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We report on a method to generate extreme ultraviolet vortices from high-order harmonic generation with
two-color counter-rotating Laguerre-Gaussian (LG) beams that carry a well-defined orbital angular momentum
(OAM). Our calculations show that the OAM of each harmonic can be directly controlled by the OAM of the
incident LG modes. Furthermore, we show how the incoming LG modes have to be tailored, in order to generate
every possible value of OAM in the emitted harmonics. In addition, we analyze the emitted harmonics with
respect to their divergence and find that it decreases with the harmonic order and increases with the OAM of the
emitted harmonic.
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Light beams are known to carry a spin angular momentum
(SAM) of ±1, which is associated with their polarization. Allen
et al. [1] demonstrated that light beams can additionally carry
a well-defined orbital angular momentum (OAM) of �, which
is related to the transverse spatial profile. Laguerre-Gaussian
(LG) modes, which are solutions of the paraxial wave equation,
are the most common light beams with such a property. Their
spatial profile contains an azimuthal phase dependence ei�φ ,
which results in a helical phase front [2]. Therefore, such beams
are often referred to as twisted light beams. The absorption of
photons from such twisted beams by atoms or molecules offers
rich light-matter interactions beyond the plane-wave selection
rules [3,4]. For example, ionization of atoms by twisted light
modifies the electron wave packet and gives rise to different
dichroism signals besides the well-known circular dichroism
[5]. Moreover, optical vortices have been applied as a tool to
trap particles [6] or to detect spinning objects [7]. The wide
range of applications of twisted light beams indeed stimulated
extensive research on the generation of vortex beams up to the
extreme ultraviolet (XUV) region.

High-order harmonic generation (HHG) has been found to
be a versatile source to generate XUV vortex beams [8–11]. It
can be understood in terms of a simple semiclassical three-step
model [12], where a valence shell electron is (i) first released
from the atom via tunnel ionization, (ii) subsequently driven
by the oscillating laser field in the continuum, and (iii) may
recombine with its parent ion under the emission of a highly
energetic photon up to the XUV region.

During recent years, therefore, the synthesis and charac-
terization of XUV beams with OAM due to HHG became a
highly active field of research. It was demonstrated that the
qth harmonic not only has q times the frequency ω but also q

times the OAM � of the fundamental beam, if the harmonics are
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created by a single linearly (ω ↔) polarized LG mode [9,10],

LGω ↔
�,0

HHG−→
ωHq

= q ω,

�Hq
= q �.

Here, ω and ωHq
denote the frequencies and � and �Hq

the OAM
of the incident LG mode and the qth harmonic, respectively.
The even harmonics are suppressed due to the symmetry of
the field [13,14]. In contrast to HHG with linearly polarized
beams, where the emitted harmonics are linearly polarized,
circularly polarized harmonics can be generated by two-color
counter-rotating (ω � + 2ω �), called bicircular, fields (cf.
Fig. 1). Here, every third harmonic is suppressed and the other
harmonics exhibit alternating helicities [cf. Fig. 1(d)] [15–17].

For bicircular fields, the HHG can be explained within an
intuitive photon picture by conservation of energy and SAM
[18–21] and summarized by the following selection rules,

LGω�
0,0 ⊕ LG 2ω�

0,0
HHG−→

ωHq
= q ω = m ω + n 2ω,

m − n = ±1,

�Hq
= 0,

(1)

where m and n denote the number of photons with frequency
ω and 2ω, respectively. LG0,0 is a Gaussian beam with zero
OAM and as the incident beams, also the harmonics carry zero
OAM.

In this Rapid Communication, we investigate HHG with
two-color counter-rotating LG modes and show that the selec-
tion rules for bicircular fields have to be extended in order to
include conservation of OAM:

LGω�
�1,0

⊕ LG 2ω�
�2,0

HHG−→
ωHq

= qω = mω + n2ω,

m − n = ±1,

�Hq
= m �1 + n �2,

(2)
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FIG. 1. Scheme of HHG with bicircular LG beams. The setup is shown in the center of (a). The incident beam is a superposition of a
circularly polarized LGω� mode with its counter-rotating second harmonic LG 2ω� of the same intensity. The gas target is approximated by a
thin layer at the focus of the beam extended over the whole beam, which is indicated by the black dots in the near field. At each point in the gas
target harmonics are emitted. The emitted harmonics contribute to the far field. The intensity and phase profile of a LG1,0 and a LG2,0 mode are
displayed in (b), while (c) shows the electric field (dark green) and the vector potential (light green) of a ω-2ω bicircular field. Finally, a sketch
of the emitted harmonics in a bicircular field is shown in (d). The harmonics exhibit the polarization of the incident beam with the fundamental
frequency ω (red) followed by a harmonic with the polarization of the incident second harmonic (blue). Every third harmonic is suppressed for
a ω-2ω bicircular field.

