosh [ln (η)mX] + rz

0 sinh [ln (η)mX]
}
. (B12)

To find the maximum term of P (X) is equivalent to finding the minimum term of F (X), which is determined by

∂F (X)

∂X
= m

{
ln

(
1 + 2X

1 − 2X

)
− ln (η)

sinh [ln (η)mX] + rz
0 cosh [ln (η)mX]

cosh [ln (η)mX] + rz
0 sinh [ln (η)mX]

}
= 0. (B13)

The most interesting phenomenon happens when the initial state of the TLS is in the equatorial plane (rz
0 = 0) with the above

equation reduced to

∂F (X)

∂X
= m

{
ln

(
1 + 2X

1 − 2X

)
− ln (η) tanh [ln (η)mX]

}
= 0. (B14)

Obviously X = 0 is a solution of Eq. (B14) and therefore must be a local minimum or maximum point, and if X = a �= 0 is
a solution then X = −a is also a solution. The phase transition happens when the solution of Eq. (B14) changes from X = 0 to
±a for a small a, so we can expand Eq. (B14) near X = 0:

f1(X) = ln

(
1 + 2X

1 − 2X

)
≈ 4X, (B15)

f2(X) = ln (η) tanh [ln (η)mX] ≈ mln2(η)X. (B16)
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FIG. 5. Determining the minima of free energy of the spin model corresponding to a sequential POVM. (a) The intersections between the
two curves f1(X) = ln[(1 + 2X)/(1 − 2X)] and f2(X) = ln(η) tanh[ln(η)mX], where η = ln[(1 + √

λ)/(1 − √
λ)], determine the free-energy

minima. (b) Free energy as a function of the measurement polarization X for different measurement strengths λ. The parameters are such that
m = 1000, rz

0 = 0, and r0 = 1.

As shown in Fig. 5, if mln2(η) < 4, f1(X) and f2(X) have only one intersection and the corresponding free energy has the local
minimum at X = 0, while, if mln2(η) > 4, f1(X) and f2(X) have two intersections and the free energy has two local minima at
X = ±a. So the phase transition happens when mln2(η) = 4. For weak measurements with small λ, ln(η) ≈ 2

√
λ, so the phase

transition condition is reduced to mλ = 1.
The measurement polarization X slightly above the critical point can be obtained by expanding f1(X) and f2(X) to higher

orders:

f1(X) = ln

(
1 + 2X

1 − 2X

)
≈ 4X + 16

3
X3 + · · · , (B17)

f2(X) = ln (η) tanh [ln (η)mX] ≈ mln2(η)X − m3ln4(η)

3
X3 + · · · . (B18)

By equating f1(X) and f2(X) to the third order of X, we obtain the critical measurement polarization:

Xc = ±
√

3(mln2(η) − 4)

16 + m3ln4(η)
, mln2(η) � 4. (B19)

In the weak-measurement regime, the phase boundary becomes mλ = 1, and the critical measurement polarization becomes

Xc = ±
√

3(mλ−1)
4(1+m3λ2) . For a given λ, the critical measurement time is mc = 1/λ, and the critical measurement polarization

Xc ∝ (m − mc)1/2. For a given m, the critical measurement time is λc = 1/m, and the critical measurement polarization
Xc ∝ (λ − λc)1/2. So the critical exponents for the measurement time m and measurement strength λ are both 1/2.

Moreover, far away from the phase transition point with mln2(η) � 4, tanh[ln(η)mX] ≈ ±1, so the solution of Eq. (B14) is
X = ±√

λ/2. Near the two stable points Xmin = ±√
λ/2, the free energy can be approximated as

F (X) ≈ F (Xmin) + ∂F (Xmin)

∂X
(X − Xmin) + 1

2

∂2F (Xmin)

∂X2
(X − Xmin)2

= F (±
√

λ/2) + m

2

[
4

1 − λ
− mln2(η)

cosh2[
√

λ ln(η)m/2]

]
(X ∓

√
λ/2)2, (B20)

so the probability distribution can be approximated as a Gaussian distribution:

P (X) ≈ P (±
√

λ/2) exp

{
−m

2

[
4

1 − λ
− mln2(η)

cosh2[
√

λ ln(η)m/2]

]
(X ∓

√
λ/2)

2
}
. (B21)

For a large m, it can be further simplified as

P (X) ≈ P (±
√

λ/2) exp

[
− 2m

1 − λ
(X ∓

√
λ/2)

2
]

= P (±
√

λ/2) exp

[
− (X ∓ √

λ/2)
2

2σ 2

]
, (B22)
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where the standard deviation σ = √
1 − λ/(2

√
m) is inversely proportional to the square root of the measurement number m.

