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Adiabatic population transfer in the D1 transition of 39K
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Four-photon stimulated Raman adiabatic passage–like (STIRAP-like) processes in the frame of the D1 optical
transition line of atomic 39K are investigated theoretically by means of a rigorous model that takes into account
all the atomic states involved in the interaction with the pump and Stokes light fields and is valid for any field
intensities. The same sequential up-down-up-down transition involving two pump (up) and two Stokes (down)
photons, going from the initial ground state |F = 2,M = +2〉 to the final ground state |F = 1,M = 0〉, which
was proven in the past to be very convenient for two-photon amplification and lasing, is considered here. The
fact that two atomic states, one with F = 1 and another with F = 2, participate at each intermediate step of
the multiphoton process makes the existence of an ideal unique adiabatic transfer state impossible, and at exact
four-photon resonance the population-transfer efficiency to the final atomic state is low (below 60% in general,
80% in the best conditions). Nevertheless, it is shown that by choosing appropriate static detunings for the pump
and Stokes fields with respect to the atomic transitions the system follows, sequentially, two adiabatic states,
connected by an efficient diabatic passage, so that population-transfer efficiency asymptotically approaching
100% for increasing field amplitudes can be reached. These results are quite robust and suggest the possibility
of using STIRAP (or STIRAP-like) pumping to, among other applications, increase the (presently very low)
efficiency of two-photon amplification and lasing, a so far unfulfilled goal in quantum and nonlinear optics.
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I. INTRODUCTION

After more than 25 years from the publication of the paper
that presented stimulated Raman adiabatic passage (STIRAP)
as a new highly efficient and robust method for population
transfer between quantum states [1], progress in the field
has been impressive both in the understanding of the process
and implementation in different types of systems (including
atoms, molecules, solids, superconducting circuits, classical
waveguides, etc.) and in the use of STIRAP for a variety of
applications, spanning from atomic, molecular, and solid-state
physics to quantum information (and even extending to ap-
plications in classical physics such as waveguide optics). See,
for instance, the recent review of Ref. [2] as well as previous
reviews [3–5] and the rest of the references quoted below.

As is well known, in its most standard and conceptually
simplest configuration, STIRAP involves only two light fields
and three states of the quantum system, with the pump field
acting on one of the transitions and the Stokes field acting on
the adjacent transition. Nevertheless, for certain applications,
in particular in the fields of atom optics and quantum optics
(for instance, to transfer a larger momentum from the fields
to the atoms or in general to produce a larger change in the
state of the quantum system), chain STIRAP (or multiphoton
STIRAP) processes involving N quantum states (with N > 3)
and N − 1 photons, each one acting on a consecutive transition
in the N -state chain, are more convenient. The efficiency of
these processes in transferring the initial-state population to the
final or target state, in different interaction conditions, has been
investigated or reviewed in, for instance, Refs. [2–4,6–20].
When these processes do not completely fulfill some of the
ideal conditions defining a STIRAP process (for instance, when

part of the initial-state population is transiently or permanently
transferred to an intermediate state, instead of the target state),
these processes are sometimes referred to as STIRAP-like.

The chain or multiphoton STIRAP (or STIRAP-like) pro-
cesses considered so far, however, have only been imple-
mented, theoretically or experimentally, or exploited, on rel-
atively simple state configurations [2–4,6–21]. For instance,
one of the most often considered cases is that where the atomic
states participating in the process belong to only two multiplets
or levels, which we will refer to as the ground and excited
multiplets.1 In the simplest case, only two fields act on the
atoms. For instance, a σ+ pump beam and a σ− Stokes beam
can take the atoms from an initial state |g,J = 2,M = +2〉
to a final state |g,J = 2,M = −2〉 where g (e) denotes the
ground (excited) level and J and M are the angular momentum
quantum numbers through a four-photon chain (or up-down)
process involving an alternate sequence of absorption of a σ+
photon and emission of a σ− photon. This configuration has
been studied in particular in the case of the optical transition
3P2 ↔ 3D2 of Ne atoms [2,3,6,11,16].

Other similar transitions considered so far are, for
instance, F = 4 ↔ F ′ = 4 and F = 4 ↔ F ′ = 3, which have
been investigated in the D1 and especially the D2 lines of
cesium [7,8,14,17]. In this case the atom can be adiabatically
transferred from state |g,F = 4,MF = +4〉 to state |g,F =
4,MF = −4〉 through an up-down eight-photon process, using

1To make sentences more precise, the term multiplet or level will
denote the set of atomic quantum states having a definite value of the
angular momentum (J or F ), whereas the term state or sublevel will
denote one specific of these quantum states.
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two σ+-σ− polarized fields of the same frequency. All these
types of configurations have the advantage that each photon
participating in the multiphoton process can be on resonance,
or very close to resonance, with its corresponding atomic tran-
sition, which can lead to large-population-transfer efficiencies
[2,6].