where �1 and �2 denote the OAM of the incident beams.
The selection rules (2) allow a direct control of the OAM
of the harmonics by the OAM of the incident beams. In our
simulations we choose the propagation axis of the LG beams to
coincide with the z axis. In cylindrical coordinates, the spatial
structure of a LG mode can be expressed as

LG�,p(ρ,φ,z)

= E0
W0

W (z)

(
ρ

W (z)

)|�|
L|�|

p

[
2ρ2

W 2(z)

]
exp

(
− ρ2

W 2(z)

)

× exp

(
ik

ρ2

2R(z)
+ i�G(z) + i�φ

)
, (3)

where W0 is the beam waist, W (z) = W0

√
1 + z

z0
is the beam

width, z0 = k
W 2

0
2 is the Rayleigh range, R(z) = z(1 + z2

0
z2 ) is

the phase front radius, �G(z) = −(|�| + 2p + 1) arctan ( z
z0

)

is the Gouy phase, and L
|�|
p [x] are the associated Laguerre

polynomials. As before, the index � denotes the OAM of
the beam and the index p is associated with the number of
radial nodes of the beam. In our simulations we have chosen
p = 0 and W0 = 30 μm for the LG1,0 beam. We make use of
a superposition of two incident beams with combinations of
OAM (�1, �2) = (1,1), (1,2), and (2,1), respectively. The waist
W0 of the LG2,0 beam was adjusted, such that the the radii of
the intensity maxima coincide for both the LG1,0 and the LG2,0

beam [cf. Fig. 1(b)] as in Ref. [22]. The intensity maximum
of each beam is chosen as 1014 W/cm2 at the focus. We
here approximate our atomic gas target by a two-dimensional
thin layer of equally distributed atoms across the focus of

the beam, as indicated by the black dots in the near field
in Fig. 1(a). At each point of the two-dimensional target,
moreover, we calculate the time-dependent dipole moment for
a hydrogen atom as derived by Lewenstein et al. [23]. For our
calculations we used the RB-SFA code [24]. In order to calculate
the frequency spectrum of the emitted harmonics in the near
field, we perform a Fourier transform of the time-dependent
dipole moment at each point of our two-dimensional gas target.
The far-field phase and intensity profiles are calculated by
using the Fraunhofer diffraction formula [25]. The complex
amplitude of the qth harmonic in the far field can be written as

Afar
q (β,φ) =

∫ ∞

0

∫ 2π

0
ρ ′dρ ′dφ′Anear

q (ρ ′,φ′,z′)

× exp

(
−i

2π

λq

ρ ′ tan(β) cos(φ − φ′)
)

, (4)

with the wavelength λq = λ/q of the qth harmonic and where
Anear

q (ρ ′,φ′,z′) is the complex amplitude of the qth harmonic
in the near field, φ is the polar angle in the far field, and β is
the angle of divergence [cf. Fig. 1(a)].

Figure 2 displays the far-field phase (left) and intensity
(right) profiles for the 13th and 14th harmonic for three
different superpositions of two incident LG modes. While the
fundamental beam LGω�

�1,0
has frequency ω = 0.057 a.u. and

carries a SAM of 1, the second beam LG 2ω�
�2,0

has frequency 2ω

and carries a SAM of −1. In the upper row, both incident beams
carry an OAM of �1 = �2 = 1. Here, the far-field phase profiles
show that both the 13th and 14th harmonic carry an OAM of
�H13 = �H14 = 9. According to the selection rules (1) for HHG
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FIG. 2. Far-field phase (columns 1 and 2), intensity (columns 3 and 4) profiles, and a lineout through the intensity profiles (column 5)
for 13th and 14th harmonic generated by a superposition of two counter-rotating LG modes LGω�

�1,0 ⊕ LG 2ω�
�2,0 with different combinations of

(�1,�2). Upper row (�1,�2) = (1,1), middle row (1,2), lower row (2,1). For a better comparison of the intensity distributions, the maximum of
each intensity profile was normalized to 1.

with bicircular fields, m = 5 photons of frequency ω and n = 4
photons of frequency 2ω contribute to the 13th harmonic. Since
the OAM has to be conserved [26,27], the OAM of the 13th
harmonic is given by �H13 = 5 × 1 + 4 × 1 = 9. Similarly,
in order to generate the 14th harmonic, m = 4 photons of
frequency ω and n = 5 photons of frequency 2ω have to be
absorbed. Hence, the 14th harmonic also carries an OAM of
�H14 = 9. Moreover, the 13th harmonic carries a SAM of 1 and
the 14th a SAM of −1, respectively. The selection rules for
HHG with bicircular LG beams can be summarized as Eq. (2).

