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Energy conservation in self-phase modulation
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Spectral broadening of ultrashort laser pulses is simultaneously described by either self-phase modulation
(SPM) or four-wave mixing (FWM). The latter implies the instantaneous conservation of both the photon number
and energy, while the former describes a time-dependent frequency shift, implying a violation of the energy
conservation if the number of photons is to be conserved in each time slice. We resolve this paradox by considering
the transient energy storage in the propagation medium, which can be calculated in the SPM formalism via the
dephasing between the incident pulse and the medium polarization leading to an effective imaginary part in the
third-order susceptibility. In parallel, considering the temporal variation of the incident intensity in FWM offsets
the instantaneous frequency.
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I. INTRODUCTION

Nonlinear optics was first investigated in condensed matter.
The spectacular phenomenon of supercontinuum generation
was observed by Alfano and Shapiro [1,2], who identified four-
wave mixing (FWM) [1] and self-phase modulation (SPM) [2]
as the origin of this wide spectral broadening [3–11]. The
advent of chirped pulse amplification [12] allowed even more
efficient spectral broadening, as well as its observation in gases
including atmospheric pressure air.

Four-wave mixing describes spectral broadening as the
interaction of plane monochromatic waves. Two photons at
frequencies ω1 and ω2 interact through the χ (3) susceptibility
to generate two photons at ω3 and ω4. The energy conservation
imposes ω1 + ω2 = ω3 + ω4, so the spectrum should remain
symmetrical after broadening via FWM, and the number of
photons is conserved at any time.

The same spectral broadening is alternatively described by
SPM as a deformation of the pulse. After propagating over
a distance z, the carrier wave experiences a time-dependent
frequency shift

�ω(t) = −k0zn2I
′(t)z, (1)

where the prime denotes the temporal derivation, k0 = n0ω/c,
n0 and n2 = 3χ (3)/4n0ε0c are the linear and nonlinear refrac-
tive indices, respectively, ω is the angular frequency of the inci-
dent pulse, I is its intensity, and c is the velocity of light. Self-
phase modulation intrinsically induces an asymmetric time-
dependent frequency shift. In most common media such as air
or glass, n2 > 0, so the leading edge of the pulse is redshifted
while its trailing edge is blueshifted. Such a time-dependent
frequency shift is incompatible with the simultaneous conser-
vation of the pulse energy and of the number of photons.

In this paper, we address this paradox. By taking into
account the dephasing induced by SPM between the incident
electric field and the polarization of the propagation medium,

*jerome.kasparian@unige.ch

we show that the latter transiently stores energy, which re-
stores energy conservation. Furthermore, considering the fast
variation of the pulse intensity in the FWM formalism yields
the asymmetric transient frequency shifts that are usually
described in the SPM formalism.

II. DISCUSSION

A. Energy conservation in SPM

We consider a pulse described within the slowly varying
envelope approximation (SVEA), so the electric field is ex-
pressed as E(t) = E0(t)(e−iωt + c.c.). It induces a third-order
polarization

P (3)(t) = ε0χ
(3)E(t)3, (2)

with ε0 the permittivity of vacuum. If we neglect absorption
and dispersion, the evolution of this third-order polarization
in a medium with an eigenfrequency ωe can be written in a
perturbative approach [13]

d2P (3)

dt2
+ ω2

eP
(3) = NeQ(3)P (1)3

(t), (3)

where P (1) = χ (1)E is the elastic polarizability, χ (1) is the first-
order susceptibility, E is the electric field, N is the local density
of electrons, −e is their charge, m is their mass, and

Q(3) = N3e4

mε3
0

χ (3)

χ (1)4 . (4)

Expanding the first-order polarization P (1)(t) = P
(1)
0 (t)

(ei(ωt−kz−φ(1)) + c.c.) in the term on the right-hand side of
Eq. (3), we get

d2P (3)

dt2
+ ω2

eP
(3) = NeQ(3)P

(1)
0

3

× (e3i(ωt−kz−φ(1)) + 3ei(ωt−kz−φ(1)) + c.c.)

