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Quantum master equation with dissipators regularized by thermal fluctuations
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We report an alternate formulation of the quantum master equation (QME) to describe the dynamics of a
quantum system weakly coupled to a heat bath, in the presence of weak external driving. A key feature of this
approach is the introduction of an explicit Hamiltonian to model the thermal fluctuations in the heat bath. We
show that the resulting time coarse-grained dynamical equation for the quantum system has dissipators with a
natural regulator, which emerges from an ensemble average over the fluctuations. Importantly, such regularized
dissipators arise from the second-order contributions of both the external drive as well as the system-environment
coupling. We show that the second-order drive terms, regularized to time-scales set by the fluctuations, result in
dynamic drive-induced frequency shifts as well as drive-dependent relaxation phenomena. Considering the specific
case of an ensemble of two-level systems, subjected to a linearly polarized external drive, we derive the modified
Bloch Equations with such drive-dependent shift and damping terms. The resulting drive-induced frequency shifts
converge to the known forms of dynamic frequency shifts, such as the Bloch-Siegert shift or the dynamic Stark
shift, in appropriate limits. The Kramers-Kronig pairs of these frequency shifts - manifest as drive-dependent
damping terms in the modified Bloch Equations and help explain the Redfield limit of free-induction-decay (FID)
rates as well as the non-Bloch decay of Rabi oscillations in isotropic medium. Our method predicts correct orders of
magnitudes of non-Bloch decay rates in isotropic medium as well as their observed temperature dependence. The
QME reported here, correctly describes all known aspects of the driven-dissipative dynamics up to second-order
of an open quantum system with appropriate thermal signatures and as such is expected to provide deeper insights
into the study of quantum information processing on real systems.
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I. INTRODUCTION

Driven-dissipative systems form the quintessential model
for a vast majority of physical phenomena. For an ensemble
of quantum systems in particular, the dissipation and other
nonequilibrium behavior are explained by quantum master
equations (QMEs), where the systems in question are coupled
to a heat bath [1–3]. A vast literature exists on the different
formulations of the QME explaining different aspects of
driven-dissipative dynamics that are of experimental rele-
vance [4]. QMEs, which are common in magnetic resonance
spectroscopy, involve a second-order perturbative expansion
of the system-bath coupling while the external drive to the
system is usually treated in the linear regime [1,5]. A parallel
approach assumes that the coupling and the drive induce
independent rates of variation in the system resulting in a
unitary response to the drive while retaining the second-order
system-bath response in the form of a Lindblad dissipator
[2,3]. The Floquet-Markov QMEs, introduced by Hänggi and
others, provide a third approach, which becomes important
especially in the strong-driving regime [6–8]. In spite of their
success, the known forms of QMEs do not adequately explain
many subtle features of driven-dissipative dynamics that are
observed in experiments. The existence of drive-strength-
dependent relaxation rates, first proposed in a seminal work
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by Redfield, provides for one such example [9,10]. Following
DeVoe and Brewer’s confirmation of the Redfield limit of
relaxation rates for optical transitions in solids, Lendi proposed
a phenomenological extension of the QME to explain the same
for a specific choice of the relaxation parameters [10–12].
Although the drive dependence of relaxation rates becomes
more pronounced at stronger field strengths, Lendi has pointed
out how the driven-dissipative dynamics in magnetic resonance
systems can deviate from the predictions of Bloch equations
even for small drive strengths [12]. Boscaino et al. have also
reported the dependence of two-photon free-induction-decay
(FID) rates on the drive amplitude in electron-spin resonance
experiments as well as non-Bloch decay of transient nutations
in spin-1/2 systems [13–16]. Shakhmuratov et al. first pro-
vided a theoretical framework to explain both these phenomena
in appropriate limits by introducing drive-induced fluctuating
complex fields in the system description [17]. But their ap-
proach was unable to explain the concentration dependence of
the non-Bloch regime, demonstrated by Agnello et al. [16,17].
More recent investigations by Nellutla et al. and Bertaina et al.
have shown a nonlinear dependence of the decay rate of Rabi
oscillations on the drive amplitude [18,19]. McCutcheon et al.
have shown that after an initial rotating-wave approximation
(RWA) on the external drive, a variational polaron transforma-
tion of the relevant Hamiltonians can be used to derive a QME
[4,20]. Their approach predicts frequency renormalization as
well as damping terms with quadratic dependence on the drive
strength. Such effects have previously been exemplified for the
exciton Rabi oscillations in quantum dots [21,22]. The drive
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dependence of the decay rates of exciton Rabi oscillations
in two-level semiconductor systems has also been explained
by using a dressed density-matrix master equation in the
RWA [23]. We have shown elsewhere that the experimentally
measured decay rates of Rabi oscillations in an ensemble of
spin-1/2 nuclei in an isotropic environment show a quadratic
dependence on the drive amplitude [24].

On the other hand, a well-known phenomenon in all
resonant spectroscopic problems is the existence of dynamic
frequency shifts proportional to the square of the drive am-
plitude, which is not well explained by QMEs. The earliest
example of such an effect pertains to the Bloch-Siegert shift,
which has traditionally been derived for isolated quantum
systems, i.e., a microcanonical setup, where there is no ex-
ternal source of dissipation [25–30]. Recently, the scientific
community has seen huge interest in deriving these effects in
a dissipative environment, resulting in a plethora of alternate
approaches [31–33]. Of these, the counter-rotating hybridized
rotating-wave (CHRW) method of Yan et al., which results
in a Floquet-Markov-type master equation, as well as the
Keldysh perturbative approach presented by Stace and Müller,
predict signatures of the Bloch-Siegert effect in the steady state
[31,33]. The Krylov-Bogoliubov-Mitropolsky (KBM) method
in Saiko et al.’s work predicts Bloch-Siegert-type frequency
shifts only for a longitudinal external drive, from a master equa-
tion where the dissipator is a phenomenological construct [32].

