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Generation and manipulation of the quantum state of a single photon is at the heart of many quantum information
protocols. There has been growing interest in using phase modulators as quantum optics devices that preserve
coherence. In this Rapid Communication, we have used an electro-optic phase modulator to shape the state
vector of single photons emitted by a quantum dot to generate new frequency components (modes) and explicitly
demonstrate that the phase modulation process agrees with the theoretical prediction at a single-photon level.
Through two-photon interference measurements we show that for an output consisting of three modes (the
original mode and two sidebands), the indistinguishability of the mode engineered photon, measured through
the second-order intensity correlation [g2(0)] is preserved. This work demonstrates a robust means to generate
a photonic qubit or more complex state (e.g., a qutrit) for quantum communication applications by encoding
information in the sidebands without the loss of coherence.
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Quantum communication and computing protocols often
require a flexible and customizable single-photon source that
can form a link between distant nodes [1–3]. Swapping
entanglement between these nodes can be achieved utiliz-
ing the two-photon interference [Hong-Ou-Mandel (HOM)]
measurements [4–6], where the optimal interference to as-
sure indistinguishability requires that the spatial, temporal,
polarization, and spectral modes of the input photon wave
functions must be identical [6,7]. Thus manipulation of the
photonic degrees of freedom while maintaining coherence is
very important for many quantum information applications.

Single photons also function for cryptographic key dis-
tributions to enable transfer of information between two
remote parties [2,8], where quantum information is encoded
in the various degrees of freedom of a single photon.
Polarization qubits are typical, but are prone to decoherence
when transmitted through a fiber [9–11]. Frequency qubits
[12], on the other hand, are known to be robust against any
mechanically or environmentally induced fluctuation in a fiber
[13–15]. Frequency qubits can be generated through phase
modulation of a single photon [14,16], where the information
is encoded in the relative amplitude between the sidebands.
Recently, Lukens and Lougovski proposed a universal linear-
optical quantum computing (LOQC) platform using frequency
components generated from an electro-optic modulators [14].
Similarly, there has been proof-of-concept demonstrations of
the 1984 protocol of Bennett and Brassard (BB84) using
phase-modulated weak coherent sources [13,17].
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A quantum analysis of phase modulation was first discussed
by Louisell, Yariv, and Siegman [18]. Frequency conversion
is described as a two-mode coupling process with sinusoidal
coupling between the unmodulated and the new frequency
component. The coupling between the two modes is generated
through a periodic perturbation of the refractive index of the
medium [18]. Building on that work, Miroshnichenko et al.
explicitly derive a multimode Hamiltonian for a modulator
and give a fully quantized description of the phase modulation
with single photons, where the field amplitudes at different
frequency components are weighted by the Bessel coefficients
[19]. The work by Kolchin et al. [20] lays an experimental
foundation for the pulse shaping at a single-photon level
and has motivated several works on the topic [21–25]. The
timeliness for a demonstration is highlighted by the recent
publication of papers that use a phase modulator as a quantum
optics device that preserves quantum coherence [26–30].

In this Rapid Communication, we build on the work above
and use single photons from an isolated InGaAs quantum dot
to show agreement with the quantum analysis [19] when an
electro-optic phase modulator is used to produced frequency
sidebands centered around the emission frequency of the dot.
A HOM interferometer is used to demonstrate preservation
of quantum coherence in the resulting quantum coherent
superposition state. The measurements demonstrate a robust
means of manipulating a photonic qubit.

A single exciton in an InAs/GaAs quantum dot (QD)
nanostructure behaves very similarly to a two-level system
[31], where the single photons emitted by the nanostructures
can form excellent photonic qubits [32]. By resonantly exciting
a single QD with a continuous-wave (cw) laser, one can
generate a stream of single photons with up to a GHz emission
rate [33]. When the exciton is resonantly driven with a weak
excitation laser (the Rabi frequency is much less than the
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transition linewidth), it is shown that the coherence time of
the scattered single photons are the same as the excitation
laser with the mutual coherence between the laser and the
scattered photon ∼3 s [34,35]. This makes QDs a unique
source for generating an ultrabright stream of photons with
high single-photon purity [g(2) ∼ 0] and a long coherence time
for quantum communication applications that otherwise are not
possible with the down-conversion source or from an atomic
system [33,35–38].

