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Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature:
The Goldstone phonon and its Landau damping
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We develop a microscopic theory of the dynamic structure factor to describe the Bogoliubov-Anderson-
Goldstone phonon mode and its damping rate in a strongly interacting Fermi gas at finite temperature. It is based on
a density functional approach—the so-called superfluid local density approximation. The accuracy of the theory
is quantitatively examined by comparing the theoretical predictions with recent experimental measurements for
the local dynamic structure factor of a nearly homogeneous unitary Fermi gas at low transferred momentum
[S. Hoinka et al., Nat. Phys. 13, 943 (2017)], without any free parameters. We calculate the dynamic structure
factor as functions of temperature and transferred momentum, and determine the temperature evolution of the
phonon damping rate, by considering the dominant decay process of the phonon mode via scatterings off fermionic
quasiparticles. These predictions can be confronted with future Bragg scattering experiments on a unitary Fermi
gas near the superfluid transition.
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Introduction. The understanding of the density fluctuation
spectrum of superfluid 4He plays a central role in the early de-
velopment of quantum many-body physics [1,2]. The modern
concept of quasiparticles began with Landau’s original theory
of superfluid 4He [3]. The extensive studies of either Brillouin
and Raman light scattering [4] or inelastic neutron scattering
[2] in such systems led to the discovery of phonons and rotons.
In particular, the measurements of the sound attenuation reveal
the underlying decay mechanism of quasiparticles. At low
temperatures (i.e., T � 0.6 K ∼ 0.3T He

c ) in the collisionless
regime, the decay rate of phonons � is due to the three-
phonon Landau-Beliaev process and exhibits a characteristic
ωT 4 dependence on the phonon frequency ω [4]. At higher
temperatures (T � 1.0 K ∼ 0.5T He

c ), superfluid 4He crosses
over to the hydrodynamic regime and the damping rate of
phonons instead shows a quadratic ω2 dependence [3].

After nearly 50 years, the community of quantum physics
welcomes the arrival of another strongly interacting many-
body system [5], a unitary Fermi gas at the cusp of the
crossover from Bose-Einstein condensates (BECs) to Bardeen-
Cooper-Schrieffer (BCS) superfluids [6]. This novel fermionic
superfluid is unique, owing to the unprecedented accuracy in
tuning almost all the controlling parameters of the system [7].
To date, there are already a number of milestone observations
of a unitary Fermi gas, confirming its high-temperature su-
perfluidity [8], measuring the zero-temperature equation of
state [9], revealing the universal thermodynamics [10–13],
and probing the second sound [14]. The density fluctuation
spectrum is also measured, however, restricted to collective
oscillations with discrete frequencies [15–19], due to the very
existence of a harmonic trapping potential that is necessary
to hold atoms from escaping. Only most recently, the density
excitation spectrum of a nearly homogeneous unitary Fermi gas
has been obtained at Swinburne University of Technology, by
applying the low-momentum two-photon Bragg spectroscopy

to determine the local dynamic structure factor near the trap
center [20]. The purpose of this Rapid Communication is
to present a microscopic theory that quantitatively explains
the observed Bogoliubov-Anderson-Goldstone phonon mode
and to provide reliable theoretical predictions on the phonon
damping for future experimental confirmation.

The development of a quantitative description of the density
response of a strongly interacting Fermi superfluid is by no
means an easy task [21–30]. There is no small parameter
to control the precision of the theory due to the divergent
scattering lengthas in the unitary limit [6]. For the experimental
work at Swinburne, the data have been qualitatively understood
using a standard random-phase-approximation (RPA) theory,
with a modified chemical potential as a fitting parameter [20].
The calculated spectrum overestimates the phonon peak (i.e.,
more than twice in height) and accounts for only two-thirds
the measured width. This good but somewhat unsatisfactory
agreement is partly because of the violation in the f -sum
rule, as a result of the large modification to the mean-field
chemical potential [20]. The quantitative agreement between
our microscopic theory and experiment without any adjustable
parameters, as found in this Rapid Communication, is therefore
highly nontrivial.

