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Probing nonclassicality in an optically driven cavity with two atomic ensembles
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The possibility of observing nonclassical features in a physical system comprised of a cavity with two ensembles
of two-level atoms has been investigated by considering different configurations of the ensembles with respect to
the node and antinode of the cavity field under the framework of open quantum systems. The study reveals the
strong presence of nonclassical characters in the physical system by establishing the existence of many facets of
nonclassicality, such as the sub-Poissonian boson statistics and squeezing in single modes, intermodal squeezing,
intermodal entanglement, antibunching, and steering. The effect of a number of parameters, characterizing the
physical system, on the different aspects of nonclassicality is also investigated. Specifically, it is observed that the
depth of the nonclassicality witnessing parameters can be enhanced by externally driving one of the ensembles
with an optical field. The work is done in the presence of open system effects, in particular, use is made of
Langevin equations along with a suitable perturbative technique.
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I. INTRODUCTION

Quantum mechanics has emerged as the best-known model
of nature, thanks to the spectacular success achieved over the
last hundred years. However, only in the last few decades, it has
been understood that quantum mechanics can even be used to
design devices that can outperform their classical counterparts.
This quantum power of devices is obtained by exploiting
nonclassical states, i.e., states having no classical analog and
more technically, the quantum states having negative values of
Glauber-Sudarshan P function [1,2]. Such states are not rare
in nature, and entangled states, steering states [3], squeezed
states [4], and antibunched states [5] are typical examples
of nonclassical states. The existence of such states has been
known (at least theoretically) for a long time. In fact, squeezing
[6], entanglement [7], and steering [8] were studied even before
the pioneering work of Sudarshan [2] that provided a necessary
and sufficient criterion of nonclassicality in terms of negativity
of the P function. However, various interesting applications
of these nonclassical states were realized only recently with
the advent of quantum information processing [9–14] and
various facets of atom optics and quantum optics [15,16]. For
example, the squeezed vacuum state has been used successfully
in detecting gravitational waves in the well-known LIGO
experiment [17,18]; squeezed states are also used in continuous
variable quantum secure and insecure communications [9,10];
entanglement is established to be useful in both continuous
and discrete variable quantum cryptography [9,12], and in
the realization of schemes for teleportation [13] and dense
coding [14]. Additionally, the steerable states provide one-
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sided device-independent quantum cryptography [19]. Fur-
thermore, powerful quantum algorithms for unsorted database
search [20] to factorization [21], discrete logarithm problem
[21] to machine learning [22], have repeatedly established
that quantum computers (which naturally use nonclassical
states) can outperform classical computers. In brief, in the last
few years, on one hand, we have seen various applications
of nonclassical states, and on the other hand, nonclassical
features have been reported in a variety of physical systems
[23–26], including but not restricted to two-mode Bose-
Einstein condensates [25,27], optical couplers [28,29], op-
tomechanical [26,30] and optomechanicslike systems [26,31],
atoms, and quantum dots in a cavity [32,33]. Many of these sys-
tems involve different types of cavities which can be produced
and manipulated experimentally [34–36]. Naturally, interest
in such systems has been considerably enhanced in the recent
past. Apart from the applicability of the nonclassical states,
and the possibilities of generation and manipulation of these
states, another interesting factor that has enhanced interest in
the nonclassical features present in these systems is the fact
that in contrast to the traditional view that quantum mechanics
is the science of the microscopic world, these systems have
nonclassical properties that are often macroscopic [37].

The above facts have motivated us to study nonclassical
features of a particular macroscopic system shown in Fig. 1.
To be specific, in this paper, we aim to investigate the possibility
of observing signatures of various types of nonclassicality in a
physical system comprised of a cavity with two ensembles
of two-level atoms, placed in different configurations with
respect to the node and antinode of the cavity field, for
example, antinode-antinode (AA), antinode-node (AN), node-
antinode (NA), and node-node (NN). To clearly visualize these
configurations, we may note that in AN configuration, one of
the ensembles is placed in the node position of the cavity field
and the other one is placed in the antinode position of the cavity
field. Similarly, one can visualize the other configurations
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FIG. 1. The schematic representation of the model consisting of
a cavity embedded with two ensembles of two-level atoms. The
left ensemble SA, with the excitation mode Â, is driven by an
external field of frequency ωf . The system is studied in the following
configurations: antinode-antinode (AA), antinode-node (AN), node-
antinode (NA), and node-node (NN). The left ensemble (the driven
ensemble), the right ensemble (the undriven ensemble), and the cavity
field interact with their independent reservoir modes, represented by
corresponding annihilation operators m̂, n̂, and f̂ , respectively.

studied in this paper. Previously, this system was used to
study electromagnetically induced transparencylike (EIT-like)
phenomenon in [38], where an EIT-like phenomenon was
observed to appear (disappear) for the NA (AN) configuration.
In what follows, we study the possibilities of observing various
types of single-mode (e.g., squeezing, sub-Poissonian boson
statistics) and intermodal nonclassicality (e.g., intermodal
squeezing, antibunching, two- and three-mode entanglement,
steering) in this system by considering that one of the atomic
ensembles is driven by an external optical field and establish
that this external field can be used to control the amount of
nonclassicality.

We have already noted that the negativity of the P function
provides us a necessary and sufficient criterion of nonclassical-
ity. However, the P function is not always well behaved, and
there does not exist any general procedure that can be adapted
to experimentally measure it. As a consequence, a set of
operational criteria for nonclassicality has been developed over
the years. The majority of these nonclassical criteria (in fact, all
the criteria used in this work) do not provide any quantitative
measure of nonclassicality,1 and they are the sufficient criteria
only. In fact, there exists an infinite set of nonclassicality crite-
ria involving moments of annihilation and creation operators
that are equivalent to the P function, but any finite subset
of that would be sufficient only. In this paper, we have used
a few such moment-based criteria of nonclassicality [40,41],
each of which is a sufficient criterion only. As none of these

1Of course, there are some measures of nonclassicality, but each of
them have some issues [39], and we have not used any of them in the
present study.

criteria provides any quantitative measure of nonclassicality
(i.e., as they only provide signatures of nonclassicality), in
what follows, these sufficient criteria are frequently referred to
as witnesses of nonclassicality. In what follows, through these
criteria, different features of nonclassicality are witnessed
under the influence of open quantum system evolution.

