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Dispersive refraction of different light to heavy materials at MeV γ -ray energies
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The dispersive behavior of materials with atomic charge numbers varying from Z = 4 (beryllium, Be) to Z = 82
(lead, Pb) was investigated experimentally and theoretically at γ -ray energies up to 2 MeV. The experiment
was performed at the double-crystal γ spectrometer GAMS6 of the Institut Laue-Langevin in Grenoble. The
experimental results were compared with theoretical calculations which account for all major elastic processes
involved. Overall, we found a good agreement between theory and experiment. We find that, for the development of
refractive optics at γ -ray energies beyond those currently in use, high-Z materials become increasingly attractive
compared to the beryllium lens-stacks used at x-ray energies.
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I. INTRODUCTION

The investigation of basic optical properties of matter
irradiated with visible light is of crucial importance for the
development of optics in industrial as well as scientific appli-
cations. The discovery of x-ray radiation by Röntgen [1] as
well as the investigations of the scattering behavior of x rays
with matter by Compton [2,3] and the subsequent development
of x-ray radiation sources during the last century opened a
new field in optics and optical applications. The evolution
towards modern brilliant x-ray sources such as synchrotrons
made the investigation of the optical properties of materials up
to about 100 keV possible. This allowed for the development
of diffractive as well as refractive optics [4–6].

To date, the theoretical description of the optical behavior
of materials has been validated experimentally in the x-ray
energy regime from several hundreds of eV up to tens of keV.
For γ -ray energies up to several MeV no experimental tests to
verify the theory of the refractive index have been performed
so far.

Knowledge on optical properties can be derived from the
investigation of the forward elastic scattering processes. This
allows for implementing different interaction processes via the
complex forward scattering amplitude given by A(Eγ ,0) =
ReA(Eγ ,0) + iImA(Eγ ,0). The complex forward scattering
amplitude is related to the real as well as the imaginary part of
the complex refractive index, n(Eγ ) = 1 + δ(Eγ ) + iβ(Eγ ),
where the real part describes the phase shift between the
incident wave and the scattered wave, and the imaginary part
describes absorption. The real parts of the scattering amplitude
and the refractive index are related in the first order via the
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expression

δ(Eγ ) = Natom
2π (h̄c)2

E2
γ

ReA(Eγ ,0), (1)

where Natom is the atom number density and Eγ the photon
energy. By the optical theorem,

ImA(Eγ ,0) = Eγ

4πh̄c
σtot(Eγ ), (2)

the imaginary part of the anomalous scattering factor is related
to the total absorption cross section σtot. The relation between
the real and the imaginary part of the anomalous scattering
factor is given by the Kramers-Kronig dispersion relation [7,8]:

ReA(Eγ ,0) = 2Eγ

π
P

∫ ∞

0

ImA(E′,0)(
E′2 − E2

γ

)dE′. (3)

Using this optical theorem, a direct relation between the
phase shifting and the absorption processes can be obtained.
This approach was used in a detailed investigation of several
interaction processes of light with atoms by Toll in 1952 [8].
Furthermore, by combining Eq. (3) with Eq. (1) and the optical
theorem Eq. (2), a direct link between the index of refraction
and the scattering processes via the interaction cross section is
reached. However, from a quantum physics point of view, it is
mandatory that the scatterer is in a bound state, which can be
excited by a dissipative process. Then, and only then, is this
optical theorem applicable.

Conversely, the measured optical properties, such as the
refractive index, provide a sensitive observable for the inves-
tigation of the fundamental processes during the interaction
of photons with matter and open the feasibility for tests of
theoretical amplitudes at high photon energies. The Lorentz-
Lorenz relation describes in general the scattering properties of
an atom or a compound material in relation to the macroscopic
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index of refraction:

n(Eγ ) = 1 + 2π (h̄c/Eγ )2
∑

k

NkAk(Eγ ,0), (4)

where Nk is the number of atoms of type k per volume
unit. In the past, several experiments were performed for the
investigation of the forward scattering amplitude within the
x-ray regime [9–11]. The index of refraction was measured
only up to 133 keV [12]. Within the x-ray energy regime, when
the incoming photon energies are much larger than the electron
binding energy, the electrons can be treated as free electrons.
This means that the energy-dependent refractive index n can
be approximated by a coherent sum of forward amplitudes
from each of the quasifree electrons. The forward amplitude
for light scattering on a free electron is given by the classical
Thomson amplitude −re, where re = e2/mc2 is the classical
electron radius. Within this approximation, which we refer to
later as the classical approximation, the real part of the complex
scattering amplitude yields ReA(Eγ ,0) ≈ −Zre, where Z is
the atomic charge number. Accordingly, the real part of the
refractive index reads in this approximation as follows:

δ(Eγ ) = −Zre2π
(h̄c)2NAρ

E2
γ A

, (5)

for the case of pure materials. Here ρ is the mass density,
NA Avogadro’s constant, and A the molar mass. From an
application point of view, it is important to validate the classical
approximation up to the γ -ray energy regime. To investigate
the index of refraction at γ -ray energies sophisticated ex-
perimental instrumentation is needed, because the effect is
expected to be very tiny. A measurement of the γ -ray refractive
index of silicon at γ -ray energies was performed by Habs et al.
[13,14]. Subsequent experiment beam times [15] showed that
the conclusions drawn from the experimental results needed
to be corrected at high energies due to a systematic error
that had not been accounted for. Also, in a resent paper the
measurement of the refractive index of germanium and gold at
a γ -ray energy of 1.7 MeV was described with the result that
the hypothesis suggested by Habs et al. is not supported [16].
A detailed discussion, including results of the refractive index
measurements of silicon, is presented in Ref. [15].

In the present work we present the detailed measurements
of γ -ray refractive indices across a wide range of energies
and atomic numbers ranging from Z = 4 to Z = 82 at γ -ray
energies of up to 2 MeV. The aim was to investigate the disper-
sive behavior as well as the Z dependence of several materials
with respect to the classical nonrelativistic approximation.
Furthermore, from an applied point of view, we were interested
in the refractive properties for the development of refractive γ -
ray optics. The measurements were chosen for the investigation
of optical properties of a fluid as well as of a compound
material at such high photon energies. In the following, we
describe the experimental setup for measurements at the new
high-resolution γ spectrometer GAMS6 at the Institut Laue-
Langevin (ILL) in Grenoble (France). In the following sections
the results and the theory are presented and discussed.

II. EXPERIMENTAL SETUP

The concept of the refractive index measurement is based
on prism optics known since the dawn of modern optics. First,
a collimated and monochromatic beam is prepared. Second,
during the propagation through the prism surfaces, the beam
is deviated due to refraction. Finally, the angular deviation
with respect to the incident beam direction is measured via an
analyzer device. Our experiments were performed at the high-
resolution double-flat-crystal γ spectrometer GAMS6. The
first crystal is used to collimate the γ beam before propagation
through the prisms. The second crystal is used to measure
the angular deviation by rocking around Bragg’s angle and
scanning the intensity of the γ -ray line of interest (counted with
a high-purity germanium detector) as a function of the rocking
angle. Both crystals are used in the Laue diffraction mode
and the result is a rocking curve according to the dynamical
diffraction theory. The angular deviation due to refraction
can be determined from the relative peak shift of the rocking
curves with and without the prisms placed in the beam. The
rotation angles of the crystals are measured using an optical
angle interferometer (for more details, see Refs. [15,17,18]),
operated in the visible range of the electromagnetic spectrum
via a frequency-stabilized HeNe laser. The interferometer is
of the Mach-Zehnder type, providing a subnanoradian angular
resolution for the measurement of both crystals. To minimize
the impact of the refractive index of air, the spectrometer as
well as the optical interferometers are operated in a vacuum.
The γ beam is provided from an in-pile target placed close to
the reactor core of the neutron high-flux reactor of the ILL. Via
thermal neutron capture nuclear reactions in the target, prompt
γ -ray emission is induced. As a target we used 155,157Gd and
35Cl via the compound materials Gd2O3 and BaCl2 as powder
samples. The sample material, filled in graphite containers,
was irradiated with a neutron flux of about 5 × 1014 s−1 cm−2,
yielding a prompt γ -ray emission rate of about 1017 s−1. The
sources were three containers of 2 × 20 mm2 placed at a
distance of 22 m from GAMS6. The beam divergence was 10−4

rad in the horizontal plane and 10−3 rad in the vertical plane.
The horizontal plane is the diffraction plane of the crystals. Via
three different collimation systems the beam was collimated
for the experiment. More details are described in Ref. [15].

