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Bistability of a slow mechanical oscillator coupled to a laser-driven two-level system
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It has been recently proposed that single molecule spectroscopy could be employed to detect the motion of
nanomechanical resonators. Estimates of the coupling constant (g) between the molecular two-level system and
the oscillator indicate that it can reach values much larger than the mechanical resonating pulsation (ωm) and
the two-level system linewidth (�). Other experimental realizations of the same system are also approaching this
strong-coupling regime. In this paper we investigate the behavior of the system in the limit for slow mechanical
oscillator ωm � �. We find that, for sufficiently large coupling, the system undergoes a bistability reminiscent
of that observed in optical cavities coupled to mechanical resonators.
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I. INTRODUCTION

The rapid development of nanoelectromechanics in the past
decade has seen the proposal and the experimental realization
of several systems where in order to detect the displacement
of a mechanical resonator it is coupled to a two-level system
(TLS). This includes superconducting qubits [1], nitrogen va-
cancy centers in diamonds [2–9], semiconductor TLS [10–12],
spins [13–17], or single molecules [18]. One of the interests
in coupling a mechanical resonator to a TLS is that one can
reach large couplings constants [2,13,18,19]. According, for
instance, to the estimates of Ref. [18], the coupling constant
can become larger than the mechanical pulsation ωm or the
TLS linewidth �. Increasing the coupling not only improves
the detection sensitivity of the mechanical displacement, but
allows one to reach new regimes, where the dynamics of the
TLS and of the mechanical oscillator have to be considered on
the same footing. This is well known for the case of mechanical
resonators coupled to optical cavities [20–22], for which it is
possible to reach the strong-coupling limit since the effective
optomechanical coupling constant is proportional to the square
root of the number of photons present in the cavity. A striking
effect is the onset of a static bistability that was observed long
time ago [21,23,24]. Reaching such a strong-coupling limit
with the bare coupling between the oscillator and the quantum
system, in our case the TLS, is difficult, but currently at reach
of the present technology.

In this paper we consider the case of a slow oscillator
ωm � � coupled to a laser-driven TLS and, by exploiting
an adiabatic expansion, we obtain a description of the TLS-
oscillator system in the strong-coupling limit. We find that a
static bistability is also expected, with a behavior similar to
that observed for optical cavities. In this case it is induced
by the coupling to a single quantum degree of freedom of
the TLS instead of the macroscopic condensate of photons.
Note also that the presence of the TLS renders the problem
intrinsically nonlinear. We calculate the luminescence that is
the typical observed quantity in single-molecule spectroscopy
experiments [25]. We find that the interplay of the cooling-
heating effect with the bistability gives rise to anomalous line
shapes. This bistability resembles the one observed in optical

cavities, but with the notable difference that the quantum nature
of the TLS has to be taken into account.

The paper is organized as follows. In Sec. II we present the
model. In Sec. III the Born-Markov equations are derived. In
Sec. IV we exploit the separation of time scales to simplify
the Bork-Markov equations and obtain a description of the
slow degree of freedom. In Sec. V we discuss the effective
temperature induced by the coupling to the TLS. In Sec. VI
the condition for the appearance of the mechanical bistability
is discussed. In Sec. VII the effect of the stochastic fluctua-
tions is considered by solving numerically the Fokker-Planck
equation. Section VIII gives our conclusions.

II. SYSTEM

We consider a TLS coupled to a laser and to a mechanical
oscillator as described in Ref. [18] (see Fig. 1). We will
focus on this system, but the model describes several systems,
for instance, the TLSs coupled by the strain to an oscillator
[9]. The coupling of the TLS to the mechanical oscillator is
due to the Stark effect and the difference of potential that
is induced between the oscillator (for instance, a suspended
carbon nanotube) and the transparent and conducting substrate
over which the molecules are dispersed. In experiments the
light emitted by a single molecule is collected and detected
as a function of the laser beam frequency and intensity. The
system is described by the following Hamiltonian:

HS = −�

2
σz + h̄�σx cos ωLt − h̄gσz(b + b†) + h̄ωmb†b.