The effect of the ambient environment is a permanent fixture
of nature and needs to be taken into account, especially in
experiments related to nonclassical features which are known
to be influenced appreciably by the environmental effects.
As the present work aims to reveal the nonclassical features
present in the system of interest, it would be apt to consider
the effect of the environment in our calculations. Such effects
are taken into account systematically by using the framework
of open quantum systems [42]. Specifically, decoherence and
dissipation are well-known open system effects [43] and have
been studied on myriad aspects of quantum information, such
as in holonomic quantum computation [44], environmental
deletion [45], noisy quantum walks [46], quantum cryptogra-
phy [47], and the effect of squeezing on channel capacity [48].
A precursor of the present theme of nonclassical correlations in
the presence of open system effects can be found in [49]. Here,
we adapt open system effects on our system of interest by using
the formalism of Langevin equations, which is basically the
stochastic equations of motion approach [16]. Specifically, the
equations of motion for each system mode in the Heisenberg
picture are obtained by eliminating the environmental degrees
of freedom. The obtained equations of motion for different
system modes are usually coupled differential equations and
are solved using various perturbative techniques. Here, we have
used a perturbative technique that approximates all the higher-
order correlations in terms of second-order correlations [50].
The technique has been recently used to study nonclassicality
in Raman amplifiers [51] and optomechanical oscillators [52].

The rest of the paper is organized as follows. In Sec. II, we
describe the model used in this work in the context of open
quantum systems. Section III gives a brief introduction to the
various witnesses of nonclassicality used in this work. Subse-
quently, in Sec. IV, we present temporal variations of various
witnesses of nonclassicality and discuss the significance of the
results obtained in this work. Finally, the paper is concluded
in Sec. V.

II. CAVITY CONTAINING TWO ENSEMBLES
OF TWO-LEVEL ATOMS

The physical system of interest is briefly described in the
previous section and it is schematically shown in Fig. 1. In
this section, we wish to describe the system in more detail. To
begin with, we note that the model physical system of interest
is considered to be made of a single-mode cavity (Scavity) which
contains two ensembles (SA−left ensemble and SB−right
ensemble) of two-level atoms [38]. The left ensemble is driven
by a classical optical field having frequency ωf .

The Hamiltonian for the total system S ≡ SA + SB +
Scavity can be expressed in terms of collective excitation
operators Â and B̂ in the following form [38]:

Ĥ = ωcĈ
†Ĉ + ωaÂ

†Â + ωbB̂
†B̂

+{GAĈÂ† + GBĈB̂† + χÂ†e−iωf t + H.c.}, (1)
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with

Â = 1√
NA

NA∑
i=1

σ i
+,A and B̂ = 1√

NB

NB∑
j=1

σ
j

+,B,

where H.c. stands for Hermitian conjugate, and σ l
+,x =

|e(l)
x 〉 〈g(l)

x | and σ l
−,x = |g(l)

x 〉 〈e(l)
x | are the quasispin operators

for the lth atom in ensemble Sx (x ∈ {A,B}). The operator
Ĉ (Ĉ†) represents the annihilation (creation) operator for the
cavity mode. Also, GA = gA

√
NA, GB = gB

√
NB , and χ =

�
√

NA, where gA (gB) is the strength with which the atoms
in the left (right) ensemble couple with the cavity field.
Similarly, � (or equivalently, χ ) corresponds to the coupling
strength between the atoms in the driven ensemble and the
driving field. In the limit of low excitation and large number
of atoms (NA and NB), the operators Â and B̂ satisfy the
bosonic commutation relations, i.e., [Â,Â†] ≈ [B̂,B̂†] ≈ 1 and
[Â,B̂] ≈ [Â,B̂†] ≈ 0. Therefore, under these conditions, Â

and B̂ can be treated as the annihilation operators for the
collective excitation modes corresponding to ensembles SA

and SB , respectively [38].
In the interaction picture, the Hamiltonian given by Eq. (1)

can be expressed in terms of the photonic cavity mode Ĉ

and the ensemble excitation modes Â and B̂, in the following
simplified form [38]:

ĤS = �cĈ
†Ĉ + �aÂ

†Â + �bB̂
†B̂

+{GAĈÂ† + GBĈB̂† + χÂ† + H.c.}, (2)

where �r = ωf − ωr (r ∈ {a,b,c}) represents the frequency
detuning of the driven ensemble frequency (ωa), the undriven
ensemble frequency (ωb), and the cavity field frequency (ωc)
with respect to the driving frequency ωf .

Open quantum system effects are now taken into consid-
eration by allowing the interaction of the photonic cavity
mode Ĉ and the collective excitation modes of the ensembles
(i.e., modes Â and B̂) with their respective reservoirs. This
interaction is modeled, under the Markovian white-noise ap-
proximation, by coupling each mode to a reservoir made up of
a collection of harmonic oscillators [42]. As a result, the total
Hamiltonian is modified to

Ĥ = ĤS + ĤR + ĤSR, (3)

such that

ĤR =
∑

k

ωkm̂
†
km̂k +

∑
k′

ωk′ n̂
†
k′ n̂k′ +

∑
k′′

ωk′′ f̂
†
k′′ f̂k′′ , (4)

ĤSR =
∑

k

gk(m̂†
kÂ + Â†m̂k) +

∑
k′

gk′(n̂†
k′B̂ + B̂†n̂k′)