A scheme of the setup for the refractive index measurement
at GAMS6 is shown in Fig. 1.

We used groups of prisms with the same geometry and
a prism angle of 120◦, oppositely aligned. This allows for
doubling the refraction effect and leads to a higher accuracy in
the determination of the peak shift between the rocking curves
of both the right and the left prism orientations. The γ beam
was horizontally collimated to 3 mm and irradiated the prism
surface. We used different prism materials to get a wide choice
of atomic charge numbers Z. In the case of fluid Hg we used
hollow prisms, consisting of fused silica, filled with Hg. This
method is similar to a historic experiment within the visible
range of light, performed by Abbe [19] more than one century
ago in Jena (Germany). The prisms are mounted on a precision
machined prism mount, which is placed on a motorized trans-
lation stage, allowing for an exact alignment and translation
between the different orientations. An intercrystal collimation
system is used for an exact alignment of the prisms in the
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FIG. 1. Upper panel: Schematic setup at GAMS6. The first crystal
defines and collimates the γ beam. A motorized translation stage
moves the prism groups through the beam, and the second crystal
allows one to analyze the deviation due to refraction on the prism
surfaces. Lower panel: Photograph of the setup. The γ beam comes
from the right. The crystals are mounted on the axis of a heterodyne
Michelson interferometer, allowing for a high-resolution angular
measurement.

beam. Both the prism system and the collimation system are
completely mechanically decoupled from the interferometer
table for the angular measurement. Therefore, we did not
impact the angular measurements due to vibrations during the
translation movements. Furthermore, temperature sensors with
2-mK resolution were installed in sensible positions such as
the interferometer, the crystals, and the prisms to monitor the
temperature variations during the movement of the motors.
We observed no relevant temperature variations that required
further corrections.

The measurement sequence of the refractive index measure-
ment was the following: the oppositely oriented prism groups
were moved into the collimated beam. For each position a
rocking curve was scanned in an up or down scan direction (see
an example for tantalum in Fig. 2); typical measurement times
for the rocking curves were about 10 to 20 min. This yielded
a set of a so-called four-pack of scans allowing any potential
linear temporal drifts to be eliminated. For each material and
each energy a series of four-packs was recorded. Within each
four-pack the rocking curves were fitted by a double-Gaussian
fit function to obtain the peak position. This allowed within
each four-pack the extraction of one value of the deviation
angle caused by refraction. Averaging all four-pack values for
a given energy and using the well-known equation of prism
optics, the corresponding value for the index of refraction
was determined. Combining all values as a function of the
photon energy yields the dispersion curve for each material. A
detailed principle description of the data analysis is given in
Ref. [15].
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FIG. 2. Rocking curves examplary from an up or down scan
direction at a γ -ray energy of 517 keV in the case of tantalum prisms.
A double-Gaussian fit function (see solid lines; each with the same
centroid) was applied to the measured data. For more details see the
text.

III. THEORY

The optical relation Eq. (1) connects the real part of the
refractive index n(Eγ ) with the real part of the complex forward
scattering amplitude A(Eγ ,0), which can be expressed as
the coherent superposition of amplitudes from various elastic
scattering processes [20]:

A(Eγ ) = AT(Eγ ) + AR(Eγ ) + AD(Eγ ) + ANR(Eγ ). (6)

Here, the angle argument in the amplitudes is dropped, since in
the following we exclusively consider forward scattering. The
amplitudes written above correspond to the nuclear Thomson
(T), Rayleigh (R), Delbrück (D), and nuclear resonance (NR)
scattering channels. The nuclear Thomson scattering repre-
sents the scattering on a nucleus as a whole and its amplitude
can be evaluated by the expression [21]

AT(Eγ ) = −Z2 m

M
re, (7)

where M denotes the mass of a nucleus. By Rayleigh scattering
we refer to the elastic scattering on bound electrons. In the
nonrelativistic limit, when one can neglect the binding effects,
the Rayleigh amplitude is given by