(5)

We decompose the polarization P (3) into its components
P SPM and P TH, respectively oscillating at the fundamental and
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third-harmonic frequencies ω and 3ω:

P (3)(t) = P TH
0 (t)(ei(3(ωt−kz)−φTH) + c.c.)

+P SPM
0 (t)(ei(ωt−kz−φSPM) + c.c.). (6)

Here φTH and φSPM are the dephasings of the polarization
relative to the electric field for each spectral component. They

are chosen such that P TH
0 and P SPM

0 are real. We focus on
the terms oscillating at the fundamental frequency ω, consider
the SVEA, identify the real and imaginary parts of P SPM, and
calculate φ(1) from the linear polarization equation (14) [13].
The SVEA implies dφSPM/dt � ω and d2P SPM

0 /dt2 �
ω2P SPM

0 (t), so the terms at frequency ω in Eq. (5) are
rewritten

[
ω2

e −
(

ω − dφSPM

dt

)2
]
P SPM

0 (t) + 2i

(
ω − dφSPM

dt

)
dP SPM

0

dt
+ d2P SPM

0

dt2

= 3NeQ(3)P
(1)
0

3
(t)(ei(φSPM−φ(1)) + c.c.) = 3NeQ(3)(ε0χ

(1)E0)3(ei(φSPM−φ(1)) + c.c.). (7)

Identifying the components parallel and orthogonal to P SPM
0

in the complex plane yields

(
ω2

e − ω2
)
P SPM

0 (t) = 6NeQ(3)(ε0χ
(1)E0)3

× cos(φSPM − φ(1)), (8)

2ω
dP SPM

0

dt
= 6NeQ(3)(ε0χ

(1)E0)3

× sin(φSPM − φ(1)), (9)

which combine into

φSPM − φ(1) ≈ tan(φSPM − φ(1)) (10)

= 2ω

ω2
e − ω2

dP SPM
0

P SPM
0 (t)dt

(11)

= 6ω

ω2
e − ω2

dE0

E0(t)dt
(12)

= 3ω

ω2
e − ω2

dI

I (t)dt
. (13)

Here φ(1) can be estimated with a similar derivation, starting
from the linear propagation equation [13]

d2P (1)

dt2
+ ω2P (1) = Ne2

m
E(t), (14)

resulting in

φ(1) = ω

ω2
e − ω2

dI

I (t)dt
, (15)

which finally yields

φSPM = 4φ(1) = 4ω

ω2
e − ω2

dI

I (t)dt
. (16)

Far from resonance (ω � ωe), φSPM ≈ 4ω/ω2
eT � 1, with

T the pulse duration. For example, in air, ωe ≈ 80 nm [14],
so for typical experiments with a 100-fs pulse centered at
800 nm, φSPM ≈ 10−4. Therefore, the supplementary self-
phase modulation induced by this dephasing is fully negligible.
However, the dephasing φSPM between the driving field E

and the resulting polarization P SPM implies an energy transfer
between the incident electric field and the propagation medium.
The instantaneous power per unit volume transferred to the

propagation medium amounts to

PSPM(t) = E(t)
dP SPM

dt
, (17)

where the value of dP SPM
0 /dt is defined in Eq. (9) so that

PSPM(t) = 2E0(t) cos(ωt − kz)
(−2ωP SPM

0 (t) sin(ωt − kz

− φSPM) + 2
dP SPM

0

dt
cos(ωt − kz − φSPM)

)
. (18)

Averaging over one or a few optical cycles yields

〈PSPM〉(t) =−4ωE0P
SPM
0

ω

2π

∫ 2π/ω

0
cos(ωt) sin(ωt−φSPM)dt

+4E0
dP SPM

0

dt

ω

2π

∫ 2π/ω

0
cos(ωt) cos(ωt−φSPM)dt

(19)

= 4ωE0P
SPM
0

sin φSPM

2
+ 4E0

dP SPM
0

dt

cos φSPM

2
. (20)