(1)

Here � is the TLS splitting, � the coupling intensity to the
laser, g is the electromechanical coupling, ωL is the laser
frequency, and ωm is the mechanical pulsation (h̄ is the reduced
Planck constant). The operators σx and σz are Pauli matrices
and b and b† are the destruction and creation operators for the
mechanical oscillator excitations. The displacement operator
reads x = xz(b + b†) with xz = √

h̄/2mωm the zero point
displacement fluctuation amplitude for an oscillator of mass
m. The TLS and the mechanical oscillator are coupled to the
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FIG. 1. Left: schematics of the system proposed in Ref. [18]
and considered in this paper. Right: simplified view of the two-level
system coupled to a mechanical oscillator via the Stark effect and to
a laser.

environment that leads to a finite linewidth � of the TLS
resonance and to a damping rate γ for the oscillator.

III. BORN-MARKOV EQUATIONS

We proceed by assuming a weak coupling with the en-
vironment of the system. By standard methods [26] in the
Born-Markov approximation the environment can be traced
out and an equation for the reduced density matrix ρ(t) for the
system (oscillator plus TLS) can be derived:

ρ̇ = Lρ. (2)

We define now ρij (x,x ′,t) = 〈x,i|ρ(t)|x ′,j 〉, where |x,i〉
are the eigenstates of x and σz with eigenvalues x and
(σz)ii = ±1, respectively. It is convenient to introduce the
variables x+ = (x + x ′)/2 and x− = x − x ′. As discussed
in the Introduction we will consider in this paper the slow
oscillator limit. In terms of the above introduced parameters
the condition reads γ � ωm and

ωm,g � � � � . (3)

This implies a time scale separation between the TLS and the
mechanical oscillator dynamics. It is thus convenient to write
the Born-Markov operator as L = Lf + Ls with Lf and Ls

the fast and slow component, respectively. Explicitly the fast
component reads

Lf =

⎛
⎜⎜⎜⎝

0 i�/2 −i�/2 �

i�/2 −iδ′ − �/2 0 −i�/2

−i�/2 0 iδ′ − �/2 i�/2

0 −i�/2 i�/2 −�

⎞
⎟⎟⎟⎠, (4)

with δ′ = δ − 2gx+/xz and δ = ωL − �/h̄ the detuning. The
components of the density matrix are {ρ11,ρ12,ρ21,ρ22}. The
slow component reads

Ls = Losc + x−
xz

L− , (5)

with

Losc = ih̄

m
∂+∂− − i

mω2
m

h̄
x+x− − 2γ x−∂− − Dx2

−, (6)

where L− = ig diag(1,0,0,−1), and the last two terms in
Eq. (6) describe the coupling of the oscillator to an environment
at temperature T . From the fluctuation-dissipation theorem
D = mγ (h̄ωm/2)coth(h̄ωm/2kBT ). We use the notation ∂± =
∂/∂x±. The operatorLf describes the dynamics of the TLS and
implies a fast evolution of the density matrix on a scale of the
maximum between � and �. Thus this evolution is much faster
than that induced by theLs term that takes place on the ωm time
scale, for what concerns Losc, and even slower for the dissipa-
tive part. We have included the term proportional to gx+ in Lf

since we want to allow the possibility that this term becomes
of the same order of � in the strong-coupling limit. In order to
check that the approximations are consistent what matters is the
fluctuation of the oscillator position (�x+)2 = 〈x2

+〉 − 〈x+〉2.
If g�x+/xz is larger than ωm, then this coupling has to be
included in the fast part. On the other side, it is typically correct
to regard the term proportional to gx− as a slow contribution
that can be included in Ls. This second assumption is valid for
g�x−/xz � �. We will come back to these two assumptions
after the solution of Eq. (2) has been obtained.

IV. ADIABATIC ELIMINATION OF FAST VARIABLES

We now exploit the separation of time scales, ωm � �,
using the method of adiabatic elimination of fast variables (see,
for instance, Ref. [27]) to integrate out the TLS fast degrees of
freedom and obtain an equation for the mechanical oscillator
reduced density matrix. We begin by noting thatLf is a function
of x+ only. One can then define the kernel of the operator Lf

by the equation:

Lf (x+)ρ0(x+) = 0 . (7)