A resonantly driven two-level system with a quasi-
monochromatic coherent source in the absence of decay
beyond spontaneous emission scatters the incident field elas-
tically (Rayleigh scattering) [39]. The scattered field inherits
the properties (including the spectral bandwidth) of the inci-
dent field while exhibiting sub-Poissonain statistics [35,40],
which we measure in a Hanbury Brown and Twiss (HBT)
interferometer with two fast single-photon detectors [40]. For
a two-level system in the rotating-wave approximation, the
second-order intensity correlation function for arbitrary field
strength is given by [41]

g(2)(τ ) = lim
t→∞

〈I (t)I (t + τ )〉
〈I (t)〉2

= 1 − [cos(μ|τ |)

+ γ + γ2

2μ
sin(μ|τ |)]e− 1

2 (γ+γ2)|τ |, (1)

with μ =
√

(�2
0− (γ−γ2)2

4 ), where I (t) is the intensity of the field
detected by a detector at time t , τ is the relative time difference
between the two detectors, �0 is the Rabi frequency, and γ2 and
γ are the spontaneous decay rate and dephasing rate of the QD,
where the lifetime is given by (2πγ2)−1. Physically, g(2)(τ )
is the probability of detecting a photon at t = τ if a photon
was detected at t = 0. For an ideal single-photon source,
g(2)(0) = 0.

In this Rapid Communication, we use a resonantly excited,
self-assembled InAs/GaAs QD with a narrow linewidth cw
laser in order to generate a stream of bright single photons
which are detected in a cross-polarization setup. The QDs are
embedded in an asymmetric distributed Bragg reflector (DBR)
cavity with a small Q factor of ∼90. We can detect a raw
single-photon count rate of 1.25 million per second with the QD
in study. Figure 1(a) is the measured raw data and a theoretical
fit using Eq. (1) for the second-order intensity correlation with
a resonantly excited single QD. The fit gives the radiative
lifetime to be 695 ± 50 ps. At τ = 0, g(2)(0) = 0.039 ± 0.01,
and is limited by the detector timing resolution. This indicates
the QD in the study is an excellent single-photon source.
Such a source with a vanishingly small multiphoton emission
rate would eliminate the well-known photon-number splitting
attack an eavesdropper could otherwise use on a coherent state
[42,43].

Figure 1(b) shows the radiative lifetime data from a res-
onantly excited single QD. The QD in study is excited with
50-ps pulses and the time-resolved emission histogram is built
by syncing the detected photons with the excitation pulse [44].
The red curve is an exponential fit to the data, which gives the
emission lifetime to be 745 ± 5 ps, consistent with the lifetime
extracted from the g(2) measurement.

To show the indistinguishability of the single photons, we
perform continuous-wave Hong-Ou-Mandel-type two-photon

FIG. 1. (a) Normalized second-order intensity correlation of a
single QD. At τ = 0 the raw coincidence count drops to g(2)(0) =
0.039 ± 0.01, confirming the single-photon nature of the emitted
stream of photons. The red curve is the theoretical fit to the data
obtained using Eq. (1). (b) Semilog plot of resonantly excited time
tagged fluorescence emission of a single QD. The red curve is a
single exponential with an offset fitted to the data, which gives the
emission lifetime to be 745 ± 5 ps. All error bars plotted in this Rapid
Communication are standard error of the mean.

interference measurements [45,46] in an unbalanced fiber
Mach-Zehnder interferometer by exciting the QD near satu-
ration. One arm of the interferometer is delayed 35 ns relative
to the other arm such that two photons meet at the second
beam splitter simultaneously. The long delay ensures there
is no interference due to the first-order coherence (i.e., g(1)).
The experimental setup for the HOM measurement is given in
Fig. 2(a).

When the incident photons are identical in all degrees
of freedom, the input photons exit through the same port
of the beam splitter [BS2 in Fig. 2(a)]. This results in a
drop in coincidence counts between the two detectors. The
HOM interference measurement can be calculated with the
second-order intensity correlation function. The normalized
coincidence probabilities for the HOM measurements are
given by [45]

P
(2)
‖ (τ ) = 1

2g(2)(τ ) + 1
4 [g(2)(τ − �τ ) + g(2)(τ + �τ )]

× (
1 − vce

−2 |τ |
τc

)
, (2)

P
(2)
⊥ (τ ) = 1

2g(2)(τ ) + 1
4 [g(2)(τ − �τ ) + g(2)(τ + �τ )], (3)

where P
(2)
‖ and P

(2)
⊥ correspond to the cases where the input

photons in BS2 are linearly copolarized and linearly cross-
polarized, respectively, and g(2) is the intensity correlation
function given in Eq. (1). The two beam splitters (BS1 and
BS2) used in the setup are 50 : 50 (R : T ) and polarization
insensitive, �τ is the relative time difference between the two
arms of the interferometer, τc is the coherence time of the
photons, and vc is the overlap of all the modes between the
two incident photons that takes the value from 0 (no overlap)
to 1 (perfect overlap). The overall indistinguishability of the
photons is quantified by a visibility function defined as [45]