In the case of the D1 and D2 lines in alkali-metal atoms,
which are very important for atom optics, quantum optics,
quantum information, and nonlinear optics and nonlinear
dynamics experiments (among other applications), there is the
special feature that more than one multiplet exists in both the
ground and excited manifolds. Each multiplet corresponds to a
different angular momentum number F . The proximity of these
additional multiplets to the multiplets that are being considered
can affect the multiphoton STIRAP process efficiency, as new
quantum channels become open and ac Stark shifts can be
induced. In, for instance, the D1 line of Cs, the separation
between the F ′ = 4 and F ′ = 3 multiplets of the excited
manifold 2P1/2 is relatively large (1167 MHz) and thus the
perturbation of the eight-photon STIRAP process pointed out
above by the presence of the excited level F ′ = 3 is small;
theoretical predictions point out 90% adiabatic population-
transfer efficiency [14]. For the D2 line of Cs, however, the
hyperfine splittings in the excited-state manifold for the F ′ =
5, 4, and 3 levels are of only 251 and 201 MHz, respectively,
which can reduce the eight-photon STIRAP efficiency to
values around 55%, in the best case [7,14,17]. It has also been
shown that some part of the population goes to intermediate
states, especially to those lying on the ground manifold.

Investigation of multiphoton chain STIRAP processes (i.e.,
involving more than two photons) in less heavy alkali-metal
atoms, where two multiplets can be closer in energy (in the
ground and/or in the excited manifolds), is lacking. This is
probably due not only to the greater difficulty of the theoretical
analysis in those cases, but also to the possible a priori belief
(induced by results such as those for Cs pointed out above) that
the proximity in energy between nearby multiplets will perturb
or destroy the adiabatic transfer state and thus will significantly
reduce the transfer efficiency for any possible multiphoton
STIRAP process (and that introduction of static field detunings
[2] could barely counterbalance such a reduction).

This is unfortunate because, as is well known, alkali-
metal atoms other than Cs have been, and are being, used
frequently for different scientific applications, in particular in
the fields pointed out above. One potential specific application,
which we are interested in, is that of the implementation
of a more efficient two-photon laser. The intrinsic nonlinear
nature of the two-photon interaction would make this laser
very interesting from quantum and nonlinear dynamics points
of view. In fact, since the introduction of lasers, achieving
efficient-enough two-photon laser operation has constituted an
unfulfilled goal [22–26], which has made experimental study
of its singular properties impossible [22,27–36]. The most
efficient two-photon laser achieved so far has been one based
on an up-down-up-down four-photon process in the D1 line
of potassium (39K), with participation of multiplets F = 1
and F = 2, in both the ground and the excited manifolds
[23]. In the process, two pump (up) photons disappear and,
simultaneously, two Stokes (down) photons are created, which
amplify the generated laser beam. However, even in this case

the efficiency was very low. We believe that operation of
such a class of laser could be significantly improved if a
(hopefully efficient enough) four-photon STIRAP-like chain
process were used as the pumping-amplifying mechanism,
because the high efficiency of the population transfer would
entail a high efficiency in the generation of pairs of Stokes
photons.

On the basis of these considerations, in this theoretical
paper we will consider, essentially, the same four-photon
process mentioned above which was used to pump a two-
photon laser [23,28], specifically, the process starting at state
|g,F = 2,M = +2〉 and ending at final (target) state |g,F =
1,M = 0〉 of the D1 line of 39K, involving absorption of two
pump photons and emission of two Stokes, or probe, photons.
However, here we will modify the operating conditions (in
particular introducing a counterintuitive pulse sequence) in
order to favor, if possible, STIRAP or STIRAP-like processes,
with the aim of investigating the population transfer efficiency
and exploring the best possible operating conditions (leaving
application to two-photon laser pumping, or to other potential
issues, for subsequent work).

This case is different, with respect to the chain STIRAP
configurations investigated so far, that the initial and final states
correspond to a different multiplet of the ground manifold
(multiplets F = 2 and F = 1, respectively). From the point
of view of a two-photon laser, this must be so in order to
have the intermediate steps of the four-photon process out
of resonance, avoiding in this way single-photon emissions
from these intermediate steps, which could compete with two-
photon emission. A priori, one would expect that such a feature
will make adiabatic transfer less efficient (so far, initial and
final states with different angular momentum have only been
investigated for three-level systems [37]). However, as it will
be shown in this paper, a fortunate participation of an efficient
nonadiabatic passage connecting two adiabatic evolutions can
strongly increase, in appropriate conditions, global population
transfer from the initial to the target atomic state.

The organization of the paper is as follows. In Sec. II the
atomic configuration, the multiphoton process to be consid-
ered, and the model to study it are established. In Sec. III
the obtained results about population transfer are reported,
analyzed, and optimized. A summary is given in Sec. IV.

II. ATOMIC CONFIGURATION AND MODEL

In the D1 line of 39K, the hyperfine splitting within the
ground (4 2S1/2) and excited (4 2P1/2) manifolds is as shown
in Fig. 1. The energy separation between multiplets F = 2
and F = 1 within each manifold is �g = 462 MHz and �e =
58 MHz, respectively. Thus they are so close to each other, in
particular in the excited manifold, that one state with F = 2
and one state with F = 1 will simultaneously participate at
each intermediate step of the multiphoton process that we are
going to consider [22,29]. Such a multiphoton process, which
is depicted in the figure and will be referred to as a (2 + 2)
process, involves absorption of two photons from a pump field
B and simultaneous emission of two photons from a Stokes
field C. We want to transfer as much population as possible
from the initial state |g,F = 2,M = +2〉 (or simply |g,2,2〉)
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FIG. 1. Atomic energy levels and states for the 39KD1 transition.
Note that, to describe specific atomic states, not only will the physical
notation |g,F,M〉 and |e,F,M〉 be used, but also the simplified
sequential notation i, with i going from 01 to 10, just as depicted in
the figure. In the dimensionless units that will be defined in the main
text, the energy separation between sublevels will be �g = 37.43 and
�e = 4.68.

to the final state |g,F = 1,M = 0〉 (or simply |g,1,0〉), i.e., a
state with a different value for both F and M quantum numbers.