Physically ρ0(x+) is the stationary state of the TLS for a given
value of x+. Since Lf is not Hermitian, left and right eigen-
vectors are different. Let’s define w0 as the left eigenvector of
Lf with vanishing eigenvalue. One can readily show that it has
the form w0 = {1,0,0,1} and when projected on an arbitrary
state ρ it gives its trace over the TLS states:

(w0,ρ) = ρ11 + ρ22 = Trρ . (8)

Since probability is conserved by the time evolution 0 =
d Tr(ρ)/dt = Tr(Lfρ) = (w0,Lfρ) for any ρ, the relation
wt

0Lf = 0 holds. We choose now the normalization of ρ0(x+)
such that (w0,ρ

0) = 1. Any ρ can then be written as a sum of
its projection on the kernel of Lf , the slow component, and on
its orthogonal complement, the fast component:

ρij (x+,x−,t) = ρ0
ij (x+)R(x+,x−,t) + ρ

f

ij (x+,x−,t), (9)

where by construction (w0,ρ
f ) = 0 and (w0,ρ) = R(x+,x−).

Let us define P as the projector on ρ0 and Q = 1 − P as
the projector on the complement. Note that P and Q depend
on x+; they are the projectors on the 4 × 4 phase space of
the TLS. Again, for given x+, the following properties hold:
PLf = LfP = 0. We substitute now this expression in the
master Eq. (2) and by applying alternatively P and Q we obtain
the two equations:

Ṙρ0 = PLs(Rρ0 + ρf ), (10)

Qρ̇s = QLfρ
f + QLs(Rρ0 + ρf ) . (11)
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Up to now these equations are exact. Let’s now use the fact
that Lf is very large to solve the second equation (a systematic
expansion could be derived using the Laplace transform; we
consider here only the leading term)

QLfρ
f = −QLs(Rρ0). (12)

Since Lf acts on the subspace orthogonal to the kernel and the
solution is sought in the same spaceQLfQ is actually invertible
in this subspace (while Lf has one vanishing eigenvalue in the
full space of ρ). We thus substitute the solution into Eq. (10)
and obtain

Ṙρ0 = PLs(Rρ0) − PLs(QLf Q)−1QLs(Rρ0). (13)

We begin by evaluating

QLs(Rρ0) = x−
xz

RQL−ρ0 + ih̄

m
∂−RQ∂+ρ0. (14)

By projecting Eq. (13) on w0 we obtain

Ṙ =
[
Losc + x−

xz

α1 − ih̄x−
mxz

α2∂− + x2
−

x2
z

α3

]
R, (15)

where α1 = (w0,L−ρ0), α2 = (w0,L−(QLfQ)−1Q∂+ρ0), and
α3 = (w0,L−(QLf Q)−1QL−ρ0).

Using the explicit form of Lf one can readily find the three
matrix elements:

β1 = − iα1

g
= �2 + 4δ′2

�2 + 4δ′2 + 2�2
, (16)

β2 = ixz�
2α2

2g2
= −32δ′��2(2�2 + �2)

(�2 + 4δ′2 + 2�2)3
, (17)

β3 = α3�

g2
= 4�2(�2 + 4δ′2)(2�2 + �2)

(�2 + 4δ′2 + 2�2)3
. (18)

Substituting these expressions into Eq. (15) and introducing
the Wigner transform W (x+,p) = ∫

dx−e−ipx−R(x+,x−), we
have x− → ih̄∂p and ∂− → ip/h̄ in Eq. (13). We thus find for
W the following equation:

Ẇ =
[

− p

m
∂+ + (

mω2
mx+ − F

)
∂p + 2γt∂pp + Dt∂

2
p

]
W,

(19)

where F is the average force acting on the oscillator,

F = h̄g

xz

〈σz〉 = −gβ1

xz

, (20)

and γt = γ + γo and Dt = D + Do are the total dissi-
pation and diffusion coefficients, respectively, with γo =
h̄g2β2/mx2

z �
2 and Do = h̄2g2β3/x

2
z � the dissipation and the

diffusion coefficients induced by the coupling to the driven
TLS.

Equation (19) with the relations (11) and (9) allow one to
obtain the behavior of the mechanical oscillator and the optical
response of the TLS. In practice ρf is very important for the
derivation of the equation of motion of R, but its contribution
to ρ is small (of the order ωm/�), and it can be neglected in
the calculation of the averages in the following.