VHOM(τ ) = P
(2)
⊥ − P

(2)
‖

P
(2)
⊥

. (4)
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FIG. 2. (a) Experimental setup for the two-photon interference measurements. The quantum dot is resonantly excited by a cw laser and
the collected photons are sent through a fiber phase modulator (turned off for this measurement) and an unbalanced fiber Mach-Zehnder
interferometer. The same setup with the first BS removed is used to measure the statistics of the emitted photons as seen in Fig. 1(b). (b)
Two-photon interference measurements with dot 1 for linearly copolarized and (c) linearly cross-polarized photons with the phase modulator off.
For copolarized photons, the g

(2)
HOM(τ = 0) goes to 0.19 ± 0.03. In the case of the cross-polarized photons, the value is 0.5, which is the classical

correlation value. The two side dips at τ = ±35 ns correspond to the relative path-length difference of the Mach-Zehnder interferometer where
the coincidence count is reduced due to the classical counting probability for single-photon source, and not due to the interference. Therefore,
the magnitudes of these dips are equal for the copolarized and cross-polarized cases. (d) and (e) are interference visibilities measured for dot 1
and dot 2. The red curve on (b), (c), and (d) and (e) are obtained from the theoretical fit given by Eqs. (2), (3) and (4) respectively.

For completely indistinguishable photons, the visibility goes
to 1 at τ = 0, whereas it goes to 0 for distinguishable
photons.

Figures 2(b) and 2(c) are the normalized raw HOM data
for dot 1 performed with the phase modulator off for linearly
copolarized and cross-polarized photons, respectively. The red
lines are the theoretical fit to the data obtained from Eqs. (2)
and (3). At τ = 0, for the copolarized case, the normalized
coincidence counts drop to 0.19 ± 0.03 [Fig. 2(b)], much
below the classical correlation limit of 0.5, whereas for the
orthogonal case, the coincidence rises to 0.5 ± 0.03 [Fig. 2(c)].
We obtain a visibility of 0.74 ± 0.06 with the dot (dot 1) used
in the study. A different dot (dot 2)1 from the same sample has a
HOM visibility of up to 0.94 ± 0.04 [Fig. 2(e)]. The reduction
in visibility [Fig. 2(d)] from the ideal case of unity is likely
due to the spectral diffusion of the QD emission frequency,
and uncontrolled polarization rotation of the fiber before the
second beam splitter.

To demonstrate the ability to alter the frequency state of
a stream of single photons emitted from an isolated QD,
we resonantly excite the QD with a cw laser as above and

1Experimental parameters (such as the scanning étalon) for this
study were optimized for dot 1; however, we reported data from dot
2 due to its high visibility.

the scattered light is passed through an electro-optic phase
modulator driven by a sinusoidal microwave field with fre-
quency �. The state vector of a single photon becomes
modified with additional frequency modes that were previously
unoccupied. The new frequency components are separated
by the harmonics of the microwave field with amplitudes
determined by the microwave field modes coupling with the
optical field [19]. For a monochromatic input field (|ψin〉 =
|1ω0〉) of the single photon centered at ω0, at the limit that a
large number of microwave modes are coupled with the optical
field, the output state can be expanded as an infinite sum of the
Bessel coefficients of the first kind [19,47],

|ψout〉 =
∞∑

n=−∞
Jn(β)ei(θ−π/2)n|1ω0+n�〉, (5)

where β is the modulation index and θ is the phase of
the microwave field. See the Supplemental Material for
details [48].

Figure 3(a) is the intensity profile of the phase-modulated
single photons emitted by a QD driven resonantly at the sat-
uration point. The bottom curve is the unmodulated spectrum
of the single photons emitted by the QD. The remaining
curves show the modified spectrum of a single photons after
the phase modulator, driven by a 5-GHz microwave field
at various modulation indices. The total integrated counts
remain constant for all modulation indices. The data are fitted
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FIG. 3. (a) Scanning Fabry-Pérot spectrum of single photons
after sending through the electro-optic phase modulator for various
modulation indices (β). The solid lines are the Lorentzian fit to the
data. The phase modulator is driven with a 5-GHz microwave driver.
The relative variance of the intensity of the sidebands is due to the
finite discrete stepping resolution of the scanning étalon. (b) Integrated
counts as a function of modulation index for the central peak and
the average of the first two sidebands obtained for the fit. The data
are normalized by taking the integrated count for the unmodulated
case to be one. The solid lines are the square of the zeroth-, first-,
and second-order Bessel coefficients plotted as a function of the
modulation index. The inset of (b) shows suppression of the carrier
component within the extinction contrast with a modulator driven at
3π/4 modulation index.