The spatial configuration for the light beams is the one
depicted in Fig. 2, which, as pointed out above, remains
as close as possible to the experimental conditions of the
two-photon laser experiments of Ref. [23]. The atomic beam
of 39K propagates in the y direction. It is assumed that, before
entering the interaction zone with the fields, all atoms have
been prepared to be in the initial state |g,2,2〉. A spatial lateral
shift of the pump beam B with respect to the Stokes beam
C in the y direction, of length δ, is introduced, which will
make the atoms interact first with the Stokes beam and then
with the pump beam. This defines a counterintuitive interaction
sequence, a well-known necessary condition for STIRAP-like
population-transfer processes [2] (this lateral shift was not
present in the two-photon laser experiments of [23]). The pump
field is linearly polarized in the z direction and the Stokes field
is σ− polarized around the z axis, and both fields propagate
with constant intensity and Gaussian transverse profile.

If the atoms travel at a certain speed, they will experience
the following pulsed fields (expressed in their own reference
frame): a pump pulse described as

�B(x,t) = 1
2B(t)�uz(e

−i(ωBt−kBx) + ei(ωBt−kBx)), (1)

FIG. 2. Geometry (and polarization) of the interacting fields and
the beam of 39K atoms.

where �uz is a unit vector in the z direction and the amplitude
B(t) takes the form

B(t) = B̃0 exp

{
−

(
t − tB

σB

)2
}

, (2)

with σB representing the pulse temporal width, and a Stokes
pulse given by

�C(z,t) = 1
2C(t)(�u+e−i(ωCt−kCz) + �u−ei(ωCt−kCz)), (3)

where the unit vectors �u characterize the left-handed polariza-
tion and the field amplitude C(t) is given by

C(t) = C̃0 exp

{
−

(
t − tC

σC

)2
}

, (4)

where σC represents the pulse temporal width. The temporal
delay between the two pulses is τ = tB − tC , which is propor-
tional to the beam separation δ. Thus, a positive value of τ will
correspond to the counterintuitive sequence characteristic of
STIRAP (the Stokes pulse arrives first).

The Stokes field couples with transitions |e,F,M〉 ↔
|g,F ′,M − 1〉 (Fig. 1) and the pump field interacts with all
transitions |g,F,M〉 ↔ |e,F ′,M〉, for any allowed value of F ,
F ′, and M . In the usual rotating-wave and slowly varying
envelope approximations, the semiclassical density-matrix
equations describing the atomic state can be expressed as

σ̇ii(t) = λi − (γi + γint)σii(t) −
∑
j �=i

γjiσii(t)

+
∑
j �=i

γjiσjj (t) + Fii{σij (t),Bij (t),

×Cij (t),�B,�C}, (5a)

σ̇ij (t) = −	ijσij (t) + Fij {σii(t),σij (t),Bij (t),

×Cij (t),�B,�C}, (5b)

where the density-matrix elements ρii and ρij have been
expressed as

ρii(t) = σii(t), (6a)

ρij (t) = σij (t)e−i[n(ωCt+φC )−m(ωBt+φB )], (6b)

so σii and σij represent the population of state i = |a,F,M〉
(with a denoting g or e) and the slowly varying envelope of the
atomic coherence induced on the transition between states i and
j , respectively [n and m represent the number of Stokes and
pump photons, respectively, of the (m + n)-photon transition
connecting both states]. The term λi gives the rate of injection
of atoms with internal state i into the region of interaction
with the pulses. The parameter γint is the inverse of the total
interaction time of the atoms with the fields considered in each
calculation, tint.

The functions Fii and Fij arise from the quantum Liouville
evolution commutator and represent the effect of the fields on
the atomic state. They depend on, among other parameters,
the Rabi frequencies associated with the different fields and
transitions (for further details see [28,38])

2Bij (t) = μijB(t)

h̄
, 2Cij (t) = μijC(t)

h̄
, (7)
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where 2Bij (t) [2Cij (t)] is the Rabi frequency for the pump
(Stokes) field when interacting with a transition between
atomic states i and j and μij = μ0χij is the electric dipole
matrix element of the transition (see [38] for a detailed
discussion about its calculation and value, for each transition;
μ0 = 3.507 × 10−29 C m is a reference value and χij is a
Clebsch-Gordan-related factor specific to each transition). On
the other hand, in the results below the peak field amplitudes
will be expressed by means of the normalized quantities B0 =
μ0B̃0/2h̄ and C0 = μ0C̃0/2h̄.