The middle row of Fig. 2 shows the far-field phase profiles
of the 13th and the 14th harmonic for a superposition of a
LGω�

1,0 and a LG 2ω�
2,0 beam. As a result, we find that the qth

harmonic carries an OAM of q, which is confirmed by Eq. (2).
In the lower row, we display the 13th and 14th harmonic from
HHG by a superposition of a LGω�

2,0 beam and a LG 2ω�
1,0 beam.

Here, the 13th harmonic carries an OAM of 14 and the 14th
harmonic an OAM of 13, respectively.

However, from an experimental point of view the question
arises whether we can generate a specific harmonic with an
arbitrary value of OAM and, if so, how to determine the OAM
�1 and �2 of the incident beams. The first two equations in
(2) are the same as the selection rules for HHG in bicircular
fields. For the qth harmonic we can find m and n by the integer
solutions of

m = q ± 2

3
and n = q ∓ 1

3
. (5)

However, since every third harmonic is suppressed, we cannot
obtain integer solutions for m and n, if q is dividable by three.
Moreover, we still have to clarify whether we can get �1 and �2

for an arbitrary �Hq
to fulfill �Hq

= m �1 + n �2. This equation
is known as a linear Diophantine equation [28]. Since m − n =
±1, we can always find integer solutions for the Diophantine
equation. In order to get all possible solutions for �1 and �2,
we first solve the homogeneous equation 0 = m �1 + n �2 and
find one particular solution afterwards. The set of solutions
can be expressed as a superposition of the homogeneous and
particular solution. The solutions of the homogeneous equation
can be written as

�1 = a n and �2 = −a m for a ∈ Z. (6)

We have to find the particular solution for two cases, namely,
m − n = 1 and m − n = −1. For the first mentioned, we
obtain (�1, �2) = (�Hq

, − �Hq
), and for the latter one, we find

(�1, �2) = (−�Hq
,�Hq

). Note that �Hq
can be negative as well.

In order to get the general solution of the Diophantine equation
we now combine the homogeneous solution (6) with the
corresponding particular solution, which is summarized in
Table I.

Moreover, the analysis is not restricted to ω-2ω bicircu-
lar fields, but can be applied to arbitrary bicircular fields.
Generically, we show the results for ω-3ω and rω-sω bi-
circular fields in Table I. However, for ω-3ω bicircular
fields, all even harmonics are suppressed due to the selection
rules.

Besides the analysis of the phase profile of the emitted
radiation, we also considered their divergence. In the middle
part of Fig. 2 we display the far-field intensity profile for each
harmonic from the left part of the same figure, while the right
column shows a lineout of the intensity profiles for the 13th
(blue, solid) and 14th (orange, dashed) harmonic. In the upper
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TABLE I. Parameters of the incident bicircular LG beams for generating high-order harmonics with selected OAM �Hq
. Apart from

the frequency ratio of the counter-rotating beams (first column), we here show the harmonic order and the OAM of the emitted harmonic
(second and third column). In the fourth and fifth columns we calculated m and n, respectively the number of photons from the first and
second incident beams which are necessary to obtain the qth harmonic. The column labeled with SAM gives the SAM of the qth harmonic,
where we assumed the first beam to carry a SAM of 1 and the second beam a SAM of −1, respectively. The last two columns can be used
to determine the required OAM of the incident beams in order to generate the qth harmonic with an OAM of �Hq

. Here, a is an arbitrary
integer.