AR, class.(Eγ ) = −Zre, (8)

which is the classical Thomson scattering on Z free electrons.
To account for the relativistic corrections we use the follow-
ing approach. For the photon energies under consideration,
the Rayleigh scattering amplitude can be evaluated within
an independent particle model [22], which means that the
electron propagates in the mean field of the nucleus and
all corresponding electrons. Within this approximation the
Rayleigh amplitude can be calculated as a coherent sum of
scattering amplitudes from each electron. The amplitudes for
innershell electrons are evaluated within the second-order
S-matrix approach, while for outer shells the modified form
factor approximation is used. In particular, for the photon
energy of 517 keV, the K and L shells are calculated using
the S-matrix approach, and for 1164 and 1951 keV, the K
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TABLE I. Relativistic correction to the real part of the Rayleigh
scattering amplitude AR(Eγ ), in units of re. The S-matrix calculations
(this work; Johnson and Cheng [24]; Kissel et al. [23]) are compared
with the results of the modified form factor (MFF) and dispersion
relation (DR) approximations.

Z Eγ (keV) S (TW) S [24] S [23] MFF DR

30 279 0.08 0.08 0.09 −0.03
30 662 0.09 0.09 0.09 0.01
82 412 0.88 0.89 0.9 0.99 −1.44
82 889 0.98 0.98 1.0 0.99 3.71

shell energy is calculated from the S-matrix approach. Such a
prescription for the calculation of the Rayleigh scattering was
proposed in Ref. [23]. In Table I we compare the relativistic
correction to the Rayleigh scattering amplitude with the results
of previous studies. In the case of Zn (Z = 30), the scattering
on the K shell only is treated by the S matrix similar to
Ref. [24], while for Pb (Z = 82) the K and L shells are
included in the S-matrix approach just as in Refs. [23,24].
The contributions of other electrons are accounted for within
the modified form factor approximation [25]. For consistency,
we add these contributions also to the values of Ref. [24]. As
one can conclude from the table, our results are in excellent
agreement with those of Refs. [23,24]. Moreover, in the last
two columns we present the results of the modified form factor
approximation applied to all electrons as well as the predictions
obtained by Toll’s formula [8], which was derived using the
dispersion relation to Sauter’s approach [26]. Comparing the
results of the modified form factor approximation and the more

accurate S-matrix formalism one can conclude that the first one
provides quite good values and agreement rapidly improves for
larger photon energies. In contrast, the values of the relativistic
correction obtained by Toll’s formula [8] disagree strongly with
all other predictions and, therefore, this suggests that there is
a mistake in the formula.

The Delbrück scattering amplitude in the first-order Born
approximation was evaluated from the fourth-order vacuum
polarization tensor in Ref. [27] or by employing the dispersion
relation approach in Ref. [28]. A simple fitting formula for
the Delbrück amplitude and valid for incident photon energies
Eγ < 4mc2 was obtained in Ref. [29]:

AD(Eγ ) = (αZ)2[3.1735 × 10−2(Eγ /mc2)2

+ 3.1610 × 10−4(Eγ /mc2)4

+ 1.4790 × 10−5(Eγ /mc2)6]re. (9)

The Coulomb and screening corrections to the Delbrück ampli-
tude in the forward direction were evaluated in Refs. [30,31].
However, in the current study we neglect these contributions
due to their smallness for the considered photon energies.
Finally, photons can be elastically scattered via nuclear ex-
citations. In the present experiment the energy linewidth of
incoming photon beams was about 1–3 eV, which is several
orders of magnitude smaller than the nuclear level spacing.
Therefore, the nuclear excitation probability is negligible and
we consider here only the scattering on the tails of the giant
dipole resonances. The nuclear-resonance amplitude evaluated
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FIG. 3. Dispersion curves of several materials, where the real part of the refractive index is normalized to the atom number density
(δnorm = δ/Natom). The dots represent the measured δnorm for different energies Eγ and materials. The inserted diagram shows in detail the
deviation of δnorm from the classical approximation (black solid lines) for the high-Z materials and at high photon energies from 500 keV up to
about 2 MeV. For more details, see the text.
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FIG. 4. The normalized real part δnorm of the complex index of refraction as a function of the atomic charge number Z. The Z dependence
is shown for different photon energies Eγ (181, 517, 1164, and 1951 keV). A slight deviation of δnorm from the classical theory is observed
at energies above 517 keV. The black dots are calculated δnorm values from theory. The gray solid line is an interpolation of the classical
approximation over the measured atomic charge range.