The detuning of the pump (or drive) field with respect to
the optical transition is controlled by the parameter �B =
ωB − ωe2−g1, where ωe2−g1 is the frequency of the transition
|e,2,M〉 ↔ |g,1,M〉 for any M , whereas �C = ωC − ωB con-
trols the difference between the Stokes (or probe) and pump
field frequencies. Note that the global detuning of the (2 + 2)
four-photon process for the bare atom is �(2+2) = �C − �g/2.

The relaxation mechanisms (spontaneous emission and
collisions) are characterized by γi and γij for the populations
and by 	ij for the coherences. Nevertheless, throughout all
our calculations we have set all these relaxation terms equal
to zero. Thus, the only mechanism left for population transfer
between atomic states is the coherent interaction with the two
fields, so the final population in the target state becomes a
direct measurement of the efficiency of the STIRAP process
under study. In fact, as it will be discussed later, in conditions
of an efficient STIRAP-like process only a very small part
of the population will transiently visit the excited states,
so spontaneous emission should not be expected to play a
significant role. Moreover, in our case, by increasing the atomic
velocity and reducing the beam cross sections the interaction
time of the atoms with the fields could be made as short as
possible, so the probability for spontaneous emission processes
to take place during the interaction time could be reduced. On
the other hand, the use of an atomic beam greatly diminishes
the collisions among atoms and the population transfers they
could lead to.

Finally, throughout the paper, all quantities with dimen-
sions of s−1 (including B0 and C0) have been converted
to dimensionless form by normalizing (dividing) them by
 = 7.75 × 107 s−1 (see [38]). Consistently, quantities with
dimensions of s have been multiplied by  [38].

III. RESULTS

In our work, and as usual in STIRAP studies [2], two main
complementary tools have been used: numerical integration
of Eqs. (5) and calculation of the instantaneous eigenvalues
and eigenvectors of the Hamiltonian of the system. In order
to better understand the dynamics of the population-transfer
process in such a complex atomic system, we first considered
truncated atomic models, in which several of the 16 atomic
states of Fig. 1 have been ignored. This has provided valuable
information, which is summarized in the following section.

A. Results for truncated-system models

When only five atomic states are considered, in such a way
that only one state for each intermediate step of the (2 + 2)
four-photon process (Fig. 1) is taken into account and states

11–16 (in the simplified notation of that figure) which lie
beyond target state 10 are ignored, then the STIRAP process
works very well. We mean that when the (2 + 2) multiphoton
process is on exact resonance �(2+2) = 0 (a well-known
necessary condition for efficient adiabatic transfer in this type
of configuration [2]), the maximum population transfer from
initial state 02 to target state 10 always occurs for pulse delay
values around τ = 1 (especially in the cases with greater
efficiency) and the efficiency grows monotonically toward
100% with increasing fields amplitude, as shown in Fig. 3(a).
These are typical signatures of STIRAP (or STIRAP-like)
processes [2]. We interpret that this occurs because the math-
ematical condition for the existence of an adiabatic-passage
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FIG. 3. (a) Efficiency curves (population transferred to the target
state vs amplitude of the two fields) obtained for the four possible
truncated five-state models. Here ρ10 max represents, for each point of
the curves, the maximum population reached by target state 10 (in the
notation of Fig. 1) at the end of the interaction with the two pulses, after
scanning for different values of the pulse delay τ . All these truncated
models exclude atomic states 09 and 11–16 and include states 01, 02,
and 10. The rest of the states included in each model are, for model
5a, 04 and 05; for model 5b, 04, and 06; for model 5c, 03 and 05; and
for model 5d, 03 and 06. In all cases the parameters are σB = σC =
1, �(2+2) = 0, and �B = −�g = −37.43 (i.e., the resonance of the
pump field with respect to the transition 02 ↔ 01), except for the last
curve, for which �B = −13.43 (to show that changing the pump field
detuning does not qualitatively change the results but can optimize the
efficiency). (b) Same as in (a), for truncated models with six or seven
atomic states and for the full model with the 16 atomic states. Models
6a and 6b are like models 5a and 5c, respectively, but also include
state 06. Model 7 is like model 6a but also includes state 03. Points A,
B, and C of the full-model curve correspond to B0 = C0 = 30, 40,
and 100, respectively, and will be considered in the main text.
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state, involving detunings and Rabi frequencies, derived in
[18] (see also [2,39]), is fulfilled in our case (except, in some
of the cases, for small field amplitudes). Calculation of the
five eigenvalues and eigenvectors of the corresponding time-
dependent Hamiltonian supports this conclusion, in the sense
that the system follows quite closely an eigenvector that starts
at initial atomic state 02 and ends at target state 10. The total
population that transiently stays at intermediate excited states
01, 03, and 04 reaches a peak of only approximately 2%, and
the population transiently going through ground intermediate
states 05 and 06 reaches a peak of approximately 20% (results
are omitted for the sake of brevity), which is also compatible
with previous theoretical modeling of other five-state atomic
systems [2,18,39].