Plugging the values of P SPM
0 and dP SPM

0
dt

from Eqs. (8) and (9),
we obtain

〈PSPM〉(t) ≈ 6ε0E
4
0

[
ωχ (3)

cw sin φSPM

+χ (3)
cw

ω2
e − ω2

2ω
sin(φSPM − φ(1))

]
(21)

≈ 6ε0E
4
0χ

(3)
cw φ(1)

(
4ω + 3

ω2
e − ω2

2ω

)
(22)

= 3ε0χ
(3)
cw E4

0φ
(1)

(
3ω2

e + 5ω2

ω

)
. (23)

Introducing the relations I = 2ε0cn0E
2
0 and χ (3)

cw =
4n0ε0cn2/3, this equation is rewritten

〈PSPM〉(t) = n2I

n0c

3ω2
e + 5ω2

ω2
e − ω2

dI

dt
. (24)

In typical conditions (e.g., at a wavelength of 800 nm),ωe � ω,
resulting in

〈PSPM〉(t) ≈ 3n2I

n0c

dI

dt
. (25)
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On the leading edge of the pulse, dI/dt > 0, so 〈PSPM〉 > 0:
The field transfers energy to the medium and initiates the dipole
oscillation, while on the trailing edge the dipoles return to rest
and release their energy into the electromagnetic field. The net
energy loss by the pulse is

∫ ∞
−∞ 〈PSPM〉dt = 0 since I = 0 at

both t = ±∞. The energy storage in the propagation medium
is therefore transient and results in a net energy transfer from
the redshifted leading edge of the pulse towards its blueshifted
trail. It therefore reconciles redshifts and blueshifts with the
simultaneous conservation of energy and of the photon num-
ber: A temporal slice of the pulse cannot be considered as an
isolated system. Rather, the completion of the system requires
one to consider the propagation medium together with the
pulse. For typical ultrashort laser filaments in air [15–19] the
relative energy transfer can reach 1% per centimeter, enabling
the strong reshaping occurring during their propagation.

An alternative way to understand the transient energy
storage in the medium consists in grouping the dephasing
φSPM with the third-order susceptibility χ (3) and the associated
nonlinear refractive index n2, resulting in the effective values

χ
(SPM)
eff = χ (3)eiφSPM

, (26)

nSPM
2,eff = n2e

iφSPM
. (27)

Their imaginary components χ (3) sin φSPM ≈ χ (3)φSPM and
n2 sin φSPM ≈ n2φ

SPM are intrinsically associated with gain or
loss.

B. Link with self-steepening

The above-derived transient energy storage has to translate
into a depletion of the pulse intensity in the front and a growth
in its trail. Indeed, let us consider the self-steepening term
affecting the envelope [16]

dE
dz

= −n2

n0c

d

dt
(|E |2E), (28)

where |E |2 = I . The relative variation of E is therefore

dE
Edz

= −n2|E |2
n0c

(
d|E |2
|E |2dt

+ dE
Edt

)
, (29)

which can be converted into the relative variation of the
intensity

dI

2Idz
= −n2I

n0c

(
dI

Idt
+ dI

2Idt

)
. (30)

The local intensity variations due to self-steepening therefore
amount to

dI

dz
= −3n2I

n0c

dI

dt
, (31)

which identifies with the instantaneous power gained from
the medium −〈PSPM〉 [Eq. (25)], providing an interpretation
of the self-steepening in terms of the deformation of the
envelope due to the conservation of the photon-number density
in spite of their energy drift due to the SPM-induced frequency
change. This interpretation is fully compatible with the usual
one in terms of the stretching of the temporal pulse slices
due to gradients in the group velocity. The latter focuses on

the point of view of the wave deformation, while the former
translates this deformation and the associated frequency shifts
into photon energy and considers its implications for the
simultaneous conservation of energy and the photon number.

C. Time-dependent frequency shift in FWM

We will now highlight how the FWM formalism accounts
for a time-dependent frequency shift in spite of the energy
conservation. We define the instantaneous spectrum at time t0
as the Fourier transform of the pulse convolved by a temporal
gate centered at t0 and of width τ such that 1/ω � τ � T ,
where T is the pulse duration. To allow analytical derivations,
we will consider a Gaussian gate in the following. However,
other gate shapes may be considered without loss of generality.