from the photonuclear absorption cross section is given by [32]

ANR, GDR(Eγ ) = E2
γ

4πh̄cre

∑
j

σj	j

E2
j − E2

γ(
E2

j − E2
γ

)2 + E2
γ 	2

j

,

(10)

where j numerates the Lorentzian curves, which fit the pho-
tonuclear absorption data, and Ej , 	j , and σj are the position,
the width, and the peak nuclear photoabsorption cross section

of the j th resonance. The values of these parameters for the
considered nuclei were taken from Ref. [33].

IV. RESULTS AND DISCUSSION

We have measured the energy dependence of the refractive
index for different materials within the energy range from
181 to 1951 keV. To allow for better comparison, we have
normalized δ to the atom number density, i.e., δnorm = δ/Natom.
Figure 3 shows the measured dispersive behavior of the
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TABLE II. Individual contributions of the atomic elastic scatter-
ing processes to the real part of the forward scattering amplitude
ReA(Eγ ) for Be and Pb. The total experimental and theoretical values
of ReA(Eγ ) are given for a comparison in units of the classical electron
radius re.

Contribution 517 keV 1164 keV 1951 keV

Be (Z = 4)
Classical 100.00% 100.00% 100.00%
Rel. Rayleigh −0.02% −0.02% −0.02%
Delbrück 0.00% 0.00% 0.00%
Nucl. Thomson 0.02% 0.02% 0.02%
Nucl. reson. 0.00% 0.00% 0.00%

ReA(Eγ ) theo. −4.0 −4.0 −4.0
ReA(Eγ ) exp. −3.9(2) −4.3(7) −7.3(1.0)

Pb (Z = 82)
Classical 101.12% 101.28% 101.45%
Rel. Rayleigh −1.13% −1.22% −1.22%
Delbrück −0.01% −0.08% −0.25%
Nucl. Thomson 0.02% 0.02% 0.02%
Nucl. reson. 0.00% 0.00% 0.00%

ReA(Eγ ) theo. −81.1 −81.0 −80.8
ReA(Eγ ) exp. −82.3(2.2) −89.4(5.7) −106(16)

normalized real part of the refractive index δnorm as dots. Fur-
thermore, we have included a dispersion curve model accord-
ing to the classical approximation, drawn by the black solid
lines. We observed that the scattering from low-Z materials is
fairly well described by the classical Thomson approximation.
However, for high-Z materials and high γ -ray energies Eγ , we
found a deviation from the classical Thomson description. For
a better understanding of the Z dependence of the observed
effect and to compare with theoretical calculations based on
atomic scattering processes, in Fig. 4 we plot the normalized
refractive index δnorm as a function of the atomic charge number
Z of the prism material. Here, the experimental and theoretical
results are shown for three different energies (517, 1164, and
1951 keV). In the case of 181 keV there is good agreement
with the classical approximation.

The theoretical results shown in Fig. 4 are the combined
atomic elastic scattering contributions of Rayleigh, nuclear
Thomson, Delbrück, and nuclear giant dipole resonance scat-
tering, discussed in detail in the previous section. In the case of
lead the theoretical deviation and the measured deviation from
the classical approximation are as follows: at 517 keV: theo.
−1.1%, exp. (0.4 ± 2.7)%; at 1164 keV: theo. −1.3%, exp.
(9 ± 7)%; and at 1951 keV: theo. −1.4%, exp. (29 ± 20)%.
In Table II we show the individual contributions of atomic
interaction processes to the real part of the forward scattering
amplitude at different energies for two examples, a low-Z
material (beryllium, Be) and a high-Z material (lead, Pb). The
classical Thomson amplitude does not depend on the photon
energy and linearly increases with Z, while the relativistic
correction to the Rayleigh amplitude and the Delbrück term
increase with growth of the photon energy and nuclear charge
Z. At high energy and high Z the Delbrück and the relativistic
Rayleigh contributions to the scattering amplitude lead to a
slight increase of the total scattering amplitude.