3. Effects of initial states of the TLS on the measurement statistics

In the main text, we mainly discuss the measurement statistics when the initial state of the TLS has no polarization, i.e., in
the equator of the Bloch sphere with rz

0 = 0. In this subsection, we discuss the measurement statistics for the other initial states
on the Bloch sphere. If the initial state of the TLS is in the north or south pole with rz

0 = ±1, then the probability distribution
becomes

P A
II (α1,α2, . . . ,αm) = 1

2m

m∏
k=1

(1 +
√

λα0αk), (B23)

with α0 = |rz
0 |/rz

0 . This is just the normalized probability of the configuration (α1,α2, . . . ,αm) for m independent paramagnetic
classical spins with the Hamiltonian

HA
II (α1,α2, . . . ,αm) = −ωα0

m∑
k=1

αk, (B24)

where ω = tanh−1(
√

λ) is the effective energy of the spins and α0 determines the magnetic-field direction. So the measurement
polarization X can be understood as the average magnetic polarization of all the spins, i.e., X = tanh(ω)/2 = √

λ/2, where
the free energy of the spin model has the minimum [Fig. 6(a)]. The reason is that the state of the TLS is unchanged by the
measurements, as can be seen from Eq. (B7) and Figs. 6(d) and 6(e), so the probability to obtain different results is the same for
all the measurements. In this case, there is no phase transition.

If the initial state of the TLS is anywhere on the Bloch sphere other than the north or south poles or the equator with |rz
0 | ∈ (0,1),

in the weak-measurement regime (λ 
 1), the probability distribution in Eq. (10) can be mapped to the long-range ferromagnetic
Ising model under an external magnetic field up to the leading-order terms (∝ λ):

HB
II (α1,α2, . . . ,αm) ≈ −rz

0

√
λ

m∑
k=1

αk − λ

m∑
j<k

αjαk, (B25)

where the magnetic field is proportional to the z component of Bloch vector polarization of the initial state. In this case, the
free energy becomes unsymmetrical in the polarized phase and therefore the measurement polarization has a preferred value,
i.e., X = √

λ/2 (X = −√
λ/2) for rz

0 > 0 (rz
0 < 0), and the probability in the preferred value is about (1 + |rz

0 |)/(1 − |rz
0 |) times

that in the unpreferred value. The measurement polarization X as a function of measurement time m and measurement strength
λ changes more and more smoothly as |rz

0 | increases and the phase-transition behaviors gradually disappear [Figs. 6(b) and
6(c)]. Moreover, the final state of the TLS is also gradually polarized toward the north (south) pole for rz

0 > 0 (rz
0 < 0) as the

measurement times or measurement strength increases [Figs. 6(d) and 6(e)].

4. Average measurement polarization and correlation function

For the probability distribution in Eq. (B8), the average polarization for the j th measurement and the correlation function
between the j th measurement and the lth measurement (1 � j < l � m) are

〈αj 〉 =
∑

α1=±1

∑
α2=±1

· · ·
∑

αm=±1

{
αj

2m+1

[(
1 + rz

0

) m∏
k=1

(1 +
√

λαk) + (1 − rz
0

) m∏
k=1

(1 −
√

λαk)

]}

= 1

4

∑
αj =±1

[(
1 + rz

0

)
(αj +

√
λ) + (1 − rz

0

)
(αj −

√
λ)
]

= rz
0

√
λ, (B26)

〈αjαl〉 =
∑

α1=±1

∑
α2=±1

· · ·
∑

αm=±1

{
αjαl

2m+1

[(
1 + rz

0

) m∏
k=1

(1 +
√

λαk) + (1 − rz
0

) m∏
k=1

(1 −
√

λαk)

]}

= 1

8

∑
αj =±1

∑
αl=±1

[(
1 + rz

0

)
(αj +

√
λ)(αl +

√
λ) + (1 − rz

0

)
(αj −

√
λ)(αl −

√
λ)
]

= λ. (B27)

So the average polarization for any single measurement is the same and proportional to the initial-state polarization rz
0 and the

square root of the measurement strength
√

λ, while the correlation function between any two measurements is also the same and
equal to the measurement strength λ. These points can be understood as follows.
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FIG. 6. Effects of initial states on the phase transitions of sequential weak measurement. Different initial states (given by the initial
polarization rz

0 ) are represented by different line colors. (a) Free energy as a function of the measurement polarization X. The measurement
strength and measurement time are m = 1000 and λ = 0.01, respectively. (b), (d) The measurement polarization X and the final Bloch vector
polarization rm as functions of the square root of the measurement strength with measurement times fixed at m = 100. (c), (e) The measurement
polarization X and the final Bloch vector polarization rm as functions of the measurement time with the measurement strength fixed at λ = 0.01.
In (b) and (c), the lines without (with) crosses represent the results from the exact model (the approximate long-range Ising model). In (d) and
(e), the lines without (with) plus signs represent the z (x) component of the final Bloch vector. Initially the TLS is in a pure state with r0 = 1
and r

y

0 = 0.