It is evident that the drive-dependent relaxation rates in
isotropic environments can only arise from higher-order effects
of the external drive, since a unitary or even a first-order term
cannot predict a modification of the dissipators. The Floquet-
Markov approaches might serve as a probable method, espe-
cially for very strongly driven systems, but explicit evaluation
of the modified dissipators for comparison with experimental
results can be a formidable task [6–8]. We note that the path-
integral methods [34] to study driven-dissipative dynamics
usually involve efficient numerical approaches, such as the
quasiadiabatic propagator path integral (QUAPI) algorithm
and the path integral Monte Carlo scheme (PIMC) [35–38]. In
all such efforts, the influence functional proposed by Feynman
and Vernon is evaluated over a large set of stochastic trajecto-
ries [34]. Such numerical routes find higher-order contributions
of drive but provide no direct construction of a QME.

Also, the form of the dynamical frequency shifts implies
the existence of nonlinear drive-dependent terms that are
independent of the system-bath coupling. But as noted before,
the signature of such frequency shifts is usually derived from
a QME in the steady-state limit, as in Müller et al.’s work in
which the second-order terms of the drive do not have a natural
regulator, i.e., a high-frequency cutoff [25,33]. It has been
pointed out by Stace et al. that, in order to study the transient
dynamics of a driven-dissipative system, one has to consider
all the poles with negative real values of the higher-order
terms in the Laplace domain [39]. The question naturally
arises as to how such poles are defined for second-order drive
contributions when no Drude-like high-frequency cutoff can be
defined for these terms. At this point, it is interesting to note
that Karplus and Schwinger’s theory of saturation and power
broadening in microwave spectroscopy introduces a density
matrix that captures the effects of random collisions [40].
Also, the commonly adopted theories explain the drive depen-

dence of relaxation rates, either by the introduction of fluctua-
tions in the energy levels of each member of a quantum ensem-
ble induced by their local environments, or the assumption of a
drive-induced additional noise term [17,41–44]. Clearly, if the
fluctuations are introduced in the local environments constitut-
ing a thermal bath, which is not unphysical, the bath density
matrix can capture the correlation of such fluctuations in all
the second-order terms. As such, the second-order drive con-
tributions will be naturally regularized by the time scales of the
fluctuations, and one can, in principle, calculate their transient
effects. The presence of these regulators implies that such terms
will have both real and imaginary contributions. While the real
parts make the relaxation rates drive-dependent, corresponding
imaginary parts provide the dynamic frequency shifts.

In this work, we report an alternate formulation of the QME
for weakly driven quantum systems, where drive-induced
dynamic frequency shifts result from the dispersive part of
a second-order complex term, while the corresponding ab-
sorptive part renders the relaxation rates drive-dependent. Our
approach involves the assumption of an explicit Hamiltonian
to model the thermal fluctuations in a heat bath, since it
is expected that a thermal bath would undergo fluctuations
irrespective of the presence of a coupled quantum system. We
note that the thermal fluctuations originating from collisional
processes are essentially smooth functions of time in a very
fine-grained scale. But as the system dynamics is expected to
be much slower, such fluctuations are modeled as δ-correlated
Gaussian processes in the timescales of system dynamics.
As such, we use a normal Schrödinger evolution due to the
time-dependent fluctuation Hamiltonian as well, while using
its statistical properties as an asymptotic expression, only
for performing ensemble averages. The use of an explicit
noise (often Gaussian) in the Hamiltonian is common in
the approaches based on the stochastic Schrödinger equation
(SSE), however the subsequent analysis differs considerably
from the route that we intend to take [4]. Our approach is
more similar to Langevin dynamics, where we can write
the ordinary dynamical equations even with a fluctuation
Hamiltonian, since the fluctuations are not truly stochastic at
all timescales. We use the method of coarse-graining in time
and finite propagation under all relevant Hamiltonians so as to
realize the fact that in the timescales of the dynamics of the
quantum system, many instances of the fluctuations take place.
Under these assumptions, both the weak drive and the coupling
can be treated perturbatively. The leading second-order terms
thus obtained—after ensemble averaging—take the form of
dissipators regularized by the fluctuations. We show that for
a two-level system (TLS) subjected to a linearly polarized
transverse drive, the dispersive (imaginary) parts of the second-
order drive susceptibilities yield the well-known second-order
frequency shifts in appropriate limits, while their Kramers-
Kronig pairs lead to drive-dependent relaxation phenomena.
Unlike the commonly adopted approaches, our method does
not require an RWA to obtain drive-dependent frequency
shifts, and as such it includes the frequency renormalization
due to counter-rotating terms of the drive as well along
with their absorptive counterparts [4,20–22,35–38]. Later, we
discuss the merits of our results in the context of various
experimental data reported earlier and cited in the previous
paragraphs.
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II. DESCRIPTION OF THE PROBLEM

We consider a driven quantum system, which interacts with
its local environment through a finite set of degrees of freedom.
The drive and the interaction Hamiltonians are assumed to be
weak, i.e., the strengths of these Hamiltonians are much less
than the magnitude of the bare Hamiltonian of this quantum
system. As such, the dynamics induced by the drive and the
coupling remains within the perturbative regime. An ensemble
of such quantum systems constitutes our system of interest
and will be simply referred to as “system” in the rest of the
paper. The collection of the corresponding local environments
constitutes a thermal bath whose various time correlations
are governed by the nature and the extent of the thermal
fluctuations. Thus, a single representative quantum system of
this collection, along with its local environment, evolves under
the following Hamiltonian (in frequency units):