+
∑
k′′

gk′′(f̂ †
k′′Ĉ + Ĉ†f̂k′′), (5)

where m̂(m̂†), n̂(n̂†), and f̂ (f̂ †) are the annihilation (creation)
operators corresponding to the reservoirs which interact with
and damp the driven ensemble mode Â, the undriven ensemble
mode B̂, and the cavity mode Ĉ, respectively. Here, and in
what follows, S and R in the subscript correspond to the
system and reservoir, respectively. The resulting (Langevin)
equations for the system operators should include, in addition
to the damping terms, the noise operators which would produce

fluctuations [16]. We can now explicitly write the Langevin
equations for the cavity and atomic ensemble modes. Specifi-
cally, the Langevin equations for the cavity mode can be written
as

dĈ

dt
= −i�cĈ − iGAÂ − iGBB̂ − �c

2
Ĉ + F̂c, (6)

where �c is the decay constant and F̂c is the noise operator.
For the initially uncorrelated subsystems, the initial density
matrix can be considered as separable and thus in the tensor
product form ρ = ρS ⊗ ρR , and similarly, it may be considered
that the expectation value of the operator M = MS ⊗ MR

factors as 〈MS〉〈MR〉. Equation (6) is an operator equation,
and it is not easy to obtain an analytic solution of this type
of equations. Keeping this in mind, here we adapt a strategy
used in Refs. [50–52]. Following this strategy, we begin our
solution scheme by taking an average of each term appearing
in this equation with respect to the state ρ. This step yields a
differential equation of the average of Ĉ in terms of averages of
Â and B̂. Note that this step transforms the operator differential
equation into a c-number differential equation, which is much
easier to handle. Assuming each reservoir to be in thermal
equilibrium at temperature T , we can average over the system
and reservoir degrees of freedom, and using the fact that the
reservoir average of the noise operator vanishes 〈F̂c〉R = 0
[16], we end up with the following equation of motion

d 〈Ĉ〉
dt

= −i�c 〈Ĉ〉 −iGA 〈Â〉 −iGB 〈B̂〉 −�c

2
〈Ĉ〉. (7)

Similarly, we can obtain the Langevin equations for modes
Â and B̂, and for all the second-order terms in creation and
annihilation operators. Averaging each term present in these
operator differential equations would lead to a set of coupled
ordinary differential equations involving various statistical
quantities of interest. In general, these coupled differential
equations are required to be decoupled using an appropriate
approximation scheme. To maintain the flow of the paper,
we have reported this set of equations in Appendix, where
we have also described the method adopted in this paper
to decouple (solve) them. Now we may move to the next
section, where we briefly describe various measurable criteria
of nonclassicality which will be used in the subsequent section
to investigate the presence of nonclassicality in the physical
system of our interest.

III. CRITERIA OF NONCLASSICALITY

Nonclassicality is a multifaceted entity. It is an important
problem to understand various aspects of nonclassicality in the
context of open quantum systems [49]. From the perspective of
quantum optics there are different witnesses of nonclassicality
of the radiation field. For example, the Mandel parameter,
QM < 0, gives a sufficient condition for the field to be
nonclassical [15]; single and multimode squeezing conditions
reveal the nonclassical character of a state arising due to
the field fluctuation [4]; and Hillery-Zubairy criteria provide
sufficient conditions in the form of a family of inequalities for
detecting entanglement [53]. These criteria can be cast in terms
of the bosonic creation and annihilation operators as discussed
below. Thus, analysis of the various types of nonclassicality
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in the context of the above developed model, characterized
through the witnesses listed here, can be carried out.

The Mandel QM parameter. Defined as the normalized
variance of the boson distribution, this measure characterizes
the nonclassicality of a radiation field in the context of the
photon number distribution. Quantitatively,

QM = 〈(a†a)2〉 − 〈a†a〉2 − 〈a†a〉
〈a†a〉 . (8)

Since the minimum value of 〈(a†a)2〉 − 〈a†a〉2 is zero, the
Mandel parameter has a lower bound of −1, and it provides the
criterion for observing different photon statistics as follows:

QM

⎧⎨
⎩

<0 sub − Poissonian field,

=0 coherent (Poissonian) field,

>0 super − Poissonian field.

(9)

Antibunching. A closely related phenomena is photon an-
tibunching, given usually in terms of the two-time light-
intensity correlation function [54], g(2)(τ ) = 〈n1(t)n2(t + τ )〉/
〈n1(t)〉〈n2(t + τ )〉, where ni(t) is the number of counts regis-
tered on the ith detector at time t . A quantum state is referred to
as antibunched if g(2)(0) < g(2)(τ ). Interestingly, it was shown
in the past to be closely related to the Mandel parameter
[55]. The correlation g(2)(0) characterizes the antibunched, the
coherent, and the bunched fields as

g(2)(0)

⎧⎨
⎩

<1 antibunched,

=1 coherent,
>1 bunched.

(10)

Therefore, for a single field with annihilation operator a, the
criterion for antibunching can also be written as [56]

Aa = 〈a†2a2〉 − 〈a†a〉2 < 0, (11)

i.e., the negative values of Mandel parameter also establish an-
tibunching. Further, the intermodal antibunching is witnessed
by using the following criterion [29]:

Aab = 〈a†b†ba〉 − 〈a†a〉〈b†b〉 < 0. (12)

Squeezing. This measure delineates the nonclassicality of
a field in the context of the fluctuations in the quadratures Xa

and Ya of the field (with annihilation operator a), defined as

Xa = a + a†

2
Ya = a − a†

2i
. (13)

The criteria for the nonclassical signature in the field is given,
in terms of the variances in the quadratures as follows [4]:

〈
X2

a

〉 − 〈Xa〉2 = (�Xa)2 < 1
4 (14)

or

〈
Y 2

a

〉 − 〈Ya〉2 = (�Ya)2 < 1
4 . (15)

We can also define the intermodal quadrature operators Xab =
(a + a† + b + b†)/2

√
2 and Yab = (a − a† + b − b†)/2i

√
2,

such that the intermodal squeezing criterion is given by

(�Xab)2 < 1
4 (16a)

or

(�Yab)2 < 1
4 . (16b)

Duan et al.’s criterion of entanglement. For two systems
A and B, the nonseparability means the impossibility of
factorizing the density matrix of the combined system ρ as
ρ = ∑

k λkρ
k
Aρk

B , with
∑

k λk = 1. In [57], a criterion for
inseparability was developed by Duan et al., which provides
a sufficient condition for the entanglement of any two-party
continuous variable states [58]. For two radiation fields with
annihilation operators a and b, this criterion translates to

Dab = 4(�Xab)2 + 4(�Yab)2 − 2 < 0, (17)

where (�Xab)2 and (�Yab)2 are defined in Eq. (16). The
presence of squeezing does not ensure the existence of en-
tanglement, as at a given time squeezing can happen only in
one quadrature. Thus, this criterion captures the asymmetry
in the fluctuations in X and Y , and this is why it’s studied
independently. In what follows, we refer to this criterion of
entanglement as Duan’s criterion.