V. EFFECTIVE TEMPERATURE

We begin the study of Eq. (19) by defining an effective tem-
perature in analogy with the fluctuation-dissipation relation:

coth

(
h̄ωm

2kBTeff

)
= 2Dt

γt h̄ωm

. (21)

In the case of γ � γ0 one finds

coth

(
h̄ωm

2kBTeff

)
= −�2 + δ′2

4δ′ωm

. (22)

For positive values of δ′ the system is unstable (negative
damping term). For negative values of δ′ the function in Eq. (22)
has a minimum value of �/4ωm � 1 at δ′ = −�. This means
that, when the coupling to the TLS dominates over the coupling
to the environment, the system reaches a classical stationary
state (kBTeff � h̄ωm). Thus for γ = 0 one can write

kBTeff = h̄
�2 + δ′2

8δ′ . (23)

We note that the form of the effective temperature is the same
that is found for an oscillator coupled to a cavity [28]. This
follows for the similarity of the spectrum of fluctuation of σz

and that of the number of photons in a cavity. The result implies
clearly that it is not possible to use the TLS in the � � ωm limit
to cool the oscillator in the quantum regime [18,29].

We are now in the position to check the conditions on
�x+ and �x− assumed for the solution of the problem. From
the equipartition theorem mω2

m(�x+)2 = kBTeff and �x− ∼
h̄/�p with (�p)2/m = kBTeff . The condition on �x− reads
then

g � �

(
kBTeff

h̄ωm

)1/2

. (24)

Since kBTeff > h̄�, a sufficient condition for the validity of the
approximations is g � �(�/ωm)1/2, that gives a large window
of validity of the theory.

For finite value of γ a part of the region for which δ′ > 0
becomes stable, but before discussing this point we need to
take into account the fact that δ′ = δ − 2gx+/xz and that this
induces a mechanical bistability.

VI. MECHANICAL BISTABILITY

The value of x+ entering δ′ is a stochastic variable whose
statistics can be obtained from the solution of Eq. (19). In
general the distribution function is strongly peaked around the
equilibrium position xe that satisfies the equation

mω2
mxe = F (xe). (25)

We thus begin by solving Eq. (25). The equation can be studied
more conveniently by eliminating

xe = (δ − δ′)xz/2g (26)

from the definition of δ′(xe). The equation then reads

δ − δ′ = λ�β1(δ′), (27)

where we defined λ = 4g2/ωm�, that is the relevant dimen-
sionless coupling constant also known as cooperativity.
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FIG. 2. Region of static (shaded blue region for negative δ′) and
dynamical (shaded regions for positive δ′) instabilities in the planeλ-δ′

for � = � and for Qωm/� = 4 (leftmost brown region), 2 (gray), and
1 (green). The dashed line corresponds to the value δ′ = 0, separatrix
between cooling and heating in the case γ = 0 (or Q = ∞).

A relevant interpretation of λ for our problem is also
the following: When the TLS is in the excited state an
additional force Fo = h̄g/xz acts on the oscillator modifying
its equilibrium position �xe = F0/mω2

m. Let us call εP =
Fo�xe = h̄g2/ωm the (classical) energy scale that corresponds
to (twice) the variation of the potential energy of the oscillator.
Comparing it with the relevant energy scale of the TLS h̄� we
have εP /h̄� = λ/2, that measures the relevance of the TLS
on the oscillator dynamics. This phenomenon resembles the
bistability expected in suspended carbon nanotubes forming a
single-electron transistor [30,31]. There the two-level system
is the empty or filled suspended quantum dot and the role of the
laser driving is played by the electrons entering the quantum
dot for transport.

We come now back to Eq. (27). Comparing the derivatives
with respect to δ′ of the right- and left-hand sides of Eq. (27)
one finds that for λ < λc = 2(�2 + 2�2)3/2/�23

√
3 there is a

single solution for the equation for any value of δ. For λ > λc

three solutions exist, two stable and one unstable. The two
stable solutions for δ′ correspond to two stable (or metastable)
equilibrium positions given by Eq. (26). From the expression of
λc one can see that λc takes the minimum value of 2 for � = �.
In terms of the bare coupling g this implies that the minimum
value required to observe the bistability is gmin = (ωm�/2)1/2,
the geometric mean of the mechanical frequency and of the
TLS inverse lifetime. Equivalently, the requirement is that the
cooperativity λ > 1.

