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Correlations in local measurements and entanglement in many-body systems
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While entanglement plays an important role in characterizing quantum many-body systems, it is hardly possible
to directly access many-body entanglement in real experiments. In this paper, we study how bipartite entanglement
of many-body states is manifested in the correlation of local measurement outcomes. In particular, we consider
a measure of correlation defined as the statistical distance between the joint probability distribution of local
measurement outcomes and the product of its marginal distributions. Various bounds of this measure are obtained
and several examples of many-body states are considered as a testbed for the measure. We also generalize the
framework to the case of imprecise measurement and argue that the considered measure is related to the concept
of quantum macroscopicity.
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I. INTRODUCTION

Entanglement [1] is a distinctive feature of quantum
mechanics, which exposes fundamental differences between
quantum and classical physics [2–4] and can be exploited as
a resource for quantum information processing [5]. Entangle-
ment is also a useful tool for characterizing quantum states
in many-body systems [6,7]. For example, ground states of
gapped Hamiltonians typically follow an area law [7–10],
whereas random states follow a volume law of entangle-
ment [11,12]. Amid experimental developments in engineering
many-body quantum systems [13–16], a great deal of interest
has been generated in examining such features of many-body
entanglement in real experiments. For example, there have
been several proposals for measuring Rényi α = 2 entangle-
ment entropies [17–19] and their experimental realizations
[20,21]. Generally speaking, however, it is very hard to directly
measure the entanglement as it is a nonlinear function of the
state itself, not an observable. In order to measure the entangle-
ment, one needs to obtain the density matrix through a quantum
state tomography or find the appropriate relations to other mea-
surable quantities, which are nontrivial in many-body systems.

In this paper, we study the many-body entanglement in
terms of the correlation in local measurements. To be specific,
we consider a bipartite separation of many-body spin states
and positive-operator valued measures (POVMs) acting on
each party separately. We then investigate the correlation
in such local POVM measurements, which is quantified by
the statistical distance (total variation distance) between the
joint probability distribution of the measurement outcome and
the product of its marginal distributions. Formally, given a
quantum state ρAB of a composite system A ⊗ B and local
POVMs {Mi} and {Nj } acting on the subsystems A and B,
respectively, we consider

�D({Mi},{Nj }) ≡ 1

2

∑
i,j

| Tr[Mi ⊗ Nj (ρAB − ρA ⊗ ρB)]|,

(1)

where ρA = TrB ρAB and ρB = TrA ρAB . Letting PA(i) =
Tr[(Mi ⊗ 1B)ρAB], PB(j ) = Tr[(1A ⊗Nj )ρAB], and PAB

(i,j ) = Tr[(Mi ⊗ Nj )ρAB], this quantity can be written more
straightforwardly as

�D({Mi},{Nj }) = 1

2

∑
i,j

|PAB(i,j ) − PA(i)PB(j )|. (2)

For convenience, we will call this quantity a correlation in local
measurements (CLM) throughout the paper.

Apparently, for general mixed state ρAB , the CLM does not
necessarily capture the entanglement between A and B. On the
other hand, if the state ρAB is guaranteed to be pure, the CLM
should be nonzero for properly chosen POVMs if and only if
ρAB is an entangled state. Our aim is to study such relation
between the CLM and the entanglement in a quantitative
manner under the condition that ρAB is a pure many-body spin
state. Note that, by definition, the CLM has a direct relevance to
real experimental situations. Note also that the CLM is different
from conventional correlation functions of two local operators
like Tr[OA ⊗ OB(ρAB − ρA ⊗ ρB)] as the CLM is defined by
the probability distribution of the measurement outcome, not
by the expectation values of general operators. There have been
earlier works that studied correlation measures involving local
measurements [22–25]. However, the main focus of them was
on investigating quantum correlations that are not captured by
local measurements. Our focus, on the other hand, is on how far
one can access the quantum correlation only using local POVM
measurements, especially, in many-body systems. There also
exists a previous study of Eq. (2) [26], but it only dealt with
two-qubit states.

In Sec. II, we investigate the relation between the CLM
and other correlation and entanglement measures that have
been studied before [25,27,28]. We then examine, in Sec. III,
the CLM for several examples—Haar random states, spin
squeezed states, and the ground state of the Heisenberg XXZ

model—under the restriction that local measurements are
performed in the basis of a collective spin operator. In Sec. IV,
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we generalize the CLM to the case of imprecise measurement
and find its relation to the concept of quantum macroscopicity
[29–31]. We further investigate in Sec. V how the imprecise
measurement affects Bell’s inequalities and conclude the paper
in Sec. VI.

II. GENERAL PROPERTIES OF THE CLM

Before proceeding, it is worthwhile to mention the relation
between �D and another type of correlation measure defined
as

cov(A : B) = max
MA,MB

| Tr[MA ⊗ MB(ρAB − ρA ⊗ ρB)]|
‖MA‖‖MB‖ , (3)

where the maximization is carried over all operators MA and
MB acting on subsystems A and B, respectively. Here, ‖O‖ is
the operator norm of O given by the maximum eigenvalue of√

O†O. The correlation measure cov(A : B) has been inves-
tigated in various contexts [8–10,32,33]. The detailed relation
between cov(A : B) and �D is not clear. However, when we
restrict the maximization in Eq. (3) only to Hermitian oper-
ators, it is simple to show that 2 max{Mi },{Nj } �D({Mi},{Nj })
upper bounds cov(A : B).