H(t) = H◦
S + H◦

L + HSL + HS(t) + HL(t), (1)

where H◦
S and H◦

L represent the static Hamiltonians of the
quantum system and its local-environment, respectively, which
are weakly coupled by the termHSL.HS(t) denotes the external
drive to the quantum system. It is assumed that the bath
is in thermal equilibrium at an inverse temperature β. The
local environment experiences equilibrium fluctuations HL(t),
which solely act on the bath degrees of freedom. HL(t) may
assume different values for different ensemble members while
respecting the constraints imposed by the requirement of sus-
tained thermal equilibrium. Apart from HL(t), the other terms
in the Hamiltonian are identical for all ensemble members and
hence H◦

L determines the equilibrium density matrix of the
bath. Since the fluctuations do not drive the bath away from
equilibrium, we choose HL(t) to be diagonal in the eigenba-
sis {|φj 〉} of H◦

L, represented by HL(t) = ∑
j fj (t)|φj 〉〈φj |.

fj (t)’s are modeled as independent, Gaussian, δ-correlated
stochastic variables with zero mean and standard deviation
κ . We emphasize that the statistical properties of fj (t)’s
are asymptotic limits used to model the nature of thermal
fluctuations. In the timescale of bath dynamics, they are
smooth functions of time, while their two-point correlations
are extremely short-lived.

Starting with this description, we perform all subsequent
calculations in the interaction representation of H◦

S + H◦
L, and

all Hamiltonians in this representation are denoted by H with
relevant subscripts. Since HL(t) commutes with H◦

L at all
times, the form of the local fluctuations remains unchanged
in the interaction representation. In the following sections, we
derive a master equation for the system described above and
explicitly show the relevant dynamical equations in the context
of a TLS.

III. MASTER EQUATION WITH FINITE PROPAGATION
FOR FLUCTUATIONS

We seek to derive a quantum master equation (QME), which
captures the dynamics of the system described in the previous
section. Since our problem concerns a single Hilbert space,
a part of which undergoes rapid fluctuations, we follow the
standard practice of (i) propagating for a large enough time
�t (> 0) over which fluctuations can be adequately averaged
out, yet in the same interval HS and HSL should remain
linearizable as usual, (ii) taking the ensemble average and a
partial trace over the bath variables, and (iii) finally dividing
both sides of the equation by �t and replacing the resulting
coarse-grained time derivative by an ordinary one to get the
final QME [2]. The step (i) requires that the system and the
fluctuations have widely separated timescales, i.e., τc � τs ,
where τc is the time during which the bath correlations are
significant and τs denotes the timescale of system dynamics
(determined by the magnitudes of HS and HSL), such that we
can find a �t that obeys τc � �t � τs .

We begin from the von Neumann–Liouville equation for a
single member of the system along with its local environment,
whose density matrix is denoted by ρ̃(t),

d

dt
ρ̃(t) = −i[H (t),ρ̃(t)], (2)

where H (t) = HS(t) + HSL(t) + HL(t). The formal solution
of the above equation for a finite-time interval t to t + �t is
given by

ρ̃(t + �t) = ρ̃(t) − i

∫ t+�t

t

dt1[H (t1),ρ̃(t1)]. (3)

For the dynamics of the system part, we obtain from the
above, by taking partial trace over the environment degrees
of freedom,

ρ̃S(t + �t) = TrL{ρ̃(t + �t)} = TrL{ρ̃(t)} − i

∫ t+�t

t

dt1TrL[Heff(t1) + HL(t1),U (t1)ρ̃(t)U †(t1)]

= ρ̃S(t) − i

∫ t+�t

t

dt1TrL[Heff(t1),U (t1)ρ̃(t)U †(t1)], (4)

where Heff(t) = HS(t) + HSL(t), U (t1) = U (t1,t) = T exp
[−i

∫ t1
t

dt2H (t2)], and T is the Dyson time-ordering operator.
In the above, the commutator involving HL(t1) vanishes due
to the partial trace and ρ̃S(t) denotes the density matrix of the
particular member of the system ensemble.

To obtain a master equation for the system, we perform a
finite-time propagation of the right-hand side of (4) by keeping
terms only up to the leading second order in Heff while retaining
all orders of HL. We emphasize that this construction is at the

immediate next level of approximations as that of Bloch and
Wangsness (barring the fluctuations), where only the leading
linear order of HS was retained while having quadratic orders
in HSL [1]. Since we intend to capture the dynamics of the
system part while the local environment undergoes a large
number of fluctuation instances, a form of the propagator U is
required that captures the finite propagation due to HL while
only retaining the leading-order linear terms in Heff, in order
to capture the overall second-order effect of the latter. Such a
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form of the propagator is readily available from the Neumann
series as (Appendix A)

U (t1) ≈ UL(t1) − i

∫ t1

t

dt2Heff(t2)UL(t2), t � t1 � t + �t

(5)

with UL(t1) = UL(t1,t) = T exp[−i
∫ t1
t

dt2HL(t2)]. We note
that the above truncated form of U is strictly applicable
only (i) if at least a part of Heff(t) does not commute with
HL(t) (i.e., HSL �= 0) and (ii) Heff(t) has a timescale much
slower than the timescale of the fluctuations. In the case in
which HSL = 0, we have U (t1) = US(t1)UL(t1) with US(t1) =
exp [−i

∫ t1
t

dt2HS(t2)], which results in pure unitary evolution
of the spin systems under the external drive in the form of
a Dyson series. Therefore, setting the coupling to the local
environment to zero results in a system dynamics that is
completely decoupled from the bath dynamics. Our use of
Eq. (5) requires that HSL �= 0 in the subsequent calculations.