(i) If rz
0 = 0, the measurement statistics can be approximated by the long-range ferromagnetic Ising model, where any one

spin is equally coupled to all other spins, so the correlation function between any two spins is always the same while the average
polarization of any spin is zero since the average over the two symmetry-broken states is also zero.

(ii) If rz
0 = ±1, the measurement statistics is equivalent to that of independent classical paramagnetic spins with the external

field proportional to
√

λ, so the average polarization is equal for all spins and proportional to
√

λ while the correlation function
is a trivial constant.
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(iii) If |rz
0 | ∈ (0,1), the measurement statistics can be approximated by the long-range ferromagnetic Ising model under an

external magnetic field proportional to both rz
0 and

√
λ, so the average polarization for each spin is proportional to both rz

0 and√
λ, while any two spins are also equivalent in this model so the correlation function is also a constant.

5. Example: Nuclear spin polarization by an ancillary electron spin

As an example, let us consider an electron spin (e.g., two energy levels of a nitrogen-vacancy electron spin) and a nuclear spin
(e.g., a 13C nuclear spin in diamond). The POVM of the nuclear spin in Eq. (7) can be realized by coupling it to the electron spin
and then performing projective measurements on the electron spin [24,25]. The Hamiltonian of the electron spin (S = 1/2) and
the nuclear spin (I = 1/2) is

H = ASzIz + ωIz, (B28)

where Sz (Iz) is the electron (nuclear) spin operator with eigenstates |±〉e (|±〉n), A is the coupling strength, and ω is the Larmor
frequency of the nuclear spin. The target spin evolution operator conditioned on the sensor spin state is U (±)

n (t) = e−i(ω±A/2)Izt .
We apply the Ramsey sequence [24] to the electron spin with the propagator of the whole system as

U (t) = Rx
e (π/2)(U (+)

n (t)|+〉ee〈+| + U (−)
n (t)|−〉ee〈−|)Ry

e (π/2), (B29)

where R
j
e (π/2) = e−iπSi/2(j = x,y) denotes the π/2 pulse for the electron spin along different axes. Suppose the initial state of

the whole system is |+〉e ⊗ |ψ0〉 with |ψ0〉 = C+
0 |+〉n + C−

0 |−〉n denoting the initial target spin state, then projective measurement
on the sensor spin with M (α)

e = (I + 2αSz)/2 (α = ±1) is equivalent to a POVM on the nuclear spin, i.e.,

M (α)
n |ψ0〉〈ψ0|

(
M (α)

n

)† = Tre
[
M (α)

e U (t)(|+〉ee〈+| ⊗ |ψ0〉〈ψ0|)U †(t)
(
M (α)

e

)†]
, (B30)

where M (α)
n = (U (+)

n − iαU (−)
n )/2 = e−i(ωIzt+απ/4)[cos(θ )I + 2α sin(θ )Iz]/

√
2 with θ = At/2. Note that M (α)

n is the same POVM
operator as that in Eq. (8) except that there is an additional evolution operator e−i(ωIzt+απ/4), which is independent of the
measurement results except for a trivial phase factor and has no effect on the probability distribution of the POVM result. By
repetitively applying the Ramsey sequence to the electron spin, sequential POVMs are performed on the nuclear spin with the
measurement strength tuned by the time delay t between the two π/2 pulses [24], and the nuclear spin is polarized to |+〉n (|−〉n)
with the probability equal to the probability amplitude of the initial state |C+

0 |2 (|C−
0 |2). After spontaneous symmetry breaking

at m = mC , the nuclear spin will be trapped in the polarized state by the sequential weak measurement.
In realistic experiments, there may be some imperfections: (i) the timing for the sequential Ramsey sequences may not be

exactly the same, so that the POVMs may have slightly different measurement strengths, and (ii) the nuclear spin in the TLS may
suffer random magnetic fields between successive POVMs, so that sequential POVMs may have slightly different measurement
axes. However, as numerically demonstrated in the Supplemental Material [46], the phase transition behaviors are robust against
small inhomogeneity of measurement strength and measurement axes.