Let us first investigate the relation between �D and
quantum mutual information I (A : B) = S(ρA) + S(ρB) −
S(ρAB), where S(ρ) = − Tr[ρ log ρ] is the von Neumann
entropy. Throughout the paper, all logarithms will be taken
to base 2.

Proposition 1. For a bipartite quantum state ρAB , the fol-
lowing inequality holds for any POVMs:

�D � T (ρAB) � min

{√
I (A : B)

2 log e
,
√

1 − 2−I (A:B)

}
, (4)

whereT (ρAB) = Tr |ρAB − ρA ⊗ ρB |/2 is the total correlation
[34,35] measured using the trace distance [27,28].

Proof.

�D({Mi},{Nj }) = 1

2

∑
i,j

| Tr[Mi ⊗ Nj (ρAB − ρA ⊗ ρB)]|

� 1

2
max
{Km}

∑
m

| Tr[Km(ρAB − ρA ⊗ ρB)]|,

(5)

where the maximization is carried over all valid POVMs {Km}
for the composite system A ⊗ B that satisfy

∑
m Km = 1

and Km � 0 for all m. The first inequality of the theorem
straightforwardly follows from the fact that the last line
in Eq. (5) is nothing but the trace distance D(ρAB,ρA ⊗
ρB); hence T (ρAB), where D(ρ,σ ) = Tr |ρ − σ |/2 [5]. The
second inequality consists of two parts. The first part is a
well-known Pinsker’s inequality, which states Tr |ρAB − ρA ⊗
ρB |/2 � √

I (A : B)/2 log 2 [36]. The second part comes from
the relations between quantum distances. It is known that
D(ρ,σ ) �

√
1 − F (ρ,σ )2, where F (ρ,σ ) = Tr[ρ1/2σρ1/2]1/2

is the fidelity between two quantum states. Using the relations
between the affinity A(ρ,σ ) = Tr[ρ1/2σ 1/2] [37] and other
quantities, A(ρ,σ ) � F (ρ,σ ) and − log A(ρ,σ ) � S(ρ||σ )/2
[38], the second inequality is obtained. Here, S(ρ||σ ) =

Tr[ρ log ρ − ρ log σ ] is the relative entropy between ρ and
σ and S(ρAB ||ρA ⊗ ρB) = I (A : B). �

We note that the Pinsker’s inequality is tighter when I (A :
B) is smaller, while it is meaningless when I (A : B) � 2 log e.
We also note that there is a previous study [26] that investigated
the relation between �D and I (A : B) for systems of two
qubits.

For pure state ρAB = |ψ〉 〈ψ |, I (A : B) = 2S(ρA) is twice
the entanglement entropy of |ψ〉, S(ρA) = − Tr[ρA log ρA].
Thus Proposition 1 implies that �D must be small when the
entanglement is small. Let us further investigate the relation
between �D and the entanglement for ρAB being pure. The
starting point is a simple proposition.

Proposition 2. A pure quantum state |ψ〉 is a separable state
of two parties (A and B) |ψ〉 = |φA〉 ⊗ |φB〉 if and only if
�D({Mi},{Nj }) = 0 for any POVMs {Mi} and {Nj }.

The question is what is the lower bound of �D({Mi},{Nj })
with an optimal choice of the POVMs when the pure state |ψ〉
is entangled? The following theorem gives a partial answer.

Theorem 1. For a pure state |ψ〉, there exist POVMs
{Mi},{Nj } such that �D({Mi},{Nj }) � 1 − P , where P =
Tr[ρ2

A] is the purity of the reduced density matrix.
Proof. We prove this theorem by explicitly constructing

the POVMs. Suppose that the Schmidt decomposition of
|ψ〉 is given by |ψ〉 = ∑

k

√
λk |kA〉 |kB〉 with

∑
k λk = 1,

where λk � 0 are Schmidt coefficients. Using the projective
measurements in the Schmidt basis {Mi = |iA〉 〈iA|} and {Nj =
|jB〉 〈jB |}, the probability outcomes are given by PAB(i,j ) =
λiδi,j , PA(i) = λi , and PB(j ) = λj . Here, δi,j is the Kronecker
delta function. Then, for these POVMs,

�D = 1

2

∑
i,j

|PAB(i,j ) − PA(i)PB(j )|

= 1

2

∑
i,j

|λiδi,j − λiλj |

= 1

2

⎡⎣∑
i

∣∣λi − λ2
i

∣∣ +
∑
i �=j

λiλj

⎤⎦. (6)

Using λi � λ2
i and 1 = ∑

i,j λiλj = ∑
i λ

2
i + ∑

i �=j λiλj , we
obtain

�D = 1 −
∑

i

λ2
i = 1 − P . (7)

�
From the theorem, �D({Mi},{Nj }) = 0 for all POVMs

implies P = 1, which means ρA is pure and hence ρAB is sep-
arable. Note that the lower bound 1 − P is the linear entropy,
which has been widely investigated in quantum information
theory. The linear entropy is a nice indication of entanglement
for pure states, and it is known that its convex roof extension
to mixed states is an entanglement monotone [39].

We can also consider a convex roof extension of the CLM.
Let us consider the following definition:

E(ρ) = min
{pk,|ψk〉}

∑
i

pi max
Mi,Nj

�D(|ψk〉), (8)

where the minimization is over all pure-state ensembles
{pk, |ψk〉} that give

∑
k pk |ψk〉 〈ψk| = ρ. Even though it is
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not an entanglement monotone generally, one can easily show
that E(ρ) = 0 if and only if ρ is a separable state.