The establishment of an accurate density response theory
also allows us to identify the main decay mechanism for
Goldstone phonons. In contrast to the three-phonon Landau-
Beliaev processes as previously suggested [31], we clarify that
the phonon damping is dominated by the inelastic process of
absorption or emission by fermionic quasiparticles [32–34].
We determine the inverse quality factor �/ω of a unitary Fermi
gas as functions of temperature and transferred momentum.
These predictions could be readily examined in state-of-art
experiments in cold-atom laboratories.

Density response theory within SLDA. We start by briefly re-
viewing the superfluid local density approximation (SLDA) of
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a unitary Fermi gas [35,36] and the resulting improved SLDA-
RPA theory for density response functions [29]. As the s-wave
scattering lengthas diverges in the unitary limit, the low-energy
physics of the system can be well governed by a regularized
energy density functional E[τc(r, t ), n(r, t ), νc(r, t )],

E[τc, n, νc] = τc

2m
+ β

3(3π2)2/3

10m
n5/3 + geff|νc|2, (1)

where τc = 2
∑

|k|<� |∇vk|2 is the kinetic density, n =
2

∑
|k|<� |vk|2 the number density, νc = ∑

|k|<� ukv
∗
k the

anomalous Cooper-pair density, uk(r, t ) and vk(r, t ) are the
Bogoliubov quasiparticle wave functions, to be determined
by solving a generalized Bogoliubov–de Gennes equation for
momentum k below the cutoff momentum � [29,35–37],
and g−1

eff ≡ mn1/3/γ − ∑
|k|<� m/k2 is the inverse effective

coupling constant. The form of the above energy density
functional is the most general form allowed by the scale
invariance, which is satisfied at unitarity. The two temperature-
independent parameters β and γ can be uniquely fixed by
requiring that the resulting chemical potential μ and pairing
gap � agree with those calculated by microscopic theories or
measured experimentally [38]. As the pairing gap is related to
the anomalous density νc by �(r, t ) = −geffνc(r, t ), we may
rewrite the interaction part of the density functional as

Eint = β
3(3π2)2/3

10m
[n(r, t )]5/3 + |�(r, t )|2

geff
. (2)

Let us consider the fluctuations in the number densities
n↑(r, t ), n↓(r, t ), and Cooper-pair density νc(r, t ) and its
complex conjugate ν∗

c (r, t ), to be collectively denoted as δni

or δnj (i, j =↑,↓, c, c∗). Here, we have split the total density
n(r, t ) into the spin-up and spin-down components to allow
the calculation of spin-density dynamic structure factor. These
local fluctuations induce a self-generated mean-field potential∑

j EI
ij δnj , where EI

ij = (δ2Eint/δniδnj ) [21,23]. As a result,
the dynamical response function takes the standard RPA
form, χ = χ0[1 − χ0EI ]−1, where χ0 is the bare response
function without the inclusion of the induced potential [21].
The density response function is a summation of χij in the
density channel, i.e., χnn(k, ω + i0+) = χ11 + χ12 + χ21 +
χ22 = 2(χ11 + χ12). The dynamic structure factor is given by
the imaginary part of χnn, i.e., S(k, ω) = −Im χnn/[π (1 −
e−h̄ω/kBT )].

In our previous work [29], we have derived the expression
for the matrix EI and calculated the dynamic and static
structure factor at zero temperature. We have found that the
SLDA-RPA dynamic structure factor satisfies the important
f -sum rule and compressibility sum rule and the static struc-
ture factor S(k) agrees very well with the latest quantum
Monte Carlo result for k < kF [39], where kF is the Fermi
wave vector. The excellent agreement strongly indicates that
our SLDA-RPA theory could be quantitatively reliable near
the unitary limit at low temperature. Here, we confirm this
anticipation by the more stringent comparison with the recent
experimental measurements at finite but low temperature [20],
without any free parameters.