with multiple Lorentzian peaks with weighted coefficients.
Figure 3(b) shows the integrated counts for the central peak
(ω0) and the average of the first two sidebands (ω0 ± � and
ω0 ± 2�) obtained from the fit for various modulation indices
(β). The data are normalized by taking the integrated counts for
the unmodulated case to be one. The solid lines are the square of
the first three Bessel coefficients (|Jn(β)|2, n = 0,1,2) plotted
as a function of the modulation index. The fit to the data
shows excellent agreement with the theoretical prediction for
the phase modulation of a single-photon state [19]. As one
can see from Fig. 3(b), the single photons are modulated
up to the π modulation index. As a particularly important
example, Fig. 3(b) (inset) shows suppression of the carrier
component—for a different quantum dot and 1.7-GHz drive
frequency—to within the extinction contrast, when the single
photons are modulated at 3π/4 index. The bandwidths of the
sidebands are the same as the bandwidth of the unmodulated
carrier field, within the margin of error, limited by the finesse of
the scanning Fabry-Pérot étalon. The sidebands are generated
at the harmonics of the driving field. The linewidths of
the primary and sidebands are given by the excitation laser
linewidth when the scattering process is dominated by elastic
scattering; however, in these experiments we are operating
at powers where the Rabi frequency is close to the natural
linewidth. Here, Mollow shows the line broadens considerably
compared to the near delta-function behavior associated with
quasimonochromatic excitation [39].

After the QD photons pass through the phase modulator,
it is important to verify that the photon indistinguishability is
not degraded substantially by the phase modulation process. If
the modulation process destroys the relative phase information
between sidebands at the single-photon level, or if the sideband

FIG. 4. Two-photon interference measurements for linearly copo-
larized photons modulated at (a) 7 GHz, (c) 5 GHz, and (e) unmod-
ulated case. The interference visibility for each driving frequency
is plotted with the same order in the right column. For (a)–(d), the
modulator is driven at β ∼ π/3 index and all frequency components
are used in the HOM measurements. The red curves are obtain from
the theoretical fit given by Eqs. (2)–(4) for the unmodulated case.
The dashed blue lines in the left figures are the classical correlation
limit; the normalized coincidence counts below the line indicate the
quantum interference between the two photons. The interference
visibility, and thus the indistinguishability, are well preserved for the
modulated photons.

generation happens as a statistical process, the effect of them
would be manifested as beating in the coincidence counts in
an Electro-Optic Modulator (EOM) HOM experiment [49,50].
Due to the finite detector resolution used in the experiment, the
oscillations would be washed out, resulting in a substantial in-
crease of the two detectors firing simultaneously [P12(τ = 0)]
for colinearly polarized photons. In contrast, if the frequency
components are generated in a coherent superposition and the
relative phase information between sidebands is preserved, the
input photons would be identical from shot to shot, resulting
in high interference visibility [32].

To see this, we repeat the HOM interference measurements
between subsequent photons with the phase modulator turned
on and driven by a sinusoidal monochromatic microwave
source. The modulation index is β ∼ π/3 [blue curve in
Fig. 3(a)] where the ratio of carrier mode intensity to the
first sidebands is 2.7 : 1. Several HOM measurements are
performed with driving frequencies ranging from 2 to 7 GHz.
The HOM interference for the linearly copolarized photons
with the modulated spectra and the interference visibility are
plotted in Figs. 4(a)–4(d). The red curves are the theoretical
fit to the data given by Eqs. (2)–(4) for the unmodulated case.
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Figures 4(e) and 4(f) are the detailed plots of Figs. 2(b) and
2(d), showing HOM interference visibility for the unmodulated
photons plotted together for comparison. As seen in Figs. 4(b),
4(d) and 4(f), the visibility of the modulated photons remains
within the error bars of the unmodulated case and indicates
that the modulation process generates additional frequency
components as a superposition to the carrier component at a
single-photon level.

In summary, we have demonstrated that the frequency
spectrum of a stream of single photons emitted by a sin-
gle QD can be modified to generate well-defined frequency
sidebands using a phase modulator. We have shown that the
sidebands inherit the properties of the unmodulated photon.
Using multiple phase modulators in double Mach-Zehnder in-
terferometers [29,51], one can actively suppress the unwanted
frequency components to construct a photonic frequency qubit
|ψqubit〉 = c0|ω0〉 + c1|ω1〉 [13,14,17,47,52]. In addition, there
exist proposals to use the carrier component and the first pair
of sidebands (ω0,ω0 ± �) as two incompatible bases for BB84

protocols [17]. As the modulator is embedded in a single-mode
fiber, all of the frequency components are in the same spatial
mode. This allows transferring such qubit states over a long
distance using fiber optic networks without the problems that
characterize polarization qubits [14]. Through HOM measure-
ments, we have demonstrated that the indistinguishability of a
stream of individual photons emitted by a QD is fully preserved
in the presence of additional frequency sidebands generated
via a phase modulator for a range of modulation frequencies.
These results demonstrate the suitability of this approach for
use in the development of frequency qubits from narrow-band
single photons and as a basis for a quantum key distribution
(QKD) protocol such as BB84.
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