III. CLM FOR COLLECTIVE SPIN MEASUREMENTS

So far, our discussion was general; we did not consider
any specific form of POVMs or a system. In this section,
we consider several examples of many-body spin systems
to investigate the properties of the CLM. To be specific,
we consider systems of N s = 1/2 spins composed of two
subsystems A and B, where N is even and the subsystem A

(B) contains the first (last) N/2 spins. As a natural choice,
we consider the case wherein each party performs a collective
spin measurement. For subsystems A, the spins are measured
in the basis of SA(α̂) = α̂ · SSSA, where α̂ is a unit vector
and SSSA = ∑

n∈A σσσ (n)/2 is the collective spin operator. Here,
σσσ (n) = {σ (n)

x ,σ (n)
y ,σ (n)

z } is the vector of Pauli spin operators for
the nth spin. We can obtain the POVM for SA(α̂) from the
decomposition

SA(α̂) =
N/4∑

i=−N/4

i
∑
μi

|i,μi〉 〈i,μi | , (9)

where i ∈ [−N/4,N/4] are possible measurement outcomes
and μi is the index for the degenerate subspace corresponding
to the outcome i. Then the POVM can be written as Mi(α̂) =∑

μi
|i,μi〉 〈i,μi |. Likewise, we also define SB(β̂) = β̂ · SSSB

and the corresponding POVM {Nj (β̂)} such that SB(β̂) =∑N/4
j=−N/4 jNj (β̂) for subsystem B. To simplify the notation,

the shorthand expression �D(α̂,β̂) will be used throughout this
section to designate �D({Mi(α̂)},{Nj (β̂)}) unless it confuses.

Before proceeding, let us first consider simple heuristic
examples.

Example 1. Let |ψ0〉 = (|↓〉⊗N + |↑〉⊗N )/
√

2 and |ψ1〉 =
(|↑〉⊗N−1 |↓〉 + |↓〉 |↑〉⊗N−1)/

√
2. Then �D(ẑ,ẑ) = 1/2 for

both the states. The possible outcome pairs (i,j ) from
the measurements are {(N/4,N/4),(−N/4,−N/4)} and
{(N/4,N/4 − 1),(N/4 − 1,N/4)}, respectively. For the same
states, correlation function 〈SA(ẑ) ⊗ SB(ẑ)〉 − 〈SA(ẑ)〉 〈SB(ẑ)〉
yields N2/16 and −1/4, respectively, which largely differ.
This example illustrates a stark difference between the CLM
and the correlation function. It also shows that the CLM does
not distinguish between bipartite entanglement and genuine
multipartite entanglement.

Example 2. Let us consider |ψ2〉 = C
∑

P (P |↓〉⊗N/4

|↑〉⊗N/4)(P |↓〉⊗N/4 |↑〉⊗N/4), where the summation is over
all possible permutations P and the same P is applied on
the two subsystems. The normalization constant C is given

by C = (N/2
N/4)

−1/2
. As the whole component states live in the

subspace of SA(ẑ) = SB(ẑ) = 0, we can see that PAB(i,j ) =
δi,0δj,0 and PA(i) = δi,0, PB(j ) = δj,0. Therefore, �D(ẑ,ẑ) =
0. On the other hand, when we compute the entanglement
entropy, we get S = log (N/2

N/4). Using Stirling’s formula, this
can be approximated as S ≈ N/2 ln 2 + O(log N ) for N  1,
which indicates that the entanglement is extensive. This result
illustrates that �D using collective spin measurement cannot
capture entanglement of some states.

A. Random states

In this subsection, we investigate the behavior of the CLMs
in z direction and optimized over all directions, i.e., �D(ẑ,ẑ)
and maxα̂,β̂ �D(α̂,β̂), for Haar random states. For this, recall
Levy’s lemma which implies that the values of a Lipschitz
continuous function f are all concentrated to its mean value
〈f 〉. Formally it is written as follows.

Theorem 2 (Levy’s lemma; see Ref. [40]): Let f : Sk → R
be a function with Lipshitz constant η and φ ∈ Sk be a point
chosen uniformly at random. Then,

Pr[|f (φ) − 〈 f 〉| > ε] � 2 exp(−2C(k + 1)ε2/η2) (10)

for a constant C > 0 that may be chosen as C = (18π3)−1.
We now prove the Lipschitz continuity of the CLM for fixed

directions.
Theorem 3. For fixed α̂ and β̂, �D(α̂,β̂) is a Lipschitz

continuous function of |ψ〉 with the Lipschitz constant η � 3.
Proof. Let |ψ〉 and |ψ ′〉 be two different pure states. The

difference of �D is given by∣∣∣∣∣∣1

2

∑
i,j

| Tr[Mi ⊗ Nj (ρAB − ρA ⊗ ρB)]|

−1

2

∑
i,j

| Tr[Mi ⊗ Nj (ρ ′
AB − ρ ′

A ⊗ ρ ′
B)]|

∣∣∣∣∣∣, (11)

where ρAB = |ψ〉 〈ψ | and ρ ′
AB = |ψ ′〉 〈ψ ′|. Mi and Nj are the

POVMs in directions α̂ and β̂, respectively. Then we can obtain

� 1

2

∑
i,j

| Tr[(Mi ⊗ Nj )(ρAB − ρ ′
AB)]

− Tr[(Mi ⊗ Nj )(ρ ′
A ⊗ ρ ′

B − ρA ⊗ ρB)]| (12)

� 1

2
[Tr |ρAB − ρ ′

AB | + Tr |ρA ⊗ ρB − ρ ′
A ⊗ ρ ′

B |], (13)

where we have used the reverse triangular inequal-
ity ||A| − |B|| � |A − B| for the first inequality and
Tr |ρ − σ | = max{Km}