Quantitative comparison. To foster the comparison, it
should be noted that the experimentally measured density
fluctuation spectrum includes instrumental broadening due to

FIG. 1. The comparison between the SLDA-RPA theoretical
predictions and the experimental data for −ω Im χnn(k, ω)/π ≡
ω(1 − e−h̄ω/kBT )S(k, ω) at three sets of experimental conditions
[20]: (a) the unitary limit with 1/(kF as ) = 0, T = 0.09TF , and
k = 0.55kF , (b) 1/(kF as ) = −0.11, T = 0.082TF , and k = 0.60kF ,
and (c) 1/(kF as ) = −0.21, T = 0.078TF , and k = 0.59kF . The blue
solid lines take into account the spectral broadening due to the
finite duration of the Bragg pulse and due to the slight density
inhomogeneity around the trap center (see text for more details), while
the orange dotted lines with a shadow report the original SLDA-RPA
results before the convolutions with the spectral broadening functions.
The inset in (a) highlights the comparison near the pair-breaking
excitations. In (b) and (c), the pair-breaking energy 2� is explicitly
indicated by an arrow. The theoretical predictions are normalized
to have the same area as the experimental results, according to the
f -sum rule − ∫ ∞

0 ω Im χnn(k, ω)/πdω = k2/(2m). We have checked
the f -sum rule in the SLDA-RPA theory at both zero temperature
[29] and finite temperature. The satisfaction of the f -sum rule in
the experimental measurement was previously used to confirm the
universal relation for the static structure factor [40,41].

the finite duration of the Bragg pulse. It can be viewed as the
intrinsic response function convoluted with a sinc line shape
[42,43],

Im χ (Br)
nn (k, ω) =

∫ ∞

−∞
dω′ Im χnn

(
k, ω′)

πσB

sinc2

[
ω − ω′

σB

]
, (3)

where sinc(x) ≡ sin(x)/x and the energy resolution σB =
2/τBr is set by the pulse duration (τBr 	 1.2 ms [20]). In
addition, the experimental spectrum also includes broadening
arising from the slight density inhomogeneity near the trap
center (δn/n ∼ 0.08) [20]. As the Fermi energy εF ∝ n2/3 at
unitarity, we estimate the variation δεF 	 0.06εF . We account
for this trap-induced broadening by further convoluting the
spectrum with a Lorentzian line shape,

Im χ (exp)
nn (k, ω) =

∫ ∞

−∞
dω′ (σT /π )Im χ (Br)

nn (k, ω′)[
(ω − ω′)2 + σ 2

T

] , (4)

where 2σT = δεF is the full width at half maximum.
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FIG. 2. Temperature evolution of the dynamic structure factor of
a unitary Fermi gas at the transferred momentum k = 0.5kF : (a) The
original SLDA-RPA results S(k, ω) and (b) the more experimentally
relevant predictions −Im χnn(k, ω)/π ≡ (1 − e−h̄ω/kBT )S(k, ω), af-
ter convolutions with the spectral broadening functions. The inset in
the lower panel highlights the density response near the pair-breaking
threshold 2�.

Figure 1 presents the comparison between the experimental
spectra (symbols) and theoretical predictions obtained after
performing the two convolutions (solid lines) [44], for three
sets of parameters. We have used the zero-temperature equa-
tions of state given by a Gaussian pair fluctuation theory
[45] as the inputs to determine the parameters β and γ at
different interaction strengths [29]. At unitarity, this leads
to β 	 −0.431 and 1/γ 	 −0.091 [46]. The results for the
density response function before the convolutions are also
shown by dashed lines with a shadow. There is an excellent
agreement for the entire spectrum, both at the unitary limit
[Fig. 1(a)] and near unitarity [Figs. 1(b) and 1(c)]. Our theory
greatly improves the previous RPA explanation [20], in the
sense that (i) it removes the necessity of introducing a fitting
parameter, to fit the measured peak position ω0(k) of the
Goldstone phonon mode; (ii) it fully accounts for the observed
width and height of the peak; and (iii) it does not need to
scale, in order to match the amplitude of the measured pair-
breaking excitations at ω ∼ 2�. The last point is particularly
clear in Fig. 1, as the broad single-particle excitations are
essentially unaffected by the instrumental broadening and trap
inhomogeneity. The agreement is therefore highly nontrivial
and actually it emphasizes the importance of the significant
renormalization of single-particle behavior, due to the strong
pairing effect, which is indeed taken into account in our theory
via a density functional approach.