However, when one further atomic state is considered in
the intermediate steps of the (2 + 2) four-photon process (i.e.,
when truncated six-state models are considered), the STIRAP
signatures are lost in some conditions, as shown in Fig. 3(b).
As it can be seen, model 6a continues to be efficient, but for
model 6b the monotonic growth with field amplitude is lost
and the transfer curve shows some wide oscillations never
reaching 100% efficiency. We have found that this occurs
because of a nonconstructive interference between two parallel
quantum channels within the (2 + 2) four-photon process:
channels 01 ↔ 05 ↔ 03 and 01 ↔ 06 ↔ 03. Analysis of the
Clebsch-Gordan coefficients of the involved transitions [38]
indicates that this occurs because these two parallel (1 + 1)
segments of the four-photon process do not fulfill the so-called
proportional couplings condition [39] required for (1 + 1)
processes that involve more than one state at the intermediate
step of the process (see also [2,40–42]). According to [39], the
efficiency could still be high for some particular values of the
detunings, but we have not investigated such a possibility.

Including still one further atomic state in the model so
that all the states lying between the initial state 02 and target
state 10 are considered (thus leading to a truncated seven-
state model) makes a few additional quantum channels also
participate in the process. We have detected further interference
effects between these channels, which also negatively affect
the population-transfer efficiency to the target state, leading to
tighter oscillations on its dependence on the fields amplitude,
as shown in Fig. 3(b).

B. Full-system model

Finally, when all 16 atomic states are taken into account (i.e.,
also including state 09 and states 11–16 lying beyond target
state 10, Fig. 1) and the (2 + 2) four-photon process is kept
on exact resonance, the transfer efficiency further decreases,
as shown in Fig. 3(b). A maximum transfer efficiency of about
60% is reached, which monotonically decreases at larger field
amplitudes, instead of continuing to increase. We interpret
that this further deterioration is mostly due to the large ac
Stark shifts induced by the presence of all these extra states on
the states that directly participate in the different steps of the
(2 + 2) four-photon process and especially on target state 10.
These ac Stark shifts put the (2 + 2) four-photon process in-
creasingly out of resonance when the field amplitudes increase,
making it progressively less efficient. A qualitatively similar
behavior was already found in other multiple-intermediate-
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FIG. 4. Final population in target state 10 as a function of the
time delay τ between Stokes and pump pulses, for different values of
the field amplitude (considered equal for both pulses), with the full
model.

state systems [2,4,5,37,39,43–45]. The extra states that exist
beyond the target state 10 (Fig. 1) could also eventually take
up part of the population (reducing the efficiency of population
transfer to the target state), but in fact for large field amplitudes
they only capture a very small fraction of population (as it will
be seen in curves below), as these states are out of resonance
of all possible multiphoton transitions.

Such deviation from ideal STIRAP behavior is also notice-
able when looking at the dependence of the population-transfer
efficiency on the time delay τ between Stokes and pump pulses,
as shown in Fig. 4. It can be seen that, in contrast to an ideal
STIRAP case, maximum population-transfer efficiency is not
always found at τ = 1 (even for the largest field amplitudes,
for which adiabaticity should be favored), but at some other
value, although not far from it. Also, there is no clear wide
plateau around the maximum value, although the dependence
on τ is smooth.

To complete the description of the full-model results,
Fig. 5(a) shows the temporal evolution of the four most
relevant eigenvalues of the instantaneous Hamiltonian of the
system, for point B of Fig. 3(b) (see the figure caption for
further details about these eigenvalues). Figure 5(b) shows
the projection of the exact instantaneous atomic state (i.e., the
Bloch vector) on all 16 eigenstates of the system (in particular
on the four eigenstates corresponding to the previous four
eigenvalues). There is no pure adiabatic-transfer state (i.e.,
there is no eigenstate starting at the initial atomic state 02
and ending, after the interaction with the Stokes and pump
pulses, the at target state 10). As it can be seen, the system,
which initially is at atomic state 02, starts on a balanced linear
combination of eigenvectors e13 and e15. At t = 2.8 there is
a physically irrelevant anticrossing (avoided crossing) with a
very small gap, imperceptible in Fig. 5(a), which is diabatically
and efficiently crossed by the system so that, formally, its
component on e15 suddenly changes to e14. The projection
on this eigenvector grows progressively, but from t � 5.5 to
t � 6.0 it rapidly decreases down to a value of approximately
60% at the same time that a projection of approximately 32%
on e15 appears. This mixing is due to the wide-gap anticrossing
between e14 and e15 which appears in Fig. 3(a) for that range
of time. We have checked that e14, from t = 5 to t = 8, takes a
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to smallest energy value). At the initial and final times, eigenstate
e12 coincides with atomic state 03, eigenstates e13 and e15 are a
50%-50% linear combination of states 01 and 02, and e14 coincides
with state 10 (no eigenstate starts at initial atomic state 02 and ends
at target state 10). (b) Temporal evolution of the projection (square of
the component) of the atomic state on each one of the 16 eigenstates
of the system, in particular on e12–e15. (c) Temporal evolution of the
atomic state populations. Also depicted is the temporal profile of the
two pulses B(t) and C(t) (right vertical axis).

growing component on target atomic state 10 (going from 0%
to 100%). All this clearly explains the temporal evolution of
atomic state populations shown in Fig. 5(c), in particular the
moderate growth of the population of target state 10 [and also,
similarly, in Fig. 8 below, for points B and C of Fig. 3(b)].

In summary, two concomitant causes have been found as
responsible for the relatively low efficiency of the full model.
First, there is at least one quantum channel in the (2 + 2)
multiphoton process which does not fulfill the proportional
couplings condition and thus negatively interferes with another
channel. Second, the atomic states other than those directly
involved in the (2 + 2) four-photon process induce ac Stark
shifts which take the process out of resonance.