∑
m |Km(ρ − σ )| for the last inequal-

ity. As Tr |ρA ⊗ ρB − ρ ′
A ⊗ ρ ′

B | � Tr |ρA ⊗ (ρB − ρ ′
B)| +

Tr |(ρA − ρ ′
A) ⊗ ρ ′

B | � 2 Tr |ρAB − ρ ′
AB |,

� 3
2 Tr |ρAB − ρ ′

AB |
= 3

2 Tr | |ψ〉 〈ψ | − |ψ ′〉 〈ψ ′| |
= 3

√
1 − | 〈ψ |ψ ′〉 |2 � 3‖ |ψ〉 − |ψ ′〉 ‖2. (14)

Therefore, the Lipschitz constant η � 3 is obtained. �
The above two theorems imply that, as N → ∞, the CLMs

for Haar random states converge to a certain value with a
vanishing variance. We numerically generated Haar random
states and obtained the CLM in z direction �D(ẑ,ẑ). The result,
averaged over 103 random states, is plotted in Fig. 1 along
with the linear entropy of a subsystem. It shows that while the
linear entropy of a subsystem increases with N and coincides
with the analytic result 1 − 〈P〉 = 1 − 2N/2+1/(2N + 1) [41],
the CLM in z directions decreases exponentially with N . The
collective spin measurement is thus inappropriate to capture
the entanglement of random states [11,12].
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4 6 8 10 12 14 16 18
N

10−2

10−1

100

1 −P
ΔD(ẑ, ẑ)

maxα̂,β̂ ΔD(α̂, β̂)

FIG. 1. CLM in z directions, optimal CLM for collective spin
measurements, and linear entropy of a subsystem, obtained for Haar
random states. For each N , 103 random states were taken and the
results were averaged. The green dots represent the analytic values
of the average linear entropy. The results show that the averaged
CLM for random states decreases whereas the averaged linear entropy
increases, indicating that for large N , the considered CLM hardly
capture the entanglement. The error bars for the linear entropy are
invisible as they are too small.

The behavior of �D(ẑ,ẑ) can be understood as follows.
Let the basis states in z direction be {|α〉 = |i,μi〉} and
{|β〉 = |j,μj 〉} for subsystems A and B, respectively, with
−N/4 � i,j � N/4. One can then write the state as |ψ〉 =∑

α,β Aα,β |α〉 |β〉. It can be shown that as N → ∞, |Aα,β |2 ap-
proaches 1/2N with a vanishing fluctuation (see Appendix A).
In such a limit, PAB(i,j ) = ( N/2

i + N/4)(
N/2

j + N/4)/2N and PA(i) =
PB(i) = ( N/2

i + N/4)/2N/2, leading to PAB(i,j ) = PA(i)PB(j ) and
hence vanishing �D .

We also numerically calculated the optimal CLM
maxα̂,β̂ �D(α̂,β̂) for each given random state. The result is
shown in Fig. 1 as a dashed curve. We obtained the result only
for N � 14 due to the computational cost in the optimization.
The result indicates that, for Haar random states, the optimiza-
tion over the measurement direction is not of much help in
identifying the entanglement.

B. Spin squeezed states

In this subsection, we consider one-axis twisted states that
are generated by applying a squeezing operator

Vμ = e−iνSx e−iμS2
z /2 (15)

to the spin coherent state in x direction |+〉⊗N , where |+〉 =
(|↑〉 + |↓〉)√2 [42] (for a review, see Ref. [43]). Here, Sx =
SA(x̂) + SB(x̂) and Sz = SA(ẑ) + SB(ẑ). This kind of squeezed
state has been experimentally generated in many different
setups [44–47]. Note that the squeezing in z direction is
followed by the rotation in x direction, making the state have
the maximal spin variance in z direction (see below). This
scheme is sometimes called a twist-and-turn spin squeezing
[48].

As spin coherent states and squeezing operators are sym-
metric under any permutations between spins, the resulting
squeezed states also live in a permutation symmetric subspace

0.00 0.05 0.10 0.15 0.20
μ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2
0

2

4

FIG. 2. �D(ẑ,ẑ) (blue curve), linear entropy of a subsystem (red
dotted curve), and the upper bound from Proposition 1 (green dashed
curve), obtained for spin squeezed states Vμ |+〉⊗N as a function of the
squeezing strength μ. The system size is N = 200. The inset shows
the entanglement entropy for comparison.

of the total Hilbert space. One may use a vector space spanned
by Dicke states to efficiently represent this state. Dicke states
are given by

|N,k〉 =
(

N

k

)−1/2 ∑
P

P (|↑〉⊗k |↓〉⊗N−k) (16)

for 0 � k � N , where the summation runs over all possible
permutations. It is easy to show that when we divide a sub-
space generated by Dicke states into two subsystems of N/2
spins, Dicke states in each subsystem (|N/2,k〉) also become
a basis set, i.e., |N,k〉 = ∑k

r=0 Cr |N/2,r〉A |N/2,k − r〉B .
Consequently, the entanglement entropy of any permutation
symmetric state is upper bounded by log(N/2 + 1).

Expectation values and the variances of spin operators for
the spin squeezed state Vμ |+〉⊗N are calculated in Ref. [42].
It shows

〈Sx〉 = N

2
cosN−1 μ

2
, 〈Sy〉 = 〈Sz〉 = 0, (17)

〈
�S2

x

〉 = N

4

[
N

(
1 − cos2(N−1) μ

2

)
− N − 1

2
A

]
, (18)

〈
�S2

y,z

〉 = N

4

{
1 + N − 1

4
[A ±

√
A2 + B2 cos(2ν + 2δ)]

}
,

(19)

where A = 1 − cosN−2 μ, B = 4 sin μ

2 cosN−2 μ

2 , and δ =
1
2 arctan B

A
.