The calculated atomic elastic scattering amplitudes explain
the experimental results for low energies and especially for
low-Z materials. For high energies and high Z there is a slight
deviation between the calculated and the experimentally deter-
mined real part of the forward scattering amplitude. Further-
more, at 1951 keV there is a deviation for beryllium (Z = 4).
We attempted to explain the deviation by additional nuclear
resonances. In particular, the 9Be nucleus has a low-lying 1/2+
resonance at an energy of 1.735 MeV and with a large neutron-
decay width of 225 keV [34]. Employing the dispersion relation
and experimental photoneutron cross section [34], we calculate
the corresponding contribution to the scattering amplitude to
be 2 × 10−4 re at an energy of 1951 keV and therefore cannot
explain the measurement. Thus, the deviation between theory
and experiment in the case of beryllium remains unexplained.
On the one hand the very small magnitude of the dispersive
effects in Be at these high energies make the measurement more
susceptible to very small nonlinear drifts not compensated by
our measurement scheme. To investigate this issue further, we
suggest performing measurements of the angular-differential
cross section for the elastic scattering process at the same
photon energy.

Overall, the measured refractive indices are in good agree-
ment with the theoretical values. In the worst case of high-Z
materials and at photon energies above 1 MeV, the deviation
does not exceed 2σ , where σ is the experimental uncertainty
of one standard deviation. Furthermore, we have shown the-
oretically and confirmed experimentally that the refractive
index at MeV γ -ray energies is well described by the optical
relation and the classical Thomson amplitude for a wide range
of materials. For the cases considered, the corrections to the
classical amplitude appear to be relatively small and reach their
maximum value of about 1.5% for Pb at a photon energy of
1951 keV.

V. DISCUSSION OF THE EXPERIMENTAL RESULTS
FOR APPLICATIONS

Besides the fundamental physics question of the forward
scattering behavior during γ -ray interactions with matter, a
further question is the feasibility of refractive γ -ray optics.
In the past the focusing of x rays has been successfully
demonstrated, which is today established in x-ray imaging
applications. X-ray refractive lenses have been realized at
photon energies of up to 200 keV [6,35]. At such energies the
lens systems were calculated via the classical approximation.
In the near future, highly brilliant and high-energy γ -ray
sources, like ELI-NP [36], will be realized. The success of
a number of different applications in nuclear physics might be
boosted by the capability of γ -beam focusing and collimation.
At such high energies conventional focusing optics based on
diffraction, like mirrors, multilayer Laue lenses, or Fresnel
zone plates [4], are very difficult to operate, mostly because
the angular acceptance range for diffraction decreases strongly
with photon energy. This is less relevant for refractive optics.
Here, the main problem is the fast convergence of the value of
the refractive index towards unity. Based on our investigation
of the refractive behavior of several different materials at γ -ray
energies, we show in Fig. 5 the real part of the measured
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FIG. 5. Z dependence of the measured δ for three different photon
energies. The shaded area highlights the range of materials with
maximum mass density.

refractive index δ as a function of the atomic charge number
Z. The results demonstrate that there is a range where the
refractive index becomes maximal for all energies, which
means that these materials are suitable candidates for refractive
optics. For those materials we have measured a δ value from
−1.2 × 10−8 to −2.5 × 10−9 between 517 and 1164 keV.
However, for high-density materials we have to consider
that absorption attenuates the photon beam. Therefore, it is
important to define a figure of merit (FOM) for a refractive
lens system. In that case we write as the FOM the relation
of the refractive power δ to the absorption of the lens material
given as the imaginary part of the complex refractive index. The
imaginary part β defines the energy-dependent dissipative part
and is written as β(Eγ ) = σtot(Eγ )(h̄c)Natom/2Eγ , where σtot

is the total photoabsorption cross section and Natom the atom
number density. In Fig. 6 we show the FOM as a function of the
atomic charge number Z for different γ -ray energies. For the
calculation of β(Eγ ) we used the total photon absorption cross
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FIG. 6. Z dependence of the relation between δ (refractive power)
and β (absorption) for different photon energies. This figure of merit
(FOM) demonstrates that high-Z materials are more suitable for γ -ray
refractive optics compared to low-Z materials because there is no
significant penalty in the FOM, while the much higher value of δ

allows for compact focusing lens arrays.