Hillery-Zubairy (HZ) criteria of entanglement. In [53], it
was shown that for two field modes a and b, two inseparability
criteria are

Eab = 〈a†ab†b〉 − |〈ab†〉|2 < 0 (18)

and

Ẽab = 〈a†a〉〈b†b〉 − |〈ab〉|2 < 0. (19)

Steering. The notion of steering, as an apparent action at
a distance, was introduced by Schrödinger while discussing
the EPR paradox [8] and shares logical differences both with
nonseparability and Bell nonlocality. While as nonseparability
and Bell nonlocality are symmetric between two parties, say
Alice and Bob, steering is inherently asymmetric, addressing
whether Alice can change the state of Bob’s system by applying
local measurements. An operational definition of steering was
first provided in [59], wherein they proved that steerable states
are a strict subset of the entangled states and a strict superset of
the states that can exhibit Bell nonlocality. In the context of field
modes a and b, the EPR–steering entanglement is confirmed
if it satisfies [60]

0 < 1 + 〈a†ab†b〉 − |〈ab†〉|2
〈a†a(bb† − b†b)〉 <

1

2
. (20)

This result can be proved by the methods given in [61]. The
above steering condition (20) can be expressed in terms of the
HZ criterion Eq. (18); the condition reads

SAB = Eab + 〈a†a〉
2

< 0. (21)

The concept of steering being inherently asymmetric [62], it
will be interesting to compare SAB and SBA = Eab + 〈b†b〉

2 .
Multimode entanglement. In [63], a class of inequalities was

derived for detecting the entanglement in multimode systems.
In the case of a tripartite state, viz., the one corresponding to the
three modes a, b, and c, the sufficient conditions for not being
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biseparable of the form ab|c (in which a compound mode ab

is entangled with mode c) are given as follows:

Eab|c = 〈a†ab†bc†c〉 − |〈abc†〉|2 < 0, (22)

E′
ab|c = 〈a†ab†b〉〈c†c〉 − |〈abc〉|2 < 0. (23)

A three-mode quantum state is fully entangled by the satisfac-
tion of either or both of the following sets of inequalities:

Eab|c < 0, Ebc|a < 0, Eac|b < 0, (24)

E′
ab|c < 0, E′

bc|a < 0, E′
ac|b < 0. (25)

It is worth mentioning here that the analysis of the above-
mentioned witnesses of nonclassicality involves higher-order
products of the operators. These higher-order correlations can
be decorrelated by the prescription given in [50]. Specifically,
in what follows we have made use of 〈âb̂ĉ〉 ≈ 〈âb̂〉〈ĉ〉 +
〈â〉〈b̂ĉ〉 + 〈âĉ〉〈b̂〉 − 2〈â〉〈b̂〉〈ĉ〉, which basically makes use of
the Bogoliubov theory of linearized quantum corrections to
mean-field effects.

IV. RESULTS AND DISCUSSION

In this section, we study the nonclassical properties of
our system as manifested through various witnesses of non-
classicality discussed above. The analysis is carried out by
placing the ensembles in the four configurations, viz., AA, AN,
NA, and NN configurations. However, the analysis performed
for NN and AA modes are not as detailed as in AN and
NA configurations. The investigation performed for all the
configurations is summarized in Table I, for the convenience of
the reader. It clearly emerges that the AA configuration is more
suited for observing the various facets of nonclassicality in the
system. In some cases, other configurations may be preferred
due to sufficient depth of the nonclassicality witness, which
is desired in some particular applications having practical
relevance. The effect of external driving field on the various
nonclassical witnesses is studied with respect to �t , where �

is the common detuning for the three modes Â, B̂, and Ĉ. The
various parameters used for the AN configuration are GA =
0.2�, GB = 0.02�, �A = 2�, �B = 0.2�, and �C = 0.2�.
For the NA configuration, GA = 0.02�, GB = 0.2�, �A =
0.2�, �B = 2�, and �C = 0.2�. For the AA configuration,
GA = 0.2�, GB = 0.2�, �A = 2�, �B = 2�, and �C =
0.2�. And finally, for the NN configuration, GA = 0.02�,
GB = 0.02�, �A = 0.2�, �B = 0.2�, and �C = 0.2�. In all
the cases we have considered vacuum bath.

The initial conditions (at t = 0) are chosen in such a way
that the average number of photons in the cavity field and
the average number of excitations in the two ensembles are
all equal to 1. Figure 2 shows the evolution of the average
number of bosons corresponding to the driven ensemble mode
(〈Â†Â〉), the undriven ensemble mode (〈B̂†B̂〉), and the average
number of the cavity photons (〈Ĉ†Ĉ〉). The average number of
excitations is found to drop quickly for the ensemble placed
at the antinode of the cavity field, compared to the ensemble
placed at the node of the cavity field. One can also see vivid
variations in the average excitation number of the driven
ensemble when placed at the node of the cavity field. In other

FIG. 2. Average number of cavity photons and excitations corre-
sponding to the two ensembles, studied with respect to the dimen-
sionless parameter �t : (a),(b) AN (left ensemble at antinode and
the right ensemble at node) and NA (left ensemble at node and the
right ensemble at antinode) configurations, respectively. The average
number of excitations corresponding to the driven ensemble (〈A†A〉),
the undriven ensemble (〈B†B〉), and the average cavity photon number
(〈C†C〉) is depicted for χ = 0 and χ = 0.2�. All the quantities shown
in the plots in the present paper are dimensionless.

words, placing the ensemble at the antinode of the cavity
field shadows the effect of the external field. We have not
shown similar variation in the boson number for the remaining
two configurations as it is quite similar to what is observed
here. The interested readers are referred to the Supplemental
Material [64] for various results summarized in Table I but not
illustrated in the main paper.