Frequencies Harmonic order OAM m n SAM �1 �2

ω + 2ω q = m + 2n �Hq

q ± 2

3

q ∓ 1

3
m − n = 1 �Hq

+ a n −�Hq
− a m

q = 1,2,4,5, . . . m − n = −1 −�Hq
+ a n �Hq

− a m

ω + 3ω q = m + 3n �Hq

q ± 3

4

q ∓ 1

4
m − n = 1 �Hq

+ a n −�Hq
− a m

q = 1,3,5,7, . . . m − n = −1 −lHq
+ a n lHq

− a m

rω + sω q = rm + sn �Hq

q ± s

r + s

q ∓ r

r + s
m − n = 1 �Hq

+ a n −�Hq
− a m

q = r,s,2r + s,2s + r,3r + 2s,3s + 2r, . . . m − n = −1 −�Hq
+ a n �Hq

− a m

row, we see that the radius of the annular intensity profile
for the 13th (left intensity profile or blue, solid lineout)
harmonic is slightly larger than for the 14th harmonic (right
intensity profile or orange, dashed lineout). In the middle row,
the shown harmonics carry the OAM of their harmonic order.
Here, the far-field intensity profiles show a similar divergence,
which reconfirms the findings for HHG with a single linearly
polarized LG mode, where all harmonics are emitted with a
similar divergence, if the OAM scales with the harmonic order
[11]. In the lower row we display the far-field profile the 13th
harmonic, which carries an OAM of �H13 = 14 and the 14th
harmonic with an OAM �H14 = 13. In particular, the OAM
decreased with the harmonic order. It can be seen that the
divergence of the 13th harmonic is higher than the divergence
of the 14th harmonic.

In order to derive a quantitative expression for the
divergence in the far-field intensity distribution from the
Frauenhofer diffraction formula (4), we express the complex
amplitude in the near field (z = 0) for the qth harmonic as

Anear
q (ρ ′,φ′) = f (ρ ′) exp[i(�Hq

)φ′], (7)

where f (ρ ′) is a function that contains all radial quantities
[29] and �Hq

= m�1 + n�2 is the OAM of the qth harmonic
[cf. Eq. (2)]. The integral over φ′ in Eq. (4) can be per-
formed analytically [30] and takes the form of a Hankel
transform. As a result, we express the far-field amplitude
as [11]

Afar
q (β,φ) = − 1

2πi�Hq

exp
(
i�Hq

φ
)

×
∫ ∞

0
dρ ′ ρ ′f (ρ ′)J�Hq

(
2π

λq

βρ ′
)

. (8)

The integrand scales with a Bessel function of the order of the
OAM �Hq

of the emitted radiation. However, the argument of
the Bessel function is inversely proportional to the wavelength
of the qth harmonic, or, more specifically, proportional to the
harmonic order. The value of β, where the Bessel function
reaches its maximum, can be interpreted as the divergence.
While the divergence of the emitted radiation increases as the
OAM �Hq

increases, the divergence of the harmonic decreases

as the harmonic order increases. Especially, the divergence of
the harmonics is found to be similar if the OAM increases with
the harmonic order [11,29].

The intensity profiles in the bottom row show an additional
distinct concentric ring. The occurrence of additional rings was
already observed in HHG with linearly polarized LG beams
and attributed to the interplay of short and long trajectories
[22,31]. The lineouts in the right column show that there
are additional rings for a superposition of LGω�

1,0 ⊕ LG 2ω�
1,0

as well, although they are much weaker than those for a
LGω�

2,0 ⊕ LG 2ω�
1,0 . Our simulations showed that the additional

rings are more distinct, if the LG 2ω� beam dominates the radial
intensity distribution across the focus after the intensity maxi-
mum. Nevertheless, a detailed analysis of the contributions of
the short and long trajectories to the harmonic spectrum has to
be performed, in order to fully understand the occurrence of
the additional rings.

In conclusion, we showed that HHG with two-color counter-
rotating LG modes can be used to obtain circularly polarized
XUV vortices. Moreover, we extended the selection rules from
HHG with bicircular fields to include also the conservation
of OAM. Especially, the OAM of the emitted radiation can
by controlled by the incident LG modes. We showed that an
arbitrary value of the OAM can be imprinted on a harmonic
by a proper choice of the incident LG modes. In addition, we
explained how to calculate the OAM of the incident beams
to observe a selected harmonic with a specific OAM. Finally,
we discussed the divergence of the emitted harmonics with
respect to their order and their OAM and reconfirmed the
findings from HHG with linearly polarized LG modes. De-
spite the circular polarization of each harmonic, the resulting
attosecond pulse trains are linearly polarized. Thus it would be
interesting to see if it is possible to suppress the left or right
circularly polarized harmonics in order to achieve circularly
polarized XUV attosecond pulse trains with OAM, similar to
Ref. [17].

This work was financially supported within the priority
programme QuTiF from German Science Foundation (DFG)
under Contract No. FR 1251/17-1.
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