For the system size N = 200, we performed numerical
calculations for ν = π

2 − δ that maximize 〈�S2
z 〉 and minimize

〈�S2
y 〉. In Fig. 2, �D(ẑ,ẑ) and the linear entropy of a subsystem

are plotted with respect to the squeezing strength μ. For
comparison, the upper bound of the CLM from Proposition 1
and the entanglement entropy are also plotted. All those results
show similar functional behaviors, suggesting that the CLM is
appropriate to capture the entanglement in this case. One may
compare �D(ẑ,ẑ) with the value for the GHZ state (|ψ0〉 in
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Jz/J

0.0
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Δ

D
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1
−

P ΔD(ẑ, ẑ)

ΔD(x̂, x̂)

1 − P

−2 8
0

1

2

FIG. 3. CLMs in x and z directions and linear entropy 1 − P of
a subsystem for the ground state of the Heisenberg XXZ model. The
inset shows the entanglement entropy for comparison.

Example 1), for which �D = 0.5. We find that �D(ẑ,ẑ) � 0.5
for μ � 0.04.

C. Ground states of the Heisenberg X X Z model

As a final example, we consider the ground state of the
one-dimensional Heisenberg XXZ model. The Hamiltonian
of the model is given by

H =
N∑

n=1

[
J
(
σ (n)

x σ (n+1)
x + σ (n)

y σ (n+1)
y

) + Jzσ
(n)
z σ (n+1)

z

]
, (20)

where J > 0 is the interaction strength and Jz/J determines
the strength of anisotropy. It is well known that this model
is solvable using the Bethe ansatz. For J > 0, the model is
gapless in thermodynamic limit (N → ∞) for −1 < Jz/J �
1. When Jz/J < −1, two degenerate ground states are |↑〉⊗N

and |↓〉⊗N . As there is no spontaneous symmetry breaking
for finite N , we take (|↑〉⊗N + |↓〉⊗N )/

√
2, which is the

GHZ state we have studied in Example 1, as the ground
state for Jz/J < −1. For Jz/J > 1, the model shows the
gapped antiferromagnetic phase [49]. The quantum phase
transition at Jz/J = −1 is the first order and the infinite order
Kosterlitz-Thouless transition occurs at Jz/J = 1. We note
that this Hamiltonian models some real materials [50] and
is implementable using engineered systems such as optical
lattices [51] and trapped ions [52,53] (see also Ref. [54] which
provides the summary of theoretical proposals and experiments
of this model).

For the system size N = 24, we obtained the ground state
using the Lanczos method. In Fig. 3, �D in x and z directions
and the linear entropy 1 − P are plotted for −2 � Jz/J �
8. We have obtained �D(ẑ,ẑ) � 0.5 (�D for the GHZ state)
for −1.0 < Jz/J � 0.66. The first-order phase transition at
Jz/J = −1 is directly seen from the sudden changes of �D

and 1 − P . There is a crossing of �Ds in x and z directions
at Jz/J = 1 as the system has a full SU(2) symmetry at that
point. Some singular points in �D(x̂,x̂) that are nothing to do
with a quantum phase transition appear near Jz/J ≈ 0.3 and
≈1.7.

When Jz/J  1, the ground state is the superposition
of two Néel ordered states |↑↓ · · ·〉 + |↓↑ · · ·〉. The joint

8 12 16 20 24 28
N

0.4

0.5

0.6

0.7

0.8

Δ
D

(ẑ
,ẑ

)

FIG. 4. CLM in z direction for the ground state of the Heisenberg
XXZ model for Jz/J = −1+, 0, and 1 (from top to bottom) as a
function of N . Inset: log-log plot of N versus 1 − �D , which suggests
�D ≈ 1 − cN−α scaling.

probability distribution of the measurement in z direction
is given by PAB(i,j ) = δi,0δj,0. In this case, �D(ẑ,ẑ) = 0 is
obtained and this is consistent with the result in Fig. 3. By
rotating the state, we can also obtain the probability distribution
for the measurement in x direction. A simple calculation yields
PAB(i,j ) = ( N/2

i + N/4)(
N/2

j + N/4)/2N−1 when i + j + N/2 is even
and PAB(i,j ) = 0 otherwise. Using this, �D(x̂,x̂) = 1/2 is
obtained, which also agrees with our numerical result.

We also numerically obtained �D(ẑ,ẑ) at Jz/J = −1+, 0,
and 1 for the system sizes N that are multiples of 4, which
are plotted in Fig. 4. These values of N are used as the ground
states are translation invariant, i.e.,T |GS〉N = |GS〉N (for even
N that is not a multiple of 4, T |GS〉N = − |GS〉N ). The result
shows that �D(ẑ,ẑ) is increasing with N . This indicates that a
relatively large value of CLM can be obtained for any system
size. We also find that this increasing behavior follows a power
law that is typical for critical systems.