Evolution of the average boson number discussed above
gives us a feeling of the system dynamics but does not
provide us any information about the nonclassical nature of
the system. To obtain the nonclassical characteristics of the
system, we begin with the study of variation of a single-mode
nonclassicality witness known as the Mandel parameter QM ,
which has been introduced in the previous section. Variation
of QM with respect to rescaled time �t is plotted in Fig. 3 for
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FIG. 3. Mandel parameter with respect to the dimensionless
parameter �t : (a),(b) AN and NA configurations, respectively. The
nonclassical nature of the field corresponding to mode α is confirmed
by QM (α) < 0.

all three modes of the system in AN and NA configurations.
The condition for nonclassicality is implied by the negative
values of QM (i.e., QM < 0) and can be interpreted as the
sub-Poissonian statistics of the corresponding field. Further,
it is observed that the application of the external field to
the driven ensemble makes QM more negative, and thus the
driving optical field may be used to enhance the amplitude
of the nonclassicality witness in both the driven ensemble
and cavity mode. Negative values of QM are also observed
for AA and NN configurations, and similar inferences can
be drawn from it as mentioned in Table I; the illustrations of
the results are given in the Supplemental Material. Specifically,
we found nonclassicality in the driven (undriven) ensemble in
the absence of the external drive. Although in the absence of the
driving term, the Hamiltonian given by Eq. (1) is symmetric
for both ensembles, the observed behavior can be attributed
to different values of decay constants for the modes under
consideration. Note that the nonclassicality observed in the
driven ensemble for the higher intensity of the driving field
establishes that the driving field can be used to control the
amount of nonclassicality in the system.

FIG. 4. Showing intermodal antibunching parameter Aαβ for
modes α and β, plotted with respect to the parameter �t : (a),(b)
AN and NA configurations, respectively. The existence of intermodal
antibunching is confirmed if Aαβ < 0.

Motivated by the presence of single-mode nonclassicality
in the boson number distribution also illustrating the presence
of single-mode antibunching, we also study the possibilities of
compound-mode antibunching using Eq. (12). Figure 4 shows
the variation of nonclassicality parameter for the intermodal
antibunching as defined by Eq. (12) for all possible compound
modes in AN and NA configuration. The criterion Aαβ < 0
is satisfied for all the modes α/β ∈ {Â,B̂,Ĉ}. One can see
the enhancement in the depth of intermodal antibunching
parameter by the action of the external field driving ensemble
A. Similar studies in the case of AA and NN configurations
also show intermodal antibunching as summarized in Table I.

After witnessing the signatures of nonclassicality in all
three modes of the system through the negative values of
the Mandel QM parameter, we turn our attention towards
single-mode squeezing, the criterion for which is defined in
Eqs. (14) and (15). Figure 5 illustrates the presence of the
quadrature squeezing in all the individual modes, both in
AN and NA configurations. A similar study for AA and NN
configurations is carried out and the results (not displayed here)
are summarized in Table I. The field mode Â, corresponding
to the driven ensemble, shows an appreciable enhancement in
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FIG. 5. Single-mode squeezing, as defined in Eqs. (14) and (15), plotted with respect to the dimensionless parameter �t : (a)–(d), (b)–(e),
and (c)–(f) correspond to modes Â, B̂, and Ĉ, respectively. The top and bottom panels pertain to the AN and NA configurations, respectively.
It is clear that the application of the external field to the driven ensemble (Â), that is, the nonzero value of χ , enhances the squeezing in the
respective quadratures of a particular mode.

the magnitude of squeezing, illustrated by the decrease of the
variance in one quadrature with respect to the coherent state
level as soon as the external field is applied. This enhancement
is also observed in the undriven mode B̂ and the cavity mode
Ĉ, but with relatively less magnitude in AN configuration,
while as in the NA configuration, the enhancement in the
nonclassicality of field modes B̂ and Ĉ is quite meager. This
can be attributed to the fact that in NA configuration, the driven
ensemble, being at the node of the cavity field, is weakly
coupled to it. Therefore, we conclude that the amount of
nonclassicality in the driven ensemble can be controlled by
the strength of the driving field; however, the driven ensemble
should be placed at the antinode of the cavity field (AN or AA
configurations) for this control to be effective on the cavity field
mode (Ĉ) and the undriven ensemble excitation mode (B̂) as
well. However, in some cases [as in Fig. 5(b)], with an increase
in the strength of the external field, nonclassicality present
in the absence of external field decreases initially for a small
period of time before increasing thereafter. This behavior could
not be explained by the present study and may be attempted in
the near future. The role of external driving field strength as a
control parameter can be further established using Fig. 6, which
illustrates the variation of (�Xa)2 with respect to the external
driving field strength and time. The enhancing effect of the
external field on the quadrature squeezing is clearly visible in
this case.

Motivated by the observation for the single-mode squeez-
ing, we investigated the presence of intermodal squeezing
using the criterion given in Eqs. (16a) and (16b). The outcome
of the investigation is plotted in Fig. 7, which clearly shows
the existence of intermodal squeezing in the compound mode
ÂB̂. One can observe the amplification in the squeezing
parameters as a consequence of an increase in the external
field driving the atomic ensemble SA [cf. Fig. 7(b)]. A similar

study for NN and AA configurations is also carried out with
compound modes B̂Ĉ and ÂĈ in all four configurations.
The presence of squeezing in different possible compound
ensemble-ensemble and ensemble-cavity modes in all four
configurations is observed and is summarized in Table I. It
is worth mentioning here that the enhancement in the values
of the witness of the intermodal squeezing is found to be more
prominent in the compound mode ÂĈ when compared with
ÂB̂ or B̂Ĉ. This can be attributed to the fact that the amount
of nonclassicality in mode B̂ is less susceptible to the driving
field.