C. Optimization and robustness

We have further explored the parameter space to find
whether conditions exist for which the population-transfer
efficiency is larger and grows with increasing field amplitude
(asymptotically approaching, if possible, 100%). Note that the
only parameter that has been scanned so far, for each point on
the curves of Fig. 3, is, as pointed out above, the pulse delay
τ . We have now scanned further parameters, in the following
way.
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FIG. 6. (a) Final population transferred to target state 10 (left
vertical axis) and corresponding optimal value of the pulse delay τ

(right axis), as a function of the temporal width of the Stokes pulse
σC (σB remains equal to 1). For σC = 1 it corresponds to point B of
Fig. 3(b). The rest of the parameters are the same as in that figure. (b)
Same as (a) for optimized point B ′ of Fig. 7 below.

In a first exploration, the field detunings have been kept fixed
to the previous values. In particular, the (2 + 2) four-photon
process has continued to be on resonance, �(2+2) = 0. In such
conditions, it has been found that the relative amplitude of
the two pulses does not play a key role, as its variation only
leads to small improvements or, more often, deteriorations
of the transfer efficiency. The relative temporal width of the
pulses, however, has a relatively larger influence: Making
σC > σB leads, for many of the points of the full-model curve
in Fig. 3(b), to a more significant increase in the transfer
efficiency, as shown in Fig. 6(a) for the particular case of point
B of Fig. 3(b). As it can be seen, increasing σC from 1 to
2.4 increases the transfer efficiency from 52% to 80%. The
temporal evolution of the eigenvalues (not shown for the sake
of brevity) is qualitatively similar to that of Fig. 5(a), with
again no eigenvector starting at the initial atomic state 02 and
ending at the target state 10. However, now, with larger σC ,
the narrow-gap anticrossing between e14 and e15 appearing
at an early time shifts to much later times, so the system starts
on eigenvector e14 (which now initially coincides 100% with
atomic state 02 and will take an increasingly large component
on target state 10) and remains with a very large projection on
it (above 90%) for most of the time. The wide-gap anticrossing
between e14 and e15 pointed out above continues to appear, in
time, at the middle of the interaction, but now it is wider and
thus the atomic state only takes a small component over e15.
Finally, at the small-gap anticrossing appearing near the end of
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the pulses the system sharply jumps diabatically and efficiently
to eigenvector e15 (which ends up with 100% component on
target atomic state 10).

Nevertheless, keeping �(2+2) = 0, we have not found re-
sults significantly better than these. In particular it is difficult to
find a monotonic growth of the population-transfer efficiency
with increasing fields amplitude. Thus, in a second exploration

TABLE I. Maximum final population in target state 10, time delay
τ , and detunings �(2+2) and �B corresponding to each one of the
points obtained by means of the optimization procedure (red triangles
in Fig. 7).

B0 = C0 Final population τ �(2+2) �B

30 0.7616 0.33 1.5 −42
40 0.8374 0.63 4.0 −43
50 0.9348 0.21 3.0 −84
60 0.9504 0.13 3.4 −115
100 0.9760 0.43 4.7 −250

in the parameter space, we have also varied the (2 + 2) four-
photon detuning �(2+2) and the pump detuning �B . In fact,
in other works about STIRAP (dealing in general with only
a three-level system, but with more than one intermediate
state or involving a hyper-Raman process), it was found that
introducing static detunings in the intermediate single-photon
steps of the multiphoton (two-photon, in those cases) process
could counterbalance, to some degree, the two causes of
efficiency loss mentioned above, destructive quantum-channel
interference and ac Stark shifts [2,5,37,39,42–44,46], although
in those cases only one of the two types of cause, but not
both simultaneously, was present (some other technique has
also been proposed, such as chirped, or Stark-chirped, rapid
adiabatic passage [5,47–49], but it would require a more
complex light-matter configuration).

These two detunings have been scanned following an op-
timization procedure consisting in, starting with a fixed value
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FIG. 8. Time evolution of the fields and the most significant populations, for the following points of Fig. 7: (a i), (a ii), and (a iii) point A

(the curve labeled S.E corresponds to the sum of the populations in all the atomic states of the excited manifold); (b i), (b ii), and (b iii) point
C; (c i), (c ii), and (c iii) point A′; and (d i), (d ii), and (d iii) point C ′. The top row contains populations of excited-manifold states and also, for
comparison, of the initial 02 and target 10 states. The middle row only contains populations of ground-manifold states. The bottom row shows,
as a reference, the temporal profile and delay of the two pulses, for each case.
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FIG. 9. (a) Time evolution of the three most relevant Hamiltonian eigenvalues, denoted by e13, e14, and e15, corresponding to optimized
point A′ of Fig. 7. The zone of the avoided crossing, i.e., where eigenvalues e14 and e15 get close enough to allow the system to jump
from eigenstate e15 to eigenstate e14, are marked with a circle. (b) Projection (square of the component) of the system state (Bloch vector)
on eigenvectors e14 (red dotted line) and e15 (blue dash-dotted line) and population of target state 10 (black solid line). (c) Projection of
eigenvector e14 of (a) over initial state 02 (the black solid line shows, as a reference, the population of this state). (d) Projection of eigenvector
e15 over target state 10.

of �B , varying �(2+2) to determine the value that optimizes
the transfer efficiency; then, fixing this �(2+2) value, �B has
been varied to find a new optimum; next, starting with this
last value, the whole process has been repeated, and so on. As
before, for each particular set of parameters the time delay τ

has been scanned in order to select the value that maximizes
the population transfer. On the other hand, in order to facilitate
comparisons, the pulse width of both pulses has been kept equal
to 1 (its influence has been studied in a subsequent step).