IV. EFFECTS OF MEASUREMENT IMPRECISIONS

In practice, any measurement in experiments is imperfect
to some degree. Then, the measurement outcomes are not
perfectly discriminated and the CLM �D({Mi(α̂)},{Nj (β̂)})
is thus poorly defined. This motivates us to consider the cases
wherein the collective spin measurement of SA(α̂) and SB(β̂)
has a finite resolution. For subsystem A, the Kraus operators
for this type of measurement can be written as [55]

Eσ (α̂; x) =
N/4∑

i=−N/4

√
pσ (x,i)Ei(α̂), (21)

where {Ei(α̂)} are the Kraus operators for Mi(α̂), given by
Mi(α̂) = Ei(α̂)†Ei(α̂). In our case, Ei(α̂) = Mi(α̂) as Mi(α̂)
is a projection operator. Here, pσ (x,i) is a smoothing func-
tion, which is a probability distribution function of con-
tinuous variable x, i.e.,

∫
x∈DA

dx pσ (x,i) = 1. The proba-
bility pσ (x,i)dx means the probability to obtain measure-
ment outcomes in [x,x + dx] when the state is actually i.
Here, σ is a parameter which determines the resolution
of the measurement. The Gaussian (normal) distribution
pσ (x,i) = e−(x−i)2/2σ 2

/
√

2πσ 2 with x ∈ R is widely used.
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Using the Kraus operators, the POVM of continuous out-
comes is defined as Mσ (α̂; x) = Eσ (α̂; x)†Eσ (α̂; x). For sub-
system B, we similarly define the Kraus operator Fσ (β̂,y) =∑N/4

j=−N/4

√
pσ (y,j )Fj (β̂) and the corresponding POVM

Nσ (β̂; y) = Fσ (β̂,y)†Fσ (β̂,y). This kind of measurement is
also called a coarse-grained measurement [56].

The CLM �D we have used above is defined for measure-
ments with discrete outcomes. We define a continuous version
of the CLM as

�C({M(x)},{N (y)})

= 1

2

∫
x∈DA

∫
y∈DB

dx dy|PAB(x,y) − PA(x)PB(y)|, (22)

where DA,DB ⊂ R are the domains of the possible measure-
ment outcomes for subsystems A and B, respectively. Here,
the probability distribution functions are given by PAB(x,y) =
Tr[M(x) ⊗ N (y)ρAB], PA(x) = Tr[M(x)ρA], and PB(y) =
Tr[N (y)ρB]. We note that the properties of �D derived in
Sec. II remain valid for �C as a POVM with continuous
outcomes can be reduced to that with discrete outcomes as
far as the system is finite dimensional [57].

Example 3. Let us recall |ψ0〉 and |ψ1〉 from Example 1.
A simple calculation yields �C({Mσ (ẑ; x)},{Nσ (ẑ; y)}) =
erf(N/(4

√
2σ ))2/2 for |ψ0〉 and erf(1/(2

√
2σ ))2/2 for |ψ1〉

when we use the Gaussian smoothing function. Here, erf(x) =∫ x

−x
e−t2

dt/
√

π is the error function. Therefore, for large N 
1, the correlation of |ψ0〉 is detectable even with imprecise
measurement but that of |ψ1〉 is not. For instance, when N = 20
and σ = 2.0, �C ≈ 0.488 for |ψ0〉, but �C ≈ 0.019 for |ψ1〉.
We also note that when σ → 0+, �C → 0.5 for both states,
recovering �D in Example 1.

Our main point of this section is that the CLM with coarse-
grained measurements is related to the concept of quantum
macroscopicity. The following two theorems make the relation
more explicit.

Theorem 4 (Correlation disturbance).

�C({Mσ (x)},{Nσ (y)}) � 1 − F(|ψ〉 ,ρ ′
AB)2, (23)

where F(|ψ〉 ,ρ) = 〈ψ |ρ|ψ〉1/2 is the fidelity between a pure
state |ψ〉 and a mixed stateρ. Here,ρ ′

AB is the postmeasurement
state given by

ρ ′
AB =

∫
DX

dx

∫
DY

dy Eσ (x) ⊗ Fσ (y) |ψ〉 〈ψ | Eσ (x) ⊗ Fσ (y).

(24)

Proof. Using |f (x)−g(x)|= max[f (x),g(x)]− min[f (x),
g(x)] and f (x) + g(x) = max[f (x),g(x)] + min[f (x),g(x)],
we obtain |PAB(x,y) − PA(x)PB(y)| = PAB(x,y) + PA(x)
PB(y) − 2 min{PAB(x,y),PA(x)PB(y)}. Integrating both
sides, we obtain

�C({Mσ (x)},{Nσ (y)})

� 1 −
∫

DX

dx

∫
DY

dy min[PAB(x,y),PA(x)PB(y)]. (25)

The theorem follows from

PAB(x,y) = 〈ψ |[Eσ (x) ⊗ Fσ (y)]2|ψ〉
� | 〈ψ |Eσ (x) ⊗ Fσ (y)|ψ〉 |2 (26)

and

PA(x)PB (y) = 〈ψ |[Eσ (x) ⊗ 1]2|ψ〉 〈ψ |[1⊗Fσ (y)]2|ψ〉
� | 〈ψ |Eσ (x) ⊗ Fσ (y)|ψ〉 |2. (27)

We have used 〈ψ |A2|ψ〉 � 〈ψ |A|ψ〉2 for Hermitian A to
obtain the inequality in Eq. (26) and the Cauchy-Schwartz in-
equality 〈f |f 〉 〈g|g〉 � | 〈f |g〉 |2 with |f 〉 = [Eσ (x) ⊗ 1] |ψ〉
and |g〉 = [1⊗Fσ (y)] |ψ〉 for the inequality in Eq. (27). �

This theorem states that the CLM with coarse-grained
measurements is smaller than the disturbance the measurement
has caused. This relation resembles the well-studied relation
between quantum state disturbance and information gain [58].