We substitute Eq. (5) in Eq. (4) to obtain

ρ̃S(t + �t)

= ρ̃S(t) − i

∫ t+�t

t

dt1TrL[Heff(t1),UL(t1)ρ̃(t)U †
L(t1)]

−
∫ t+�t

t

dt1

∫ t1

t

dt2TrL[Heff(t1),Heff(t2) UL(t2)ρ̃(t)U †
L(t1)

−UL(t1)ρ̃(t)U †
L(t2) Heff(t2)] + O

[
H 3

eff

]
. (6)

We note that the above form is exact up to the leading second
order in Heff and yet captures evolution solely under HL up to,
in principle, infinite orders through the UL terms.

Next, we perform ensemble averaging of both sides of
Eq. (6) and neglect the third- and higher-order contributions
of Heff. Assuming that at the beginning of the coarse-graining
interval the density matrix for the full system and bath can
be factorized into that of the system and the bath with the
latter at thermal equilibrium at an inverse temperature β,
we obtain

UL(t1)ρ̃(t)U †
L(t2) = ρS(t) ⊗ ρ

eq
L exp

(
− 1

2
κ2|t1 − t2|

)
, (7)

where ρS(t) denotes the density matrix of the system whereas
ρ

eq
L denotes the equilibrium density matrix of the bath in

the interaction representation (Appendix B). The overline in
Eq. (7) denotes ensemble averaging. The above expression
is reminiscent of Karplus and Schwinger’s construction of
the density matrix of an ensemble of colliding molecules
[40]. Using the above result, we find that the integrands in
the second-order terms of the coarse-grained equation (6)
take the form of a double commutator decaying within the
timescale of 2/κ2. Thus 2/κ2 forms the upper bound of the
timescales during which the bath correlations are significant
and as such we replace it by τc. We thus have an equation of the
form

ρS(t + �t) − ρS(t) = −i

∫ t+�t

t

dt1TrL
[
Heff(t1),ρS(t) ⊗ ρ

eq
L

] −
∫ t+�t

t

dt1

∫ t1

t

dt2TrL
[
Heff(t1),

[
Heff(t2),ρS(t) ⊗ ρ

eq
L

]]
e−|t1−t2|/τc .

(8)

Next, following the prescription of Cohen-Tannoudji et al., we divide both sides of the resulting equation by �t and approximate
the coarse-grained time derivative (�ρS(t)

�t
= 1

�t
[ρS(t + �t) − ρS(t)]) thus obtained on the left-hand side by an ordinary time

derivative [2]. The resulting equation is time-local since the right-hand side depends only on the present state ρS(t) as in
Cohen-Tannoudji et al.’s description [2]. With TrL[HSLρ

eq
L ] = 0 as described in Schaller and Brandes’ work as well as in Alicki

et al.’s analysis, the coarse-grained equation can be expressed in the Lindblad-Gorini-Kossakowski-Sudarshan form for any
�t � 0 after transforming back to the Schrödinger picture [4,45,46]. The exponential factor, exp(−|t1 − t2|/τc), can be absorbed
in the stationary two-point correlation of bath operators obtained after the partial tracing, in the second-order terms involving
only HSL. In the second-order drive terms, the exponential factor alone plays the role of a two-point correlation. The Kossakowski
matrix, involving Fourier transforms of two-point correlation functions, is thus positive-semidefinite and as such generates a trace
and positivity-preserving dynamical map resulting in a Markovian master equation [4,45–47].

Subsequently, we take the limit �t/τc → ∞ to arrive at the following master equation:

d

dt
ρS(t) = − i TrL

[
Heff (t),ρS(t) ⊗ ρ

eq
L

]sec −
∫ ∞

0
dτ TrL

[
Heff (t),

[
Heff (t − τ ),ρS(t) ⊗ ρ

eq
L

]]sec
e−|τ |/τc , (9)

where the superscript “sec” denotes that only the secular
contributions are retained (ensured by the coarse graining)
[2]. Unlike the usual forms of the master equation found in
the literature, Eq. (9) has a finite, time-nonlocal, second-order
contribution of the external drive to the system [1–3,5].
Equation (9) yields Lorentzian spectral density functions due
to the presence of the exponential decay term and predicts
the relaxation behavior along with the first-order nutation
of the driven-dissipative system as in other forms of the
QMEs [1–3,5].

IV. APPLICATION TO A TLS

We now use the master equation (9) to describe the dy-
namics of a driven-dissipative TLS. Spin- 1

2 systems provide
the most common example of TLS, and as such we define
our Hamiltonians to describe such an ensemble. We assume
H◦

S = ω◦Iz to be the bare spin Hamiltonian and HS(t) =
ω̃1 cos(ωt)Ix = 2ω1 cos(ωt)Ix to be the drive Hamiltonian.
Here Iα, α ∈ {x,y,z}, denotes the components of the spin-
angular-momentum operator, and they are given by the Pauli
matrices as Iα = 1

2σα . Also, ω◦ denotes the Larmor frequency
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of the spins and ω̃1 denotes the full strength of the chosen
linearly polarized drive. The choice of linear polarization
is deliberate since we intend to capture the effects of the
counter-rotating terms in the second order, if any. We fur-
ther assume that the external drive is nearly resonant, i.e.,
ω = ω◦ + �ω, where �ω/ω◦ → 0. This implies that the
heterodyne detection followed by low-pass filtering common
in spectroscopic measurements is equivalent to measurements
made in a corotating frame of frequency ω [48]. As such, the
interaction representations of the relevant corotating spin-1/2
observables are given by F R