Four-wave mixing is typically described by assuming an
instantaneous response function of the third-order nonlinear
susceptibility (2) and focusing on the nonlinear polarization
component in EE∗E, oscillating at ω:

P SPM(t) = 4ε2
0cn0n2E0(t)3(e−iωt + c.c.). (32)

Under the paraxial approximation, this nonlinear polarization
contributes to the field evolution

2ik0
dE(t)

dz

∣∣∣∣
NL,ω

= − ω2

ε0c2
P SPM(t), (33)

with k0 the wave vector in vacuum. After plugging (32)
into (33), the field evolves as

dE(t)

dz
= iCNLE(t)3, (34)

where CNL = 2k0ε0cn0n2. In order to evaluate the frequency
shift of the instantaneous spectrum after a short propagation
distance dz, we develop the electrical field at first order in dz

as

E(t,dz) = E(t,0) + iCNLE(t,0)3dz + O(dz). (35)

Now let us locally Fourier transform Eq. (35) in the vicinity
of t0 after Taylor expanding the slowly varying field envelope
as E0(t) ≈ E0(t0) + (t − t0)E′

0(t0). Introducing �ω = ω̄ − ω

and neglecting the influence of dephasing on the field ampli-
tude, we get the intensity spectrum at first order in dz,

I (ω̄ ∝ |Ê(ω̄),t0,dz)|2 ≈ e−(τ 2/2)�ω2
τ 2E2

0 (t0)

× [ 1
2 − 3CNLE0(t0)E′

0(t0)�ωdz], (36)

where all terms involving E′
0

2 have been discarded based on
the SVEA. Deriving with respect to �ω and Taylor expanding
again at order 1 in the vicinity of ω yields the spectral peak of
the spectrum at time t0,

�ω∗(t0) = −6CNLE0E
′
0dz (37)

= −k0n2I
′
0(t0)dz, (38)

where we have introduced the intensity I0 = 2n0ε0cE
2
0 . Simi-

larly, the mean frequency is, at first order in dz,

〈ω〉(t0) ≡

∫
ω|Ê|2dω∫
|Ê|2dω

= ω − 24CNLE3
0(t0)E′

0(t0)dz

4E2
0 (t0) + E′

0
2
τ 2

(39)

063835-3



P. BÉJOT AND J. KASPARIAN PHYSICAL REVIEW A 97, 063835 (2018)

≈ ω − 6CNLE0E
′
0dz (40)

= ω − k0n2I
′(t0)dz, (41)

where E′
0

2
τ 2 � E2

0 due to the SVEA. Therefore, both the
peak (38) and mean (41) transient frequency offset calculated
with the FWM formalism are equal to those predicted by
SPM (1), provided the temporal intensity variation of the
incident pulse is taken into account. Note that the frequency
offset does not depend on the width τ of the gate, which
confirms that it is only a computation intermediate.

III. CONCLUSION

We reconciled the time-dependent frequency shift described
by self-phase modulation, with the energy and photon-number
conservations implied by the four-wave mixing formalism.
An energy transfer occurs from the redshifted leading edge
of the pulse to the blueshifted trailing edge, mediated by a
transient energy storage in the propagation medium. The latter
can be evidenced by considering the dephasing between the

driving pulse and the medium polarization, induced by the Kerr
effect. This energy transfer is also the origin of self-steepening,
which translates as a depletion (replenishment) of the pulse
envelope on its front (trailing edge). Furthermore, considering
the time-dependent intensity in the FWM formalism repro-
duces this frequency shift, i.e., this transient energy storage
in the medium. Our results straightforwardly generalize to
nondegenerate FWM and cross-phase modulation, although
the calculation is slightly more tedious. We also note that
we did not consider group-velocity dispersion. Taking it into
account would affect FWM via the phase-matching conditions,
and equivalently SPM via the envelope deformation, without
impact on our argument.
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