Nonclassical features manifested through the negative val-
ues of the Mandel QM parameter, intermodal antibunching,
and the criteria of single-mode and compound-mode squeezing
have been studied for a long time using various techniques
including the short-time approach [65,66] and Sen-Mandal
approach [28,67], but most of those studies were limited to
closed system configurations. In the present work, we have
reported the existence and dynamics of these nonclassical

FIG. 6. Squeezing parameter (�XA)2 for mode Â as a function of
the driving field strength χ as well as the dimensionless parameter �t .
The enhancing effect in quadrature squeezing as a result of increase
in the strength of the driving field is observed.
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FIG. 7. Intermodal squeezing, defined by Eq. (16a), with respect
to �t . (a),(b) Squeezing in compound mode ÂB̂, in AN and NA
configurations, respectively. One finds enhancement in the intermodal
squeezing as a result of driving ensemble (Â) by the application of
the external field.

features in the backdrop of open quantum systems. To continue
the investigation further, we may note that among various
nonclassical features, entanglement has drawn the maximum
attention of the scientific community because of its enormous
applications in quantum computing and communication and
because of the fact that it may lead to various phenomenon
having no classical analog, such as dense coding [14] and
teleportation [13]. Keeping this in mind, we now look into the
possibility of observing intermodal entanglement in the system
of our interest. To do so, we will use a set of inseparability
criteria, each of which is only sufficient and consequently,
when one of the criteria fails, another one may succeed
to detect entanglement. We begin with Duan’s criterion for
inseparability defined in Eq. (17) and graphically present the
obtained results in Fig. 8. It is clear from Fig. 8 that the
condition for inseparability (i.e., Dαβ < 0) is satisfied for
modes α and β. Irrespective of whether the driven ensemble is
placed at the node or antinode of the cavity field, the value of
the Duan parameters DAB and DBC is very small. In the NA

FIG. 8. The Duan separability parameter vs �t : (a),(b) AN
and NA configurations, respectively. The sufficient condition for
inseparability is implied by Dαβ < 0, for modes α and β.

configuration [shown in Fig. 8(b)], the Duan parameters DAB ,
DBC as well as DAC become negative, thereby witnessing the
presence of entanglement among all the modes. On the other
hand, in AN configuration, DBC is non-negative [cf. Fig. 8(a)].
This implies that transforming the system from AN to NA
configuration enhances the intermodal entanglement, which
can also be viewed in the enhancement of the Duan parameter
DAC in NA configuration.

As stated above, moment-based criteria of inseparability
are only sufficient. Hence, it makes sense to look into the
possibility of observing entanglement in light of one or
more different criteria. We study the famous Hillery-Zubariy
criteria defined by Eqs. (18) and (19) and have illustrated the
corresponding results in Fig. 9, where negative values of EAB

and ẼAB confirm the existence of the intermodal entanglement
between modes Â and B̂ for all configurations. At times, weak
signatures of entanglement are found through ẼAB criterion, but
relatively stronger signatures are found through EAB criterion
(see Fig. 9). Similarly, one may observe in Figs. 8(a) and 9(b)
that, at �t = 6, Duan’s criterion failed to detect entanglement
but is captured by the Hillery-Zubairy criteria. Further, the
study revealed the relevance of placement of ensembles in the
cavity for the generation of entanglement between two spatially
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FIG. 9. Hillery-Zubairy criteria, as defined in Eqs. (18) and (19), plotted against the dimensionless parameter �t for modes Â and B̂: (a)–(d)
AA, AN, NA, and NN configurations, respectively. The negative values of the Hillery-Zubairy parameters (HZPs), viz., EAB and ẼAB , provide
the sufficient condition for the entanglement between the corresponding modes. The nonzero value of χ makes HZPs more negative at certain
points, and hence, enhance the entanglement between the corresponding modes.

separated ensembles interacting with a common cavity field.
Also, going from AA to NN configuration, the effect of external
driving field becomes relevant for controlling the amount of
entanglement. A similar study for the remaining two compound
modes B̂Ĉ and ÂĈ also established that they are always
entangled in all configurations, as summarized in Table I (see
the Supplemental Material for details).

As we have already mentioned, entangled states may or may
not satisfy steering conditions, but a state satisfying steering
conditions must be entangled. Thus, a steering criterion can be
viewed as a stronger criterion of nonclassicality in comparison
to the criteria of entanglement. Further, entangled states that
are not steered cannot be used for one-way device-independent
quantum cryptography, but steered states can be [19]. This
motivated us to look into the possibility of observing steered
states in our system. To do so we have used the steering criterion
given by Eq. (21) and plotted, for example, for two spatially
separated ensembles modes Â and B̂ in Fig. 10. The existence

of the steered state is observed for modes Â and B̂ (also for
B̂ and Ĉ, and for Â and Ĉ as summarized in Table I) for all
configurations. Further, in contrast to entanglement witnesses,
here we observe an asymmetric nature of steering which is
reflected in Fig. 10, where it can be seen that SAB 
= SBA.
For instance, Fig. 10(c) shows that for nonzero driving field
intensity, Â can steer B̂, while the converse is not observed. The
results obtained for the steering criterion established the same
observations as found for the Hillery-Zubairy entanglement
criteria. Failure to obtain steering in some of the cases (as
highlighted in Table I) establishes that it is a relatively stronger
criterion of nonclassicality, and the presence of steering cor-
relations in two spatially separated ensembles, mediated by
the cavity field and controllable by the external driving, is an
interesting observation.

So far we have seen quantum correlations involving two
modes only. However, our system consists of three modes that
are treated quantum mechanically. Hence, we may extend our
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FIG. 10. Steering criteria as a function of �t for modes Â and B̂: (a)–(d) AA, AN, NA, and NN, respectively. Steering is confirmed if
Sαβ < 0 for modes α and β.

study to check nonclassical features of the system through
some quantum correlations involving all the three modes Â,
B̂, and Ĉ. To do so, use has been made of the biseparability
criteria, defined in Eqs. (22) and (23), to study multimode
entanglement. Corresponding results are plotted in Fig. 11.
It is clear that the sufficient condition for the fully entangled
state, which is the satisfaction of at least one of the two
sets of inequalities given by (24) and (25), is satisfied here.
Thus, there exists a nonclassical correlation involving all the
three modes in both AN and NA configuration. Specifically,
all possible combinations for the biseparability show almost
similar variation in Fig. 11. This establishes that the three-
mode compound state is fully entangled. The application of
the external field is found to enhance the signature for the
existence of the multimode entanglement. Similar studies for
other configurations are summarized in Table I.