α (t) = e−i�ωtIz Iαei�ωtIz , where
α ∈ {x,y,z}. The dynamics of the expectation value of F R

α (t),
denoted by Mα(t) = TrS[F R

α (t)ρS(t)], is given by

d

dt
Mα(t) = TrS

[{
d

dt
F R

α (t)

}
ρS(t)

]
+ TrS

[
F R

α (t)

{
d

dt
ρS(t)

}]
, (10)

where TrS denotes the trace over the system degrees of
freedom. We use our QME (9) on the right-hand side of the
above equation to obtain the dynamical equations for Mα(t).
The relevant timescales for the QME are τc � �t � ω−1

1 ,ω−1
SL

and ω−1
◦ � �t , where ωSL denotes the strength of the coupling

[2].
The external drive, in the interaction representation, is

HS(t) = ω1[F C
x (t) + F R

x (t)], where the counter-rotating com-
ponent of the drive field is F C

x (t) = ei�tIz Ixe
−i�tIz with � =

ω + ω◦. The dynamical equations for Mα(t) can now be
obtained directly from Eqs. (10) and (9) using the observables
defined above. The near-resonance condition demands that in
the secular limit, only the terms in HS(t) with frequency �ω

(resonant or corotating terms), i.e., terms in F R
x (t), contribute

in the first order of Eq. (9). In the following, we assume that
the heat bath is isotropic, i.e., TrL[HSL(t)ρS(t) ⊗ ρ

eq
L ] = 0,

which in turn ensures that the cross terms between the drive
and the coupling, in Eq. (9), vanish identically in the second
order [1–3]. Thus HSL(t) has no first-order contribution in
Eq. (9) and its second-order contribution leads to the relaxation
times T1 and T2 (longitudinal and transverse relaxation times,
respectively) as well as the equilibrium value M◦, exactly in
the same way as in Wangsness and Bloch’s work [1]. The
nonisotropic situation is beyond the scope of this work and
will be discussed elsewhere.

On the other hand, the second-order secular drive terms
have contributions from both the resonant [F R

x (t)] as well as the
nonresonant [F C

x (t)] parts, resulting in complex susceptibilities
proportional to ω2

1. The secular integration in Eq. (8), i.e.,
integration over t1, makes the cross terms between F R

x (t)
and F C

x (t) as well as the nonsecular self-terms of F C
x (t)

negligibly small in the second order [2]. Thus the master
equation (9) retains only the secular self-terms of F C

x (t) in
the second order of drive perturbation while retaining all
possible self-terms from F R

x (t), which is manifestly secular.
The absorptive and dispersive components of the second-
order drive susceptibilities thus obtained involve Lorentzian
spectral-density functions centered at �ω and � and result in
additional damping and shift terms in the dynamical equations.

Neglecting Lamb-Shift contributions from HSL(t), we then
arrive at the following form of the Bloch equations:

d

dt
Mx(t) = �ωxMy(t) − xMx(t),

d

dt
My(t) = −�ωyMx(t) − ω1Mz(t) − yMy(t), (11)

d

dt
Mz(t) = ω1My(t) − zMz(t) + 1

T1
M◦,

where the decay rates are x = 1
T2

+ ηx , y = 1
T2

+ ηy , and

z = 1
T1

+ ηz, with

ηx = ω2
1

1

2

[
τc

1 + �2τ 2
c

]
,

ηy = ω2
1

[
1

2

(
τc

1 + �2τ 2
c

)
+ τc

1 + �ω2τ 2
c

]
, (12)

ηz = ω2
1

[
τc

1 + �2τ 2
c

+ τc

1 + �ω2τ 2
c

]
.

The frequency shifts are given by �ωx = �ω − δωC and
�ωy = �ω − δωC + δωR, where

δωC = 1

2

(
ω2

1�τ 2
c

1 + �2τ 2
c

)
(13)

is the frequency shift originating from the counter-rotating term
F C

x (t), while

δωR = ω2
1�ωτ 2

c

1 + �ω2τ 2
c

(14)

is the same from the resonant term F R
x (t). The additional drive-

dependent frequency shifts and the damping coefficients thus
arrived at are Kramers-Kronig pairs obtained from the second-
order drive susceptibilities.

V. COMPARISON WITH OTHER THEORETICAL AND
EXPERIMENTAL RESULTS

In the following, we describe the implications of the second-
order drive terms in the dynamics of a driven-dissipative TLS
at various limits.

A. Bloch-Siegert shift

We note that in the limit �τc > 1, a condition often met in
solid-state magnetic resonance spectroscopy because of slow
fluctuations, δωC converges to ω2

1/2�, which we identify with
the familiar Bloch-Siegert shift. For a more explicit comparison
with Bloch and Siegert’s original expression, the condition
�ω = 0 introduces a shift in the resonance field given by

δωC = ω2
1

4 ω◦
= ω̃2

1

16 ω◦
(15)

in this limit [25]. Also, �ω = 0 implies δωR = 0 and the
only frequency shift term arises from the counter-rotating
component of the external drive, i.e., δωC. We note that the
above expression for the limiting value of δωC [Eq. (15)]
matches with the known form of the Bloch-Siegert shift, in an
isolated quantum system, obtained from a variety of different
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approaches, including Floquet dynamics, Magnus expansion,
Fer expansion, CHRW, as well as Bloch and Siegert’s original
exposition [25–28,31]. However, the general form of the
Bloch-Siegert shift, δωC, which depends on τc [Eq. (13)], has
not been reported before. As such, it is expected that δωC would
depend on temperature unlike the claims from other theoretical
treatments.