Theorem 5. For the Gaussian smoothing pσ (x,i) =
e−(x−i)2/2σ 2

/
√

2πσ 2,

F(|ψ〉 ,ρ ′
AB)2 � exp

(
−V|ψ〉(SA(α̂) ⊗ 1) +V|ψ〉(1⊗SB(β̂))

4σ 2

)
,

(28)

where V|ψ〉(A) = 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2 is the variance of
operator A for quantum state |ψ〉.

The proof of the theorem can be found in Appendix B. The
steps for the proof are basically the same as those of Theorem 2
in Ref. [59]. We note that V|ψ〉(SA(α̂) ⊗ 1) + V|ψ〉(1⊗SB(β̂))
in the theorem has an obvious relation to the measure of
quantum macroscopicity defined as

M(|ψ〉) = max
A∈S

V|ψ〉(A), (29)

where S is the set of collective observables given by

S =
{∑

i

α̂(i) · σσσ (i) : |α̂(i)| = 1 for all i ∈ 1, . . . ,N

}
. (30)

The first definition of this measure appeared in Ref. [29]
and the measure has been developed in various contexts
[30,31] (see also Ref. [60] for a recent review). As V|ψ〉(SA ⊗
1) + V|ψ〉(1⊗SB) � max{V|ψ〉(SA ⊗ 1+1⊗SB),V|ψ〉(SA ⊗
1−1⊗SB)} and 2(SA ⊗ 1±1⊗SB) ∈ S, it is evident that
V|ψ〉(SA ⊗ 1) + V|ψ〉(1⊗SB) � M(|ψ〉)/4. Using this result,
we can rewrite Theorem 4 as

�C({Mσ (α̂; x)},{Nσ (β̂; y)}) � 1 − exp

(
−M(|ψ〉)

16σ 2

)
. (31)

Previous studies of quantum macroscopicity in many-body
spin systems have shown that a class of quantum states of N

spins |ψN 〉 can be regarded as a macroscopic superposition
if M(|ψ〉N ) = O(N2), whereas it cannot be if M(|ψ〉N ) =
O(N ) [29–31]. For example, a product state is not a macro-
scopic superposition as it gives M(|φ1φ2 . . . φN 〉) = N . More
recent studies have shown that Haar random states [61,62] and
asymptotic states in nonintegrable systems that thermalize also
show an M = O(N ) behavior [63]. Our result thus implies
that the correlations of those latter states with M = O(N )
cannot be detected if σ  √

N . In some literature [64–66], a
course-grained measurement with σ  √

N is considered as
a classical measurement in the sense that the measurement
hardly disturbs the state for large but finite N [55,56,67].
Following this line of arguments, our results suggest that the
correlation of pure entangled states |ψ〉 cannot be captured
with classical measurements if M(|ψ〉) = O(N ).
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V. IMPLICATION TO BELL’S INEQUALITIES

Let us consider nonlocality tests using the Bell-Clauser-
Horne-Shimony-Holt (Bell-CHSH) inequality [3] in our many-
body spin setting with imprecise measurements. The Bell-
CHSH function is defined as

B = |E(a,b) − E(a,b′)| + |E(a′,b′) + E(a′,b)|. (32)

Here, E(a,b) is the correlation function of observables with
dichotomic outcomes and (a,a′) and (b,b′) represent two
different measurement setups for subsystems A and B, respec-
tively. The Bell theorem states that B � 2 for local hidden
variable theories.

To construct a dichotomy observable in our spin measure-
ment setup, we define the measurement operator for subsystem
A as

A(a) =
∫ ∞

−∞
dx f (x)Mσ (a; x), (33)

where f (x) is an arbitrary function that gives either 1 or −1
according to x. Likewise, we also define B(b) for subsystem
B as

B(b) =
∫ ∞

−∞
dx g(y)Nσ (b; y). (34)

As in the previous section, σ denotes the degree of imprecision.
Here, a and b parametrize the directions of collective spin
measurements. In this setup, a measurement setting (a,b) can
be transformed to others (a′,b),(a,b′),(a′,b′) using local uni-
tary transforms. The correlation function E(a,b) for the Bell-
CHSH function is then defined as E(a,b) = Tr[ρABA(a) ⊗
B(b)]. Under this setting, the following theorem holds.

Theorem 6. The Bell-CHSH function B for pure state |ψ〉
is bounded as

B � 2 + 8

{
1 − exp

(
−M(|ψ〉)

16σ 2

)}
. (35)

Proof. For product state ρA ⊗ ρB , let Ẽ(a,b) = Tr[(ρA ⊗
ρB)A(a) ⊗ B(b)] and B̃ = |Ẽ(a,b) − Ẽ(a,b′)| + |Ẽ(a′,b′) +
Ẽ(a′,b)|. Then,

|E(a,b) − Ẽ(a,b)|

=
∣∣∣∣∫ dx

∫
dy f (x)g(y)Mσ (x) ⊗ Nσ (y)[ρAB − ρA ⊗ ρB]

∣∣∣∣
�

∫
dx

∫
dy|Mσ (x) ⊗ Nσ (y)[ρAB − ρA ⊗ ρB]|

= 2�C (36)

for arbitrary a and b. Moreover, it can be shown that

||E(a,b) − E(a,b′)| − |Ẽ(a,b) − Ẽ(a,b′)||
� |E(a,b) − E(a,b′) − Ẽ(a,b) + Ẽ(a,b′)| (37)