V. CONCLUSION

We have performed a detailed investigation on the temporal
variation of various witnesses of nonclassicality present in a

model physical system consisting of a cavity that contains two
ensembles of two-level atoms which are placed in different
configurations with respect to the antinode and node of the
cavity field, viz., AA, AN, NA, and NN configurations. Further,
it is considered that the left ensemble is driven by an external
optical field which has been treated here as classical. The ef-
fects of this driving optical field on various witnesses of single-
mode (e.g., squeezing, Mandel’s Q parameter, antibunching)
and intermodal (e.g., intermodal squeezing, antibunching, two-
and three-mode entanglement, and steering) nonclassicality
have been studied systematically. The study has yielded various
interesting results which are summarized in Table I.

Before, we conclude the paper, we must note that one of the
main findings of this paper is that the optical-driving field may
be used to control the amount of nonclassicality. In fact, it can
be used to enhance the nonclassicality of the atomic ensemble
modes, cavity modes, and their compound modes. Specifically,
it is observed that the excitation mode Â corresponding to
the driven ensemble shows amplification in the witness of
squeezing of its quadratures in the presence of the external
field (χ 
= 0). Similar enhancement of the negative values of
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FIG. 11. Biseparability criteria as a function of �t . Top and
bottom panels correspond to AN and NA configurations, respectively.
The nonseparability of modes α, β, and γ is implied by the satisfaction
of either or both of the inequalities Eαβ|γ < 0 and E′

αβ|γ < 0.

the nonclassicality witness has also been observed in the cavity
photonic mode Ĉ when the driven ensemble is placed at the
antinode of the cavity field.

Further, the existence of entanglement, which is considered
to be one of the main resources for quantum information
processing, has been observed here using a set of sufficient
criteria for inseparability. Specifically, we have used the
Hillery-Zubairy criterion and Duan’s criterion for two-mode
entanglement and a biseparability criteria for the three-mode
scenario. Since steering can be used for one-way device-
independent quantum key distribution ([19] and references
therein), we have also investigated the possibilities of ob-
serving steering involving various modes of the system. The
investigation has not only revealed the existence of steering,
but has also demonstrated its asymmetric nature.

The method adapted in this work is quite general and easy
to follow. It can be extended easily to investigate the existence
of nonclassicality in similar physical systems of interest,
especially in a set of driven-cavity systems. For example, the
study can be adapted to a system where both the ensembles
are driven (with the same or different driving frequencies)

or to a double-cavity optomechanical system [68–73]. In
brief, nonclassical features of various optomechanical, driven-
and nondriven-cavity and optomechanicslike systems can be
studied using the technique used here. Further, the present
system and similar driven-cavity systems can be treated in a
completely quantum-mechanical manner (by considering the
driving optical field as weak and hence quantum mechanical)
to reveal nonclassicalities involving the mode(s) of the driving
field(s). Such investigations are expected to yield various types
of nonclassicality in different physical systems that can be
realized with the present technology and thus provide a wider
choice of systems (to experimentalists) that can be used to
build quantum devices that exploit the true power of the
quantum world by producing and manipulating nonclassical
states. Keeping the above possibility in mind, we conclude
this paper with an expectation that the present study will lead
to a set of similar studies and subsequently to quantum devices
having practical applications.
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APPENDIX: EQUATIONS OF MOTION
FOR INVOLVED OPERATORS

In analogy of Eq. (7), we obtained Langevin equations for
different single and compound modes as follows:

d〈Â〉
dt

= −i�a〈Â〉 − iGA〈Ĉ〉 − iχ − �A

2
〈Â〉, (A1)

d〈B̂〉
dt

= −i�b〈B̂〉 − iGB〈Ĉ〉 − �B

2
〈B̂〉, (A2)

d〈Ĉ〉
dt

= −i�c〈Ĉ〉 − iGA〈Â〉 − iGB〈B̂〉 − �c

2
〈Ĉ〉, (A3)

d〈Â2〉
dt

= −2i�a〈Â2〉 − 2iGA〈ÂĈ〉 − 2iχ〈Â〉 − �a〈Â2〉,
(A4)

d〈B̂2〉
dt

= −2i�b〈B̂2〉 − 2iGB〈B̂Ĉ〉 − �B〈B̂2〉, (A5)

d〈Ĉ2〉
dt

= −2i�c〈Ĉ2〉 − 2iGA〈ÂĈ〉 − 2iGB〈B̂Ĉ〉 − �c〈Ĉ2〉,
(A6)

d〈Â†〉
dt

= i�a〈Â†〉 + iGA〈Ĉ†〉 + iχ − �A

2
〈Â†〉, (A7)

d〈B̂†〉
dt

= i�b〈B̂†〉 + iGB〈Ĉ†〉 − �B

2
〈B̂†〉, (A8)

d〈Ĉ†〉
dt

= i�c〈Ĉ†〉 + iGA〈Â†〉 + iGB〈B̂†〉 − �c

2
〈Ĉ†〉, (A9)
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d〈(Â†)2〉
dt

= 2i�a〈(Â†)2〉 + 2iGA〈Â†Ĉ†〉 + 2iχ〈Â†〉

− �A〈(Â†)2〉, (A10)

d〈(B̂†)2〉
dt

= 2i�b〈(B̂†)2〉 + 2iGB〈B̂†Ĉ†〉 − �B〈(B̂†)2〉,
(A11)

d〈(Ĉ†)2〉
dt

= 2i�c〈(Ĉ†)2〉 + 2iGA〈Â†Ĉ†〉 + 2iGB〈B̂†Ĉ†〉

− �c〈(Ĉ†)2〉, (A12)

d〈Â†Â〉
dt

= iGA[〈ÂĈ†〉 − 〈Â†Ĉ〉] + iχ [〈Â〉 − 〈Â†〉] + �AnA

− �A〈Â†Â〉, (A13)

d〈B̂†B̂〉
dt

= iGB[〈B̂Ĉ†〉 − 〈B̂†Ĉ〉] + �BnB − �B〈B̂†B̂〉,
(A14)

d〈Ĉ†Ĉ〉
dt

= iGA[〈Â†Ĉ〉 − 〈ÂĈ†〉] + iGB[〈B̂†Ĉ〉 − 〈B̂Ĉ†〉]