6. Ferromagnetic phase transitions in the long-range Ising model

The Hamiltonian of the long-range ferromagnetic Ising model can be mapped to the Hamiltonian of a single large spin with
Sz =∑m

j=1 αj/2 [38]:

H = −λ

m∑
j<k

αjαk = −λ

(
2S2

z − m

2

)
, (B31)

where the large spin number S takes value 0,1, . . . ,m/2 for even m and 1/2,3/2, . . . ,m/2 for odd m, and the spin degeneracy
in each large spin subspace is D(S) = C

m/2−S
m − C

m/2−S−1
m with C

j
m being the binomial coefficient. So the partition function for

the long-range Ising model is

Z = Tr
{
eλ(2S2

z −m/2)
} = e−mλ/2

m∑
j=0

Cj
me2λm2(j/m−1/2)2

, (B32)

where we have set β = 1/T = 1. For a large m, the partition function can be written in the integral form as

Z ≈ e−mλ/2m

∫ 1/2

−1/2
e−mϕ(X)+2mλX2

dX, (B33)

where ϕ(X) = (1/2 + X) ln(1/2 + X) + (1/2 − X) ln(1/2 − X). The integration in Z can be solved by the saddle-point
approximation. If mλ < 1, the saddle point appears at X = 0 corresponding to the paramagnetic phase, while if mλ > 1 there
are two symmetric saddle points within (−1/2,0) and (0,1/2), corresponding to the ferromagnetic phase. So the ferromagnetic
phase transition happens when mλ = 1.
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APPENDIX C: ANOTHER KIND OF SEQUENTIAL POVMs

Consider another kind of POVMs with the POVM operators defined as

Mαk=+1 = |+1〉〈+1|+cosϕk|−1〉〈−1|,
Mαk=−1 = sin ϕk|−1〉〈−1|, (C1)

where ϕk ∈ [−π/2,π/2]. With |ϕk| increasing from zero to π/2, the kth measurement continuously changes from weak
measurement to strong projective measurement. This kind of measurement operators can be written in a form similar to that
in Eq. (7):

Mαk
= 1√

2
[aI + bσz + αk(cI + dσz)] = 1√

2
[(a + αkc)I + (b + αkd)σz], (C2)

with

a = (1 + cos ϕk + sin ϕk)/(2
√

2),

b = (1 − cos ϕk − sin ϕk)/(2
√

2),

c = (1 + cos ϕk − sin ϕk)/(2
√

2),

d = (1 − cos ϕk + sin ϕk)/(2
√

2). (C3)

After m sequential measurements, the un-normalized density matrix of the TLS is

ρk = Mαk
· · ·Mα2Mα1ρ0 = Ak + Bkσ̂ · nk, (C4)

and the normalized density matrix is ρ ′
k = ρk/Tr(ρk) = (I + rkσ̂ · nk)/2 with rk = Bk/Ak and nk denoting the length and direction

of the Bloch vector, respectively. The relation between ρk and ρk−1 is fully captured by the transfer matrix⎡
⎢⎢⎢⎢⎣

Ak

Bx
k

B
y

k

Bz
k

⎤
⎥⎥⎥⎥⎦ = 1

2

⎡
⎢⎢⎢⎢⎣

1 + αkcos2ϕk 0 0 αksin2ϕk

0 (1 + αk) cos ϕk 0 0

0 0 (1 + αk) cos ϕk 0

αksin2ϕk 0 0 1 + αkcos2ϕk

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ak−1

Bx
k−1

B
y

k−1

Bz
k−1

⎤
⎥⎥⎥⎥⎦. (C5)

So the solution can be obtained in a way similar to that in Appendix B 1:

Am = 1

2m+2

{(
1 + rz

0

) m∏
k=1

(1 + αk) + (1 − rz
0

) m∏
k=1

[1 + αk cos (2ϕk)]

}
,

Bx
m = 1

2m+1
rx

0

m∏
k=1

[(1 + αk)cosϕk],

By
m = 1

2m+1
r

y

0

m∏
k=1

[(1 + αk)cosϕk],

Bz
m = 1

2m+2

{(
1 + rz

0

) m∏
k=1

(1 + αk) + (1 − rz
0

) m∏
k=1

[1 + αk cos (2ϕk)]

}
. (C6)

The probability distribution is

PIII(α1,α2, . . . ,αm) = Tr[ρm] = 2Am

= 1

2m+1

[(
1 + rz

0

) m∏
k=1

(1 + αk) + (1 − rz
0

) m∏
k=1

[1 + αk cos (2ϕk)]