B. Frequency shift at large detuning

For a largely detuned, circularly polarized external drive
of the form HS(t) = ω1F

R
x (t), with �ω�t � 1, the secular

approximation retains only the cross-commutators between I+
and I− in the second-order drive terms [2]. In this limit, the
frequency shift δωR is given by

δωR = 1

2

(
ω2

1�ωτ 2
c

1 + �ω2τ 2
c

)
. (16)

Again, for �ωτc > 1, δωR approaches ω2
1/2�ω as reported

in Ref. [49]. It is known from the very early experiments
on optical spectroscopy that two-photon “light shifts” have
contributions from both the counter-rotating (�) as well as
corotating (�ω) parts of an off-resonant excitation, consistent
with a second-order perturbation in a Floquet computational
basis [27,50–52]. As in the previous section, the generalized
τc-dependent form of this shift [Eq. (14)] has not been reported
before. The τc dependence of δωR implies its temperature de-
pendence. Moreover, unlike the result of an ordinary perturba-
tion in the Floquet basis, the generalized form of δωR vanishes
in the on-resonance condition (�ω → 0) without incurring any
divergences [50,52]. Thus the only drive-dependent frequency
shift in the case of on-resonance excitation arises from the
counter-rotating component F C

x (t), as expected [25–27].

C. Redfield limit of the FID rate

Equations (11) are of the same form as the modified Bloch
equations of Shakhmuratov et al. [Eq. (11) of Ref. [17]]. Hence
the FID rate, FID, is given by the same expression as in their
work [17], i.e.,

FID = 1

T2
+

√
xy + ω2

1

x

z

. (17)

When the external drive is such that {ηx,ηy,ηz} �
{1/T1,1/T2}, the decay rates are dominated by the second-
order drive contributions and we have x ≈ ηx , y ≈ ηy , and
z ≈ ηz. Now if ω2

1τc < 1, we can approximate FID as

FID = 1

T2
+ ω1

√
ηx

ηz

. (18)

For {�τc,ωτc} < 1, the FID rate can be further approximated
as

FID = 1

T2
+ ω1

2
, (19)

which illustrates the Redfield limit [9,11,17].

D. Non-Bloch decay of Rabi oscillations

From Eqs. (11) we find that the decay rate of Rabi oscilla-
tions or transient nutations (TN), TN, is given by

TN = 1
2 (z + y), (20)

which is manifestly quadratic in the drive strength ω1 [17].
Although this result explains the increase in decay rates of
Rabi oscillations with drive strength, it does not corroborate
their linear dependence, observed in dipolar solids [15–17].
To this end, we note that the observed linear dependence of
Rabi decay rates in solids originates from signal averaging in
dipolar-coupled spin networks as shown by De Raedt et al.
and Baibekov [53,54]. More recent measurements by Nellutla
et al. as well as Bertaina et al. report a nonlinear dependence
of the decay rates of Rabi oscillations, which may arise from
crystal imperfections in solids or a second-order drive term as
in our case [18,19,54].

Interestingly, Ramsay et al.’s theoretical as well as ex-
perimental investigations on excitonic Rabi oscillations in
the weak-coupling limit as well as the variational polaron
method of McCutcheon et al. do predict frequency renormal-
ization and damping terms quadratic in the Rabi frequency
[20–22]. The limitation of these and related approaches lies
in the fact that the methods rely on an a priori RWA. Hence,
these approaches cannot, in principle, predict Bloch-Siegert-
like frequency shifts, which exclusively originate from the
counter-rotating components of an external drive, as the RWA
removes all counter-rotating terms from the Hamiltonian. A
more physical approach is to use a secular approximation
using the time-coarse graining of the dynamical equations,
which we have adopted in our derivation [2,4]. Also, the
Bloch-Siegert-type frequency shifts are independent of the
system-bath coupling-strength and can be derived even for an
isolated quantum system as mentioned before. On the contrary,
the dynamic frequency shifts obtained from the above methods
[20–22] explicitly depend on the system-bath coupling.

Recent investigations on the Rabi oscillations of an en-
semble of nuclear spins in an isotropic liquid using nuclear
magnetic resonance (NMR) spectroscopy show that the decay
rates of Rabi oscillations have a quadratic dependence on
the Rabi frequency—the decay law being given by TN =
λ0 + λ1 ω2

1 [24]. This quadratic form is corroborated by an
estimation of TN from our modified Bloch equations (11)
using Eq. (20). The most interesting feature of the experimental
data is that the measured order of magnitude of λ1 matches
with the order of magnitude of rotational correlation times of
molecules in liquids (picoseconds) [24,55–58]. Since τc is a
timescale during which the bath correlations are significant
in our model, we can expect that in an isotropic liquid at a
finite temperature, τc is of the order of the rotational correlation
times, i.e., ∼picoseconds. For � ∼ 109 Hz and �ω → 0 Hz
as in this experiment, the Lorentzian damping rates ηx , ηy ,
and ηz can be approximated by terms proportional to ω2

1τc in
exact agreement with the orders of magnitudes of non-Bloch
decay rates measured experimentally [24]. It is worthwhile to
mention here that the non-Bloch decay rates in the works of
Ramsay et al., McCutcheon et al., and Mogilevtsev et al. are
proportional to the square of the coupling strength ωSL [20–23].
One can get an idea about the magnitude of the coupling
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strength from a measurement of the T1 and T2 relaxation
times defined in the previous section. In the experiment on
the non-Bloch decay or Rabi oscillations reported by the
authors, these relaxation times were ∼1 s [24]. As such,
it is evident that the order of magnitude of the non-Bloch
decay rates measured therein cannot be explained by terms
proportional to ω2

1ω
2
SL. Moreover, Ramsay et al.’s theoretical

exposition introduces the drive-independent relaxation rates
phenomenologically, whereas our method explains both the
drive-dependent and drive-independent contributions to the
relaxation rates as discussed in the previous section [21].