− �c〈Ĉ†Ĉ〉 + �cnc, (A15)

d〈ÂB̂〉
dt

= −i(�a + �b)〈ÂB̂〉 − iGA〈B̂Ĉ〉 − iGB〈ÂĈ〉

− iχ〈B̂〉 − �A + �B

2
〈ÂB̂〉, (A16)

d〈ÂB̂†〉
dt

= i[�b − �a]〈ÂB̂†〉 − iGB〈B̂†Ĉ〉 + iGB〈ÂĈ†〉

− iχ〈B̂†〉 − �A + �B

2
〈ÂB̂†〉, (A17)

d〈Â†B̂〉
dt

= i(�a − �b)〈Â†B̂〉 + iGA〈B̂Ĉ†〉 − iGB〈Â†Ĉ〉

+ iχ〈B̂〉 − �A + �B

2
〈Â†B̂〉, (A18)

d〈Â†B̂†〉
dt

= i(�a + �b)〈Â†B̂†〉 + iGA〈B̂†Ĉ†〉

+ iGB〈Â†Ĉ†〉 + iχ〈B̂†〉 − �A + �B

2
〈Â†B̂†〉,

(A19)

d〈B̂Ĉ〉
dt

= −i(�b + �c)〈B̂Ĉ〉 − iGB(〈Ĉ2〉 + 〈B̂2〉)

− iGA〈ÂB̂〉 − �B + �c

2
〈B̂Ĉ〉, (A20)

d〈B̂Ĉ†〉
dt

= −i(�b − �c)〈B̂Ĉ†〉 + iGB(〈B̂†B̂〉 − 〈Ĉ†Ĉ〉)

+ iGA〈Â†B̂〉 − �B + �c

2
〈B̂Ĉ†〉, (A21)

d〈B̂†Ĉ〉
dt

= i(�b − �c)〈B̂†Ĉ〉 + iGB[〈Ĉ†Ĉ〉 − 〈B̂†B̂〉]

− iGA〈ÂB̂†〉 − �B + �c

2
〈B̂†Ĉ〉, (A22)

d〈B̂†Ĉ†〉
dt

= −i(�b + �c)〈B̂†Ĉ†〉 + iGB[〈(Ĉ†)2〉 + 〈(B̂†)2〉]

+ iGA〈Â†B̂†〉 − �B + �c

2
〈B̂†Ĉ†〉, (A23)

d〈ÂĈ〉
dt

= −i(�a + �c)〈ÂĈ〉 − iGA[〈Ĉ2〉 + 〈Â2〉]

− iGB〈ÂB̂〉 − iχ〈Ĉ〉 − �A + �c

2
〈ÂĈ〉, (A24)

d〈ÂĈ†〉
dt

= i(�c − �a)〈ÂĈ†〉 + iGA[〈Â†Â〉 − 〈Ĉ†Ĉ〉]

+ iGB〈ÂB̂†〉 − iχ〈Ĉ†〉 − �A + �c

2
〈ÂĈ†〉,

(A25)

d〈Â†Ĉ〉
dt

= i(�a − �c)〈Â†Ĉ〉 + iGA[〈Ĉ†Ĉ〉 − 〈Â†Â〉]

− iGB〈Â†B̂〉 + iχ〈Ĉ〉 − �A + �c

2
〈Â†Ĉ〉, (A26)

d〈Â†Ĉ†〉
dt

= i(�a + �c)〈Â†Ĉ†〉 + iGA[〈(Ĉ†)2〉 + 〈(Â†)2〉]

+ iGB〈Â†B̂†〉 − �A + �c

2
〈Â†Ĉ†〉. (A27)

Here, nA, nB , and nC represent the thermal photon numbers
corresponding to modes A,B, and C, respectively. Also, it
would be apt to note that one can express the various witnesses
of nonclassicality described in Sec. III in terms of the solutions
of the above set of coupled differential equations, which can
be obtained using MATHEMATICA or similar programs, or by
using conventional methods of obtaining analytic solutions of
the coupled differential equations. Particularly, in this work
we have used MATHEMATICA to obtain simultaneous numerical
solution of these coupled differential equations.

To illustrate the method adapted in this work to obtain the
expressions for nonclassicality witnesses using the solution
of the above equations, we may consider the computation
of the Mandel parameter as an example. The Mandel pa-
rameter defined by Eq. (3) contains the term 〈(Â†Â)2〉. This
quantity is not among the variables appearing in the above
equations, so the solution of the above set of coupled equa-
tions would not provide us an expression for 〈(Â†Â)2〉. To
circumvent this problem, we have adapted a technique that
allows us to simplify this term after writing it in normal-ordered
form 〈(Â†Â)2〉 = 〈Â†Â†ÂÂ〉 + 〈Â†Â〉 and subsequently us-
ing the decoupling relation [50] 〈ABCD〉 ≈ 〈AB〉〈CD〉 +
〈AC〉〈BD〉 + 〈AD〉〈BC〉 − 2〈A〉〈B〉〈C〉〈D〉. Using this de-
coupling relation we can write

〈Â†Â†ÂÂ〉 ≈ 〈Â†Â†〉〈ÂÂ〉 + 〈Â†Â〉〈Â†Â〉
+ 〈Â†Â〉〈Â†Â〉 − 2〈Â†〉〈Â†〉〈Â〉〈Â〉,

= 〈(Â†)2〉〈Â2〉 + 2〈Â†Â〉2 − 2〈Â†〉2〈Â〉2.

(A28)

Interestingly, the Mandel parameter can now be expressed in
terms of the variables, the time evolutions of which are obtained
as the solution of the above set of differential equations, and
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we can express Mandel parameter (8) as

QM ≈ 〈(Â†)2〉〈Â2〉 + 〈Â†Â〉2 − 2〈Â†〉2〈Â〉2

〈Â†Â〉 . (A29)

Clearly, the solution of the coupled differential equation
listed above would now allow us to study the temporal
evolution of the Mandel parameter and thus to investigate the

presence of nonclassicality in our system of interest under the
framework of an open quantum system. A similar strategy is
adapted in the study of all other witnesses of nonclassicality
mentioned above, and this is how the interesting results
related to the temporal evolution of nonclassicality witnesses
illustrated in Figs. 3–11, and summarized in Table I, were
obtained.
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