T dependence of the Goldstone mode. By establishing the
reliability of our SLDA-RPA theory, we turn to consider
the temperature evolution of the dynamic structure factor in
the unitary limit, as shown in Fig. 2(a). The experimentally

FIG. 3. The damping width of the Goldstone mode of a unitary
Fermi gas at k = 0.5kF , as a function of temperature. The black
solid line shows the original SLDA-RPA results. The blue dotted-
dashed line with circles reports δ� = � − �0, where �(T ) is obtained
by convoluting the SLDA-RPA dynamic structure factor with the
spectral broadening functions and �0 = �(T → 0) 	 0.1εF is the
background width of the spectral broadening. The inset shows the
dynamic structure factor at the peak position ω0, without (red line) or
with convolutions (purple dotted-dashed line with circles). For better
illustration, the original SLDA-RPA result (red line) has been reduced
by a factor of 20.

measurable density response (after convolutions) is reported
in Fig. 2(b). Here and in the following, we have taken the
experimentally determined chemical potential μ = 0.376εF

[13] and pairing gap � = 0.47εF [20] to fix the parameters
β and γ [46]. As temperature increases, it is apparent that
the phonon peak in the spectrum becomes wider and lower,
suggesting that the intrinsic width of the phonon mode becomes
significant. Moreover, the single-particle excitations at around
ω = 2� are enhanced [see the inset in Fig. 2(b)]. Focusing on
the Goldstone mode, we present the temperature dependence
of its width and peak height in Fig. 3. It is interesting that,
by subtracting a background width �0 ∼ 0.1εF due to the
instrumental and inhomogeneity broadenings, the width to be
experimentally measured (symbols with a dotted-dashed line)
is roughly equal to the intrinsic width of the phonon peak in
the dynamic structure factor (solid line). This simply indicates
that the intrinsic width of the Goldstone mode could be directly
read from the measured width, with reasonable accuracy.

Landau damping. We now turn to discuss the intrinsic width
or damping rate of the Goldstone phonon mode in greater
detail. In Bose gases and Bose-Fermi mixtures, the Landau
damping of phonons has been extensively studied [47–49].
In our case, what is the main mechanism responsible for
damping? Physically, there are three possible sources that we
may consider: (1) the three-phonon Landau-Beliaev process
φ ←→ φφ, where φ is the annihilation field operator of
phonons; (2) the four-phonon Landau-Khalatnikov process
φφ ←→ φφ; and (3) the inelastic process of absorption or
emission by the single-particle excitations. All these processes
are responsible in the case of superfluid 4He. For example,
at low temperatures the three-phonon process is kinematically
allowed by the anomalous dispersion of the phonon mode [i.e.,
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FIG. 4. The phonon phase velocity ω0(k)/k of a unitary Fermi gas
at three different temperatures, as indicated. The horizontal orange
dotted-dashed line indicates the sound velocity at zero temperature
cs = (ξ/3)1/2vF 	 0.354vF . The inset presents the zero-temperature
dispersion relation ω0(k), together with the leading-order contribution
ω0(k) 	 csk (blue dotted-dashed line). The red dashed line is the
fitting curve that takes into account the next order, i.e., ω0(k) 	
csk(1 + ζk2), where ζ = −0.044(3)k−2

F < 0.

ω0(k) = csk(1 + ζk2) with a positive ζ > 0] at k < kc ∼ 0.55
Å−1. The much weaker four-phonon process is possible at
k > kc. For temperatures above 1 K, the last inelastic process
becomes favorable by scattering from thermally excited rotons.

For a unitary Fermi gas, Kurkjian and co-workers suggested
that the three-phonon process is the dominant decay mecha-
nism, since the standard RPA theory predicts a positive ζ [50],
and derived an elegant expression for the inverse quality factor
at low temperature [31],

�

ω0

k→0= 16π5
√

3

405
ξ 3/2

(
kBT

mc2
s

)4

	 1.2 × 103

(
T

TF

)4

, (5)

where we have used the Bertsch parameter ξ = 0.376 [13].
This observation, however, is not conclusive, since our more
accurate SLDA-RPA theory gives a negative ζ at both zero and
finite temperatures, as shown in Fig. 4. Another qualitative ε-
expansion theory provides a similar negative ζ at unitarity [51].
On the other hand, it is known that the three-phonon process
in 4He is only relevant at low temperature (i.e., T < 1.0 K ∼
0.5T He

c ) [2,4]. It is thus unlikely to be the main damping source
in a unitary Fermi gas for T > 0.5Tc ∼ 0.09TF . From the
above considerations, we would like to argue that the inelastic
scatterings of phonons from fermionic quasiparticles causes
their damping at the temperature region T � 0.1TF , which is
of great experimental interest.