Thus the QME derived here remains the only approach that
can correctly describe the drive-dependent non-Bloch decay in
nuclear spin ensembles in isotropic liquids with correct orders
of magnitude. Also, since the rotational correlation times of
molecules in liquids decrease with increase in temperature,
it is expected that the non-Bloch regime will become less
prominent with an increase in temperature in these systems.
This is also in agreement with the experimental results obtained
by the authors [24].

We note that the Floquet Markov master equation derived
by Yan et al. for a driven-dissipative TLS using the CHRW
method does give signatures of the Bloch-Siegert shift as well
as drive-dependent line-broadening [31]. But a closed-form
expression for these quantities has not been obtained for this
system [31]. Also the drive-dependent damping rates that can
be obtained from Floquet Markov master equations will depend
on ωSL and as such cannot explain the existence of terms of
the form ω2

1τc described above.

VI. DISCUSSIONS

The second-order effects of the irradiation appear as shift
and damping terms with magnitudes proportional to the square
of the drive strength. As such, these terms remain in the equa-
tion of motion even when HSL = 0, an apparently paradoxical
result. We have laid down the premise that, for this derivation,
from Eq. (6) and beyond, HSL �= 0. However, as discussed
below, we can still resolve the paradox by carefully checking
the other limits, whose values we have assumed to be based
on the magnitude of HSL, i.e., ωSL. At ωSL = 0, the Hilbert
space relevant to the problem would be a direct product of
two disjoint Hilbert spaces, and complete unitary dynamics
is expected as discussed before. To this end, we note that
our treatment begins with a choice of �t over which many
instances of the fluctuation have been assumed to take place.
After an ensemble average over the fluctuations and a partial
trace over the lattice variables, we obtain the final equation
by approximating the coarse-grained derivative over �t by
an ordinary time derivative. Such an assumption is meaningful
only when ωSL �= 0, i.e., when the system and bath are parts of a
common Hilbert space, and as such a wide timescale separation
exists in the problem. Therefore, the choice of setting HSL = 0
(i.e., ωSL = 0) would naturally be accomplished provided one
selects �t → 0 as well. In fact, analogous treatments often
scale �t with ωSL to unambiguously indicate that �t and ωSL

are not two independent parameters [59,60]. It is obvious that
instead of setting �t/τc → ∞ if we take the limit �t → 0,
after taking partial trace over the lattice and dividing both sides
of Eq. (8) by �t , we immediately recover the pure unitary

dynamics due to the irradiation, since all second-order terms
vanish in this limit.

It is important to delve deeper into the origin of the
exponential decay factor, exp(−|τ |/τc), which regularizes
all the second-order terms of Eq. (9). The generic state
of a particular member of our system coupled with
its local environment, |ψ(t)〉, can be expanded in the
product basis as |ψ(t)〉 = ∑

j,k cjk(t)|χj 〉 ⊗ |φk〉, where
{|χj 〉} are the eigenstates of H◦

S. Thus UL(t1) acting on
|ψ(t)〉 introduces random phases into the state function as
UL(t1)|ψ(t)〉 = ∑

j,k cjk(t) exp {−i
∫ t1
t

dt2fk(t2)}|χj 〉 ⊗ |φk〉.
In all the second-order terms of Eq. (6), UL’s appear with
time instances inherited from the Hamiltonian Heff . In these
terms, the external drive acts at time instants t1 and t2
preserving secularity while the state functions pick up random
phases from the fluctuations through UL(t1)U †

L(t2). Therefore,
although the drive HS(t) commutes with the fluctuation HL(t),
the random phases thus picked up by the state functions over
the coarse-grained time interval |t1 − t2| give rise to a decay
after ensemble averaging.

As illustrated in the preceding section, our QME (9)
provides a single approach to describe almost all features
of driven-dissipative quantum dynamics up to the second
order in the drive strength. The simplicity of the prescribed
method further makes it more usable in predicting results
of realistic experiments. For example, the method outlined
here does not require complicated frame transformations as
in CHRW, variational-polaron, and other related methods
[20–22,31]. Also, RWA-type approximations required in these
methods are not necessary in our approach [20–22,31]. On
the other hand, Floquet-based methods for describing driven-
dissipative quantum dynamics do not provide a closed-form
expression for drive-dependent decay rates, which matches
with the reported experimental results [6,31]. We note that
for a drive having multiple frequency modes, our approach can
directly be applied, whereas the methods mentioned above may
turn out to be unsuitable. Calculations based on the Floquet
theoretic approaches will be formidable while the methods
using frame transformations would become impractical due
to the requirement of a cascade of such transformations.

The form of the fluctuations chosen to describe our system
ensures that the bath spectral densities have a Lorentzian form
as is expected in gaseous or liquid environments, where fluctu-
ations in the molecular degrees of freedom can be considered to
be classical [45]. To obtain other forms of the spectral densities,
different models for the fluctuations may be considered.