]
. (C7)

The density matrix of the TLS after m measurements is ρ ′
m = (I + rmσ̂ · nm)/2 with

rx
m = Bx

m

Am

= 2rx
0

∏m
k=1 [(1 + αk)cosϕk](

1 + rz
0

)∏m
k=1 (1 + αk) + (1 − rz

0

)∏m
k=1 [1 + αk cos (2ϕk)]

,

ry
m = B

y
m

Am

= 2r
y

0

∏m
k=1 [(1 + αk)cosϕk](

1 + rz
0

)∏m
k=1 (1 + αk) + (1 − rz

0

)∏m
k=1 [1 + αk cos (2ϕk)]

, (C8)

ry
m = Bz

m

Am

=
(
1 + rz

0

)∏m
k=1 (1 + αk) − (1 − rz

0

)∏m
k=1 [1 + αk cos (2ϕk)](

1 + rz
0

)∏m
k=1 (1 + αk) + (1 − rz

0

)∏m
k=1 [1 + αk cos (2ϕk)]

.
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APPENDIX D: SEQUENTIAL MULTIOUTCOME POVMs

The previous cases are all about sequential binary-outcome POVMs. However, the POVMs even on a TLS can have multiple
outcomes, so a natural problem is to investigate the measurement statistics of such sequential multioutcome POVMs, and their
possible connection with the Boltzmann distribution of Ising models of higher spins. In this case, we consider m successive
commuting (2S + 1)-outcome POVMs with the kth POVM operator defined as

Mαk
= xkI + ykαkσz, (D1)

where xk and yk are real positive parameters, αk = −2S,−2S + 1, . . . ,2S for S being a half integer, and αk = −S,−S + 1, . . . ,S

for S being an integer. The normalization condition
∑

αk
M†

αk
Mαk

= I requires that x2
k (2S + 1) + y2

k

∑
{αk} α2

k = 1.
Suppose the initial state of the TLS is |ψ0〉 = C+

0 |+1〉 + C−
0 |−1〉 with |±1〉 being the eigenstate of σz and |C+

0 |2 + |C−
0 |2 = 1.

The un-normalized state of the TLS after m measurements is

|ψm〉 = Mαm
· · · Mα2Mα1 |ψ0〉 = C+

m |+1〉 + C−
m |−1〉, (D2)

with

C±
m = (xm ± ymαm)C±

m−1 = C±
0

m∏
k=1

(xk ± ykαk), (D3)

and the normalized state is |ψ ′
m〉 = |ψm〉/√〈ψm|ψm〉. With the Bloch vector components of the final state defined as ri

m = 〈σi〉 =
〈ψ ′

m|σi |ψ ′
m〉 (i = x,y,z) (rm = 1 for a pure state), the probability distribution for the measurement results is analytically derived

as

PIV = 1 + rz
0

2

m∏
k=1

(
x2

k + y2
k α

2
k + 2xkykαk

)+ 1 − rz
0

2

m∏
k=1

(
x2

k + y2
k α

2
k − 2xkykαk

)
, (D4)

where rz
0 = |C+

0 |2 − |C−
0 |2 is the z component of the Bloch vector of the initial state. Assume that all the sequential POVMs are

the same with x1 = x2 = · · · = xm = x and y1 = y2 = · · · = ym = y, and all weak measurements with y 
 x ≈ (2S + 1)−1/2.
With the notation μ = y/x � 1, the probability distribution is written as

PIV = x2m

2

[(
1 + rz

0

) m∏
k=1

(
1 + μ2α2

k + 2μαk

)+ (1 − rz
0

) m∏
k=1

(
1 + μ2α2

k − 2μαk

)]
, (D5)

The lattice spin Hamiltonian corresponding to the probability distribution of the sequential POVMs is

HIV = − ln

{
x2m

2

[(
1 + rz

0

) m∏
k=1

(
1 + μ2α2

k + 2μαk

)+ (1 − rz
0

) m∏
k=1

(
1 + μ2α2

k − 2μαk

)]}
. (D6)

To the second order of μ, the Hamiltonian can be approximated as

HIV ≈ −
m∑

k=1

(
rz

0μαk + μ2α2
k

)− 4μ2
m∑

j<k

αjαk, (D7)

where we have neglected the trivial constant −2m ln x in HIV. Such a Hamiltonian describes the long-range spin-S Ising model
[47–49], which is known to have phase transitions similar to those of long-range spin-1/2 Ising models. Thus phase transitions
from weak to strong measurement are expected in sequential multioutcome POVMs.
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