Figure 7 shows the result of this optimization procedure.
The lowest (black) curve reproduces the nonoptimized effi-
ciency curve of Fig. 3(b) for the full model, for the original
values of �(2+2) and �B . In contrast, the red triangles indicate
the values obtained for the final population in target state 10
after the optimization process. The values of τ , �(2+2), and �B

corresponding to these optimized points are given in Table I.
It is clear that the optimized results are remarkably (and

perhaps surprisingly) good. The efficiency so obtained shows a
definite tendency to increase, approaching a 100% value when
the pulses amplitude grows.

This conclusion is also confirmed by inspection of the
temporal evolution of the atomic states populations, as Fig. 8
shows. Figures 8(a) and 8(b), which correspond to points
A and C, respectively, of Fig. 7, confirm what was already
found for Fig. 5 (where point B was considered): Before the
optimization, the population transfer does not take place in a
monotonically growing and efficient way from the initial state

to the target one. Instead, a series of step-by-step processes
and Rabi oscillations take place [compare, for instance, the
time evolution of populations in states 01 and 02 and also (less
noticeable) those in states 02 and 06, in Fig. 8(a)]. These figures
also show that a significant population (40% of the total) goes to
excited atomic states instead of the target state 10. In contrast,
for points A′ and C ′ [Figs. 8(c) and 8(d), respectively] obtained
through the optimization procedure, the population transfer is
more direct and efficient and monotonically grows with field
amplitude. Especially with the highest amplitude (point C ′), no
Rabi oscillations take place and the excited-manifold states are
sparsely populated [notice in Fig. 8(d i) that the total population
of all atomic states lying at the excited manifold reaches a
transient peak value of only approximately 3%].

To understand why this efficiency improvement occurs,
Figs. 9 and 10 summarize the eigenstates behavior for opti-
mized points A′ and C ′, respectively, of Fig. 7. For both points,
as the system is out of (2 + 2) four-photon resonance, the
degeneracy between Hamiltonian eigenvalues at both initial
and final times is removed [Figs. 9(a) and 10(a)]. There is
again no pure adiabatic-transfer state connecting the initial and
target atomic states: Eigenstate e15 starts 100% at the initial
state 02 [Figs. 9(c) and 10(c)], whereas e14 ends 100% at the
target state 10 [Figs. 9(d) and 10(d)]. Nevertheless, at a certain
moment these two eigenvalues come close together [Figs. 9(a)
and 10(a), indicated by a circle], defining an avoided crossing
where the system can diabatically jump from one eigenvector
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FIG. 10. Same as in Fig. 9 for point C ′ of Fig. 7.

to the other with high efficiency. Thus what happens is that
the atomic system starts by adiabatically following eigenstate
e15 and at the avoided crossing it passes diabatically, in
large measure, to eigenstate e14, continuing with a very large
component on it until the end of the interaction [Figs. 9(b)
and 10(b)]. This diabatic passage is more complete or efficient
for point C ′ than for point A′, in principle due to the larger
amplitudes of the two fields in this case. In effect, for point C ′
Fig. 10(b) shows that 97% of the atoms reach target state 10
and that the Bloch vector of the system follows very closely the
first eigenvector e15 and the next eigenvector e14. In contrast,
for point A′ [Fig. 9(b)], the efficiency is only of approximately
76% and the Bloch vector keeps a larger (but still moderate)
component on other eigenstates, in particular on e13 and e15.
As a last remark, it is also worth noting that the passage from
e15 to e14 does not exclusively occur at the anticrossing point
indicated just above; inspection of Figs. 9(a), 9(b), 10(a), and
10(b) shows that, indeed, the passage takes place mostly there,
but in fact it is completed a few instants later. This is because,
after the anticrossing, eigenvalues e14 and e15 still remain
relatively close to each other, for a certain period of time, and
it even seems that they define another, weaker, anticrossing,
with a larger gap [barely perceptible in Figs. 9(a) and 10(a),
somewhat more apparent in Figs. 12(a) and 12(c) below].

The participation of efficient diabatic passage through an
avoided crossing has also been reported in other cases of
STIRAP or STIRAP-like processes (usually in three-level
systems), in particular when the fields are out of resonance
(especially out of two-photon resonance) and/or when there
is more than one state in the intermediate step of the process
[2,4,5,37,39,44,45,45,50].