VII. CONCLUSION

The QME (9) provides a possible way to explain the
second-order drive-dependent phenomena observed in open
quantum systems. The key step of this construction involves
the regularization of the second-order dissipators originating
from the coupling as well as the drive by the environmental
fluctuations. The real and imaginary parts of the second-order
drive contributions thus obtained explain the drive depen-
dence of relaxation rates and frequency shifts, respectively.
Our method has several advantages over the conventional
approaches used to describe higher-order effects of a resonant
drive. First of all, our derivation does not require an a priori
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assumption of RWA and hence it can capture the contributions
of the counter-rotating part of an external drive in the form
of the Bloch-Siegert shift and its corresponding absorptive
part. Unlike a perturbative treatment of isolated systems in the
Floquet basis, the second-order frequency shift obtained from
the corotating component of an external drive in our method
does not diverge in the on-resonance condition [50,52]. On
the contrary, it becomes vanishingly small, as expected from
other related theories [25–27]. Since the Bloch-Siegert shift has
traditionally been derived from a microcanonical perspective
or in the regime of a dynamical steady state, its absorptive
Kramers-Kronig pair has not been reported before. Secondly,
our proposed method does not depend on any specific form of
the bath Hamiltonian and system-bath coupling, which calls for
a wider range of applicability. The only model that has been
assumed pertains to the form of thermal fluctuations, which,
as mentioned before, are asymptotic properties expressing our
ignorance of the full many-particle dynamics. As thermal fluc-
tuations depend on the temperature of the bath, our approach
provides a probable indication on the temperature dependence
of these second-order drive terms.

Also, our method accurately describes the non-Bloch decay
of Rabi oscillations in liquid NMR with correct orders of
magnitude and temperature dependence. Decay rates propor-
tional to ω2

1τc, as obtained in this system, cannot be obtained
with correct magnitudes from any other method describing
driven-dissipative dynamics. Another major advantage of our
approach is its inherent simplicity, which makes it more suit-
able to apply in cases in which the quantum system is subjected
to a multifrequency drive. While the derived QME (9) is
general, the assumption of an isotropic heat bath implies that
the dynamical equations (11) derived for a TLS using (9) are
directly applicable to liquids and gases. This method can easily
be extended to an anisotropic medium by suitably modifying
or adding appropriate Hamiltonians for such systems. We also
note that the choice of δ-correlated Gaussian fluctuations leads
to the regularization of the dissipators in our work, but other
noise models as well as fluctuation Hamiltonians may also
serve the purpose. Since no realistic quantum system can truly
be isolated from the environment, faster quantum manipulation
of qubits with stronger drives results in larger values of
drive-dependent damping rates and frequency shifts. In view
of this, we surmise that the knowledge of drive-dependent
second-order terms would thus provide insights for designing
more efficient qubit manipulation protocols.
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APPENDIX A: CONSTRUCTION OF THE
FINITE PROPAGATOR

Following the description of the system and the bath laid
out in the body of the paper and the notations introduced

therein, we intend to construct a finite propagator U (t1),
valid for the coarse-grained time interval, t1 ∈ [t,t + �t]. The
coarse-graining time �t is such that the contribution of Heff

in U (t1) can be linearized, and only the leading first-order
terms are retained. On the contrary, many instances of the
fluctuation take place within �t , and as such we retain all
possible higher-order terms of HL. The explicit construction
of the finite-time propagator begins from the Schrödinger
equation:

d

dt
U (t) = −i H (t) U (t) (A1)

and its formal solution in the domain [t,t1] (with t1 > t):

U (t1) = 1 − i

∫ t1

t

dt2 H (t2) U (t2)

= 1 − i

∫ t1

t

dt2 Heff (t2) U (t2) − i

∫ t1

t

dt2 HL(t2) U (t2).

(A2)

Since t1 ∈ [t,t + �t] by assumption, the interval (t1 − t) � τs

and as such further propagation due to Heff can be neglected
on the right-hand side of Eq. (A2). Thus collecting all the
remaining terms on the right-hand side of Eq. (A2), we get
a finite propagator with a leading linear order term in Heff of
the form

U (t1) ≈ 1 − i

∫ t1

t

dt2 Heff (t2) UL(t2)

− i

∫ t1

t

dt2 HL(t2) UL(t2). (A3)

Combining the last term on the right-hand side with the identity,
we can rewrite the above equation as

U (t1) ≈ UL(t1) − i

∫ t1

t

dt2 Heff (t2) UL(t2). (A4)

APPENDIX B: EMERGENCE OF THE REGULATOR
FROM THERMAL FLUCTUATIONS

Following the usual practice, we too assume that at the
beginning of the coarse-graining interval the full density matrix
has the factorized form

ρ(t) = ρS(t) ⊗ ρ
eq
L , (B1)

where ρ(t) = ρ̃(t) and ρ
eq
L = exp(−βH◦

L)/ZL denotes the
equilibrium density matrix of the bath, ZL being the partition
function [1–3].

We thus have

UL(t1)ρ̃(t)U †
L(t2)

= ρS(t) ⊗
∑

j

e−βωj

ZL
|φj 〉〈φj |

× exp

{
− i

∫ t1

t

dt3 fj (t3) + i

∫ t2

t

dt4 fj (t4)

}
. (B2)

In the above expression, ωj denotes the eigenvalue of H◦
L

corresponding to |φj 〉, and we have made use of the fact that
HL(t1) and thus the propagators UL(t1) are independent of the
initial distribution of the lattice states ∀ t1 � t .
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Thus we obtain

UL(t1)ρ̃(t)U †
L(t2) = ρS(t) ⊗ ρ

eq
L exp

(
− 1

2
κ2|t1 − t2|

)
.

(B3)

In deriving the above, we have used the cumulant expansion
for Gaussian stochastic processes with usual δ correlation

in time, for which only the terms up to the second cu-
mulant survive. A further assumption of zero mean (as in
our model) leaves only the exponentially decaying factor,
exp ( − 1

2κ2|t1 − t2|). We note that as 2/κ2 becomes
small, the exponential regulator vanishes faster with in-
creasing |t1 − t2|—the limiting case being a memoryless
bath.
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