If this is true, we expect that the damping rate � will be ap-
proximately proportional to the number of fermionic quasipar-
ticles present, i.e., � ∝ e−Emin/kBT , where Emin ≡ min{E(k)}
is the minimum energy of single particles that satisfies some
momentum and energy conservation requirements to allow
inelastic scatterings. An analytic expression for � was first
derived by Zhang and Liu by considering the phase fluctuations
at small momentum k → 0 within the mean-field RPA [32,52].
Recently, the same mean-field treatment has been improved

FIG. 5. (a) Temperature dependence of the inverse quality factor
�/ω0 of a unitary Fermi gas at k → 0 (black solid line). For compar-
ison, we show the results by Zhang and Liu (blue dotted-dashed line)
[32,52] and by Kurkjian and Tempere (red dashed line) [34,53], due
to scatterings off fermionic quasiparticles, and the prediction Eq. (5)
by Kurkjian, Castin, and Sinatra due to the three-phonon interaction
process (orange dotted line) [31], all of which are applicable in the
limit of small momentum k → 0. We show also �/ω0 of superfluid
4He at k = 0.4 Å−1 and at saturated vapor pressure (circles) [54], with
temperature rescaled as T → (T/T He

c ) × Tc. The arrow indicates
the transition temperature of a unitary Fermi gas Tc 	 0.167TF .
(b) The inverse quality factor �/ω0 of a unitary Fermi gas at
two temperatures T = 0.1TF and T = 0.2TF , as a function of the
transferred momentum. The result at T = 0.1TF has been amplified
by a factor of 5 for better visualization. As predicted earlier [34],
the inverse quality factor �/ω0 decreases steadily with increasing
transferred momentum k. At large momentum, the suppression of the
damping rate can be understood from the reduced phase space due
to momentum and energy conservation requirements in the inelastic
scatterings.

by Kurkjian and Tempere, who found that the amplitude
fluctuations may have the same significant contributions as
the phase fluctuations to the phonon damping rate [34,53].
The effect of the renormalized single-particle dispersion be-
yond mean field has also been considered by Castin, Sinatra,
and Kurkjian most recently [33], using a phenomenological
description of the interactions between quasiparticles based
on quantum hydrodynamics. Although we cannot obtain an
analytic expression for �/ω0 in the long-wavelength limit,
our SLDA-RPA theory has the advantages that (i) it starts
from a fundamental microscopic description and (ii) it takes
into account the modified single-particle dispersion due to the
beyond mean-field effect [35,36].
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The SLDA-RPA results at k → 0 are reported in Fig. 5(a)
using a solid line. For comparison, we show also the former
two RPA predictions by Zhang et al. [32,52] and Kurkjian
et al. [34,53]. Our result at small momentum qualitatively
agrees with both predictions, as one may anticipate. We note
that, although these two predictions are derived based on
the mean-field theory, for the results shown in Fig. 5(a),
we have taken the accurate chemical potential and pairing
order parameter, as measured from the experiments [52,53].
It is also worth mentioning that, for a strongly interacting
Fermi gas, the accuracy of any theoretical predictions can
only be tested by ab initio quantum Monte Carlo simulations
or reliable experimental measurements. As our SLDA-RPA
theory has been examined to provide a quantitative account
of the low-momentum dynamic structure factor of a unitary
Fermi gas at low temperature, we anticipate that it also gives
a reliable prediction for the phonon damping rate.

It is interesting to note that the damping rate of phonons in
superfluid 4He at k = 0.4 Å−1 [circles in Fig. 5(a)] [54,55]
closely follows our prediction at small momentum. This
similarity between superfluid 4He and a unitary Fermi gas

suggests that any strongly interacting quantum fluids may
share a universal damping rate for phonons, independent
of their entirely different internal structures and quantum
statistics.

Conclusions. In summary, we have developed a finite-
temperature microscopic theory of the density response of a
unitary Fermi gas at small transferred momentum, and have
quantitatively examined its reliability by comparing our the-
oretical results with the latest Bragg scattering measurements
[20]. We have clarified that the damping rate of the Goldstone
phonon mode is largely due to the inelastic scatterings from
fermionic quasiparticles and have predicted its universal tem-
perature dependence, which is to be confronted with future
experimental confirmation.
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