As pointed out above, the results of the upper curve of
Fig. 7 have already been optimized with respect to pulse
delay τ , pump detuning �B , and four-photon detuning �(2+2).
Figure 11 clearly illustrates that for point B ′. It is worth noting
that increasing τ above 0.63 (which is the value for point
B ′) reduces the gap of the anticrossing between eigenvalues
e14 and e15 and in principle this should help the transfer
process. For instance, when going from τ = 0.63 (point B ′) to
τ = 1.09 [Figs. 12(a) and 12(c), respectively], that gap reduces
from approximately 1.4 to 0.12 (it appears in these figures at
t � 4.6). With such a small gap, the diabatic passage from
e15 to e14 there is faster and highly efficient [Fig. 12(d)].
However, the second (wider) anticrossing pointed out above,
which appears at a slightly later time [it appears at t � 5.3
in Fig. 12(c)], becomes now better defined (the gap decreases)
and inverts the process; i.e., it makes the Bloch vector take
again a large component (slightly above 50%) over e15, as
shown in Fig. 12(d). This is the main reason why larger values
of τ are not more efficient. Let us point out here that the two
other anticrossings appearing in Figs. 12(a) and 12(c) because
of the proximity, in this case, of eigenvalue e13 to eigenvalue
e14 do not play any physical role, because the first of them
does not affect the atomic state and the second has such an
extremely narrow gap that the system crosses it diabatically
with complete efficiency.

The results of the upper curve of Fig. 7 could still be
further optimized to some degree by scanning the Stokes pulse
duration σC . Nevertheless, the value used for the points of that
curve (σC = 1) is already close to the optimum value, as it can
be seen in Fig. 6(b) above, as increasing σC above unity (the
value corresponding to point B ′) can only lead to a transfer
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FIG. 11. Final population in target state 10 (a) as a function of the pulse delay τ , for values around point B (lower curve) and point B ′

(higher curve) of Fig. 7, (b) as a function of pump detuning �B , for values around point B ′ of Fig. 7, and (c) as a function of the (2 + 2)
four-photon process detuning �(2+2), also for values around point B ′ of Fig. 7. In all cases the rest of the parameters are as in Fig. 7.

efficiency improvement of approximately 0.7% (reached for
σC = 1.12). In this figure, the efficiency growth with σC

(for σC < 1.12) is mainly due to the fact that the e14-e15
anticrossing gap monotonically decreases with increasing σC ,
which helps diabatic passage. In addition, the efficiency decline
for largerσC is mainly due to the growth of the gap of the second
anticrossing between e13 and e14 [Fig. 12(a)], which for large
enough σC starts to play a role in making progressively less
efficient the diabatic passage through it.

Finally, Figs. 6(b) and 11 also illustrate the significant
robustness of the optimized results with respect to variations
in the different system or control parameters. As it can be seen,
none of the parameter values is critical. The highest sensitivity
is with respect to variations of the (2 + 2) four-photon detuning
�(2+2) [Fig. 11(c)], as would also be the case even for an ideal
STIRAP process in a three-level atom, and the pulse delay τ

[Fig. 11(a)], where it can be seen that the sensitivity is larger
for optimized point B ′ than for nonoptimized point B, but it
still remains moderate.

IV. CONCLUSION

We have developed an accurate model describing the in-
teraction of 39K atoms with two pulses in the counterintuitive
order characteristic of STIRAP processes, coupled to a D1

transition involving states with two values of the total angular
momentum, namely, F = 1 and F = 2, in both the ground and
excited manifolds. We have studied the efficiency of population
transfer, through a four-photon process involving both pulses,

from the atomic state F = 2, MF = +2 to another atomic state
with different quantum numbers, F = 1, MF = 0 (both states
lying in the ground manifold).

We have found that the participation of more than one
atomic state at each intermediate step of the multiphoton
process prevents fulfillment of the so-called proportional cou-
plings condition and there is no adiabatic-passage state. At
the same time, the interaction of the fields with atomic states
beyond the target state and the impossibility for the fields to
be simultaneously on resonance with all intermediate steps of
the four-photon process also negatively affect, through induced
light shifts, the efficiency of the population-transfer process.

Nevertheless, we have also shown that, by scanning the
frequencies of the two fields and going out of four-photon
resonance, values can be found for which the atomic state can
jump diabatically from one eigenstate of the Hamiltonian to
another eigenstate through an avoided crossing and in this
way efficiently reach the target state. The efficiency of the
population transfer from the initial to the target state grows
monotonically with fields amplitude and can reach very large
values. It is also significantly robust against variations in the
parameter values.

Scanning the frequency of the fields, as well as controlling
the rest of pulse characteristics, is a task that could be
performed in the laboratory. Thus, in principle, these results
open the possibility for new atom optics, quantum optics,
or nonlinear optics experiments in potassium and in similar
atoms. In particular, they open the possibility to improve the
efficiency of the two-photon laser system implemented in
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FIG. 12. (a) Most relevant Hamiltonian eigenvalues (denoted by e13, e14, and e15) as a function of time, for point B ′ of Fig. 7, for which
τ = 0.63. (b) Corresponding projection (square component) of the exact atomic state on eigenstates e13, e14, and e15 (left vertical axis) and
population of target atomic state 10, ρ10. (c) and (d) Same as in (a) and (b), respectively, when the pulse delay τ is changed from 0.63 (point
B ′) to 1.09 [see Fig. 11(a)]. In all cases the Stokes pulse has been centered at tC = 5.

potassium in the past [23], which was based on a four-photon
process similar to the one considered here. This, if successful,

could make experimental investigation of the a priori rich
two-photon laser dynamics possible.
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