� |E(a,b) − Ẽ(a,b)| + |E(a,b′) − Ẽ(a,b′)|, (38)

where we have used the reserve triangular inequality ||A| −
|B|| � |A − B| to obtain the first inequality and the second
inequality follows from the triangular inequality. Likewise, we

also obtain

||E(a′,b′) + E(a′,b)| − |Ẽ(a′,b′) + Ẽ(a′,b)||
� |E(a′,b′) − Ẽ(a′,b′)| + |E(a′,b) − Ẽ(a′,b)|. (39)

Then the difference between the two Bell-CHSH functions is
bounded as

|B − B̃| � 8�C � 8

{
1 − exp

(
−M(|ψ〉)

16σ 2

)}
,

where we have used Eq. (31). This completes the proof as the
Bell-CHSH function for a product state is bounded by 2, i.e.,
B̃ � 2. �

This theorem indicates that, in order to observe a large
violation of the Bell-CHSH inequality, M(|ψ〉) should be suf-
ficiently large and/or σ should be sufficiently small. This eluci-
dates why previous studies have used macroscopic quantum su-
perpositions to show a violation of the Bell-CHSH inequality or
witness entanglement with imprecise measurements [68–71].

VI. CONCLUSION

We have investigated bipartite entanglement in many-body
spin systems in terms of the correlation in local measurements.
It turned out that the CLM is upper bounded by a function of
quantum mutual information for general mixed states and there
exist local POVMs that give a CLM larger than the linear en-
tropy of a subsystem for pure states. As a realistic example, we
have considered the case wherein local measurements are per-
formed in the basis of a collective spin operator. Under this re-
striction, while the CLM with appropriate spin directions prop-
erly captures the entanglement of spin squeezed states and the
ground state of the Heisenberg XXZ model, it does not capture
the correlation of Haar random states. We have also considered
the case of imprecise measurement and generalized the defini-
tion of the CLM accordingly. It turned out that the measure of
quantum macroscopicity gives a bound to the CLM with im-
precise measurement and similarly to the Bell-CHSH function.
This analysis indicates that in order to observe a large violation
of the Bell-CHSH inequality with many-body spin systems,
one needs to prepare an entangled state with a large quantum
macroscopicity. As a final remark, it would be interesting to
investigate if there is a certain class of POVM that reveals en-
tanglement of any pure state. Symmetric, informationally com-
plete POVMs (SIC-POVMs) might be one of such candidates.
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APPENDIX A: FLUCTUATION OF |Aα,β |2

In Sec. III A, we have argued that the CLM for Haar random
states goes to zero as N increases as |Aα,β |2 = | 〈α,β|ψ〉 |2
should approach 1/2N with a vanishing fluctuation. This can
be shown from the following theorem.
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Theorem 7. For any state |φ〉,

EU

(
|〈φ|U |0〉|2 − 1

d

)2

= O

(
1

d2

)
, (A1)

where d is the dimension of the Hilbert space and EU indicates
the average over all unitary operator U in terms of the Haar
measure.

Proof. Using EUUAU † = Tr[A]/d, we obtain

EU

(
|〈φ|U |0〉|2 − 1

d

)2

= EU |〈φ|U |0〉|4 − 1

d2
. (A2)

Therefore, we only need to calculate EU | 〈φ|U |0〉 |4. As

EU |〈φ|U |0〉|4

= 〈φ,φ|EU [U |0〉〈0|U † ⊗ U |0〉〈0|U †]|φ,φ〉, (A3)

the theorem follows from the well-known result (see, e.g.,
Ref. [72])

EUU |0〉〈0|U † ⊗ U |0〉〈0|U † = 1+F

d(d + 1)
, (A4)

where I andF are the identity and the swap operators in (Cd )⊗2,
respectively. �

The desired argument follows by choosing |φ〉 = |α,β〉 as
U |0〉 is a Haar random state and d = 2N .

APPENDIX B: PROOF OF THEOREM 5

Note that

F(|ψ〉,ρ ′
AB)2 =

∫
DX

dx

∫
DY

dy 〈ψ |Eσ (x) ⊗ Fσ (y)|ψ〉〈ψ |Eσ (x) ⊗ Fσ (y)|ψ〉

=
∑

i,i ′,j,j ′,
μi ,μ

′
iμj ,μ

′
j

exp

[
− (i − i ′)2 + (j − j ′)2

8σ 2

]
|〈i,μi,j,μj |ψ〉|2|〈i ′,μ′

i ,j
′,μ′

j |ψ〉|2

� exp

⎡⎢⎢⎢⎣ ∑
i,i ′,j,j ′,

μi ,μ
′
iμj ,μ

′
j

− (i − i ′)2 + (j − j ′)2

8σ 2
|〈i,μi,j,μj |ψ〉|2|〈i ′,μ′

i ,j
′,μ′

j |ψ〉|2

⎤⎥⎥⎥⎦,

where we have used
∫ ∞
−∞ dx p(x,i)1/2p(x,i ′)1/2 = exp[−(i − i ′)2/(8σ 2)] in the second equality and the Jensen’s inequality to

obtain the last expression. Then the proof is completed as∑
i,i ′,j,j ′,

μi ,μ
′
iμj ,μ

′
j

(i − i ′)2|〈i,μi,j,μj |ψ〉|2|〈i ′,μ′
i ,j

′,μ′
j |ψ〉|2 = 2V|ψ〉(SA ⊗ 1),

∑
i,i ′,j,j ′,

μi ,μ
′
iμj ,μ

′
j

(j − j ′)2|〈i,μi,j,μj |ψ〉|2|〈i ′,μ′
i ,j

′,μ′
j |ψ〉|2 = 2V|ψ〉(1⊗SB).
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