section from the XCOM database of the National Institute of
Standards and Technology [37]. Figure 6 shows that high-Z
materials are more suitable for refractive optics at high γ -ray
energies compared to low-Z materials. With such materials
it is feasible to realize refractive focusing optics within the
high photon energy range above 500 keV while keeping the
overall number of lens elements manageable due to the higher
value of δ. For the lower energies in our study and x-ray
energies in general, high-density materials are not suitable
because absorption is very high and scattering processes like
Compton scattering lead to degradation of the focusing power.
However, at high photon energies, especially around 1 MeV, the
detrimental effect of Compton scattering decreases compared
to Rayleigh scattering and other coherent scattering processes.
As shown in the past, refractive x-ray lenses can be realized by
a series of lenses, so-called compound refractive lens systems.
In a further work, we will describe in detail recently developed
lens systems for the γ -ray energy range. These lens systems are
made of high-density, high-Z materials with a design with less
absorption than that of x-ray refractive lenses. Besides the focal
length, the effective aperture and the transmission are impor-
tant values in lens development. The focal length is calculated
by the lens maker formula f = R/(2Nδ), where R is the radius
of curvature of the lens surfaces, N is the number of lenses,
and δ is the refractive power. The effective aperture describes
the geometric aperture reduced by absorption and Compton

processes and is given by Deff = 2R0

√
[1−exp(−μNl)]

μNl
, where μ

is the photon attenuation coefficient, l is the half length of each
lens within the lens system, and 2R0 is the geometric aperture.
The transmission, depending on the absorption and Compton
scattering, refers to the fraction of transmitted intensity in
comparison to the intensity, which is reduced by the geometric
aperture, only. The expression is T = 1

2μNl
[1 − exp(−2μNl)].

In summary, for applications like the development of refractive
optics for γ rays with an energy up to 1 MeV, the classical
approximation for the calculation of the refractive index can
be used. For higher γ -ray energies, above 1 MeV, the optical
behavior has to be investigated in more detail as mentioned
in Sec. IV.

VI. CONCLUSIONS

We have experimentally investigated the index of refraction
using the new ultrahigh-resolution γ spectrometer GAMS6 at
the ILL in Grenoble (France). We measured the refractive index
of several pure, compound, and fluid materials (Be, Si, Ge, Ag,
Ta, Pb, Hg, and SiO2) within a wide range of atomic charge
numbers Z (Z = 4 to Z = 82). The aim was to investigate the
energy as well as the Z dependence of the refractive index and
therefore test the classical approximation for the description
of the refractive effect.

For high-Z materials and high photon energies, we ob-
served a slight deviation of the real part δ from the classical
approximation, both depending on the photon energy and
Z. Also, in the case of beryllium (Z = 4) we observed a
deviation from theory. We investigated the contribution of
nuclear resonances to the forward scattering amplitude with
the result that the contribution is too small to account for
the observed deviation from theory. Overall, the measured
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refractive indices are in reasonably good agreement with the
theoretical values. We have shown theoretically and confirmed
experimentally that the refractive index at MeV γ -ray energies
are well described by the optical relation and the classical
Thomson amplitude for a wide range of materials. For the
explanation of the deviation between theory and experiment
in the case of beryllium as well as for the high-Z materials
at high γ -ray energies, further investigations are needed. We
suggest to perform measurements of the angular-differential
cross section for the elastic scattering processes at the same
photon energies. Here the contributions of different scattering

physics can be investigated in more detail at the MeV γ -ray
energy range and will allow for the testing of corrections in
atomic scattering theory.

Furthermore, from an applied point of view, the classical
approximation can be used for γ -ray energies up to MeV
energies for refractive optics development. We confirmed that
high-Z materials with high mass density are the best choice for
refractive γ -ray optics. Based on our results, in an upcoming
work we will describe in detail the implementation of lens
systems under consideration in simulation studies of optical as
well as atomic interaction physics.
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