In order to find the region of bistability as a function of λ

and the physical laser detuning δ, we begin by recognizing that
the bistable behavior upon increasing λ begins when the d/dδ′
of the left- and right-hand side of Eq. (27) coincide:

−1 = λ�
dβ1

dδ′ . (28)

This is an equation for δ′ and λ. Its solution is shown in Fig. 2
for � = �. One can see that the bistable region takes place for
negative values of δ′, for which the TLS generate a standard
positive dissipative term. One should however be cautious
when converting this result to the externally tunable δ. This
can be done by using Eq. (27). The result is shown in Fig. 3.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

�

FIG. 3. Same as Fig. 2 in the plane δ-λ. Due to the bistability
the contour of the bistability region can be in coincidence with the
dynamically unstable region of the phase space.

The dashed line is the region δ′ = 0. As one can see a part of
the bistable phase is now apparently in the region of dynamical
instability (δ′ > 0). This is more subtle, since actually the
transformation (27) is not bijective; to the same value of δ

two values of δ′ may be associated. We will discuss later the
consequences of this fact in more details.

Let us begin by studying the consequences of the bistability
on the luminescence. In order to obtain the luminescence we
only need the probability of occupation of the excited state,
Pe, as a function of the externally fixed detuning δ. From the
solution of Lfρ

0 = 0 one finds the familiar result:

Pe = �2

�2 + 2�2 + 4δ′2 . (29)

We plot parametrically Pe and δ(δ′) from Eq. (27) in Fig. 4.
One can see that the line shape is strongly modified, with the
appearance of a part with three values possible, corresponding
to the two stable and one unstable equilibrium states. Clearly
the unstable state cannot be realized, but the oscillator spends a
sizable part of the time on the two (meta)stable states. In order
to evaluate the actual form of the expected luminescence line
we need to solve the Fokker-Planck Eq. (19).

�2 �1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

�

P
e

FIG. 4. Probability of occupation of the excited state (Pe propor-
tional to the luminescence) as a function of the detuning δ for � = �

andλ = 0.1, 0.5, 1, 2, and 3 (from left to right). The bistable behavior
begins at λ = 2.
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FIG. 5. Mapping of the luminescence line from δ′ to δ. The points
A, B, and C correspond to cooling, neutral, and heating values,
respectively. One can see that for δ = 2 both cooling and heating
are possible, depending on value of x that determines if the point A

or C is actually occupied.

VII. EFFECT OF FLUCTUATIONS

We need to consider the effect of fluctuations. Since the
system may be unstable for positive values of δ′, one cannot
discard anymore the intrinsic dissipation due to the coupling
to the environment at temperature T . The region of dynamical
instability is defined by the condition γt < 0, where γt is
defined after Eq. (20). This gives the equation for the critical
line:

1 + 2λQ
ωm

�
β2(δ′) = 0 , (30)

where we introduced the quality factor Q = ωm/γ . We show
in Figs. 2 and 3 the regions of dynamical instability as a
function of λ and δ′ or δ, respectively. It is important to realize
that the dynamical instability takes place very close to the
static bistability; we will see that this has consequences in the
expected line shapes.

Let us now discuss the interplay of the heating and cooling
effect and the bistable behavior. In Fig. 5 we show Pe as a
function of δ′ and δ. One can follow how the states indicated
by the letters A, B, and C are mapped in the δ plot. The
point A is in the cooling part of the line (δ′ < 0) but in the
δ space it appears at a value of δ larger than the value of δ

corresponding to B (δ′ = 0) that defines the border between
cooling and heating. The cooling state A is thus bistable with
the heating state C. Due to the fluctuations the system will
spend some time in both states, with a probability that is
determined by Fokker-Planck equation. This also explains the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

�

P
e

FIG. 6. Luminescence: λ = 2, ωm/� = 10−3, kBT /εP = 0.01,
Q = 10, 102, 103, and 104 for the curves from the steepest to the
smoothest, respectively. Increasing Q increases the fluctuations and
smoothens the line shape. The parameter Qωm/� entering Eq. (30)
takes thus the values 10−2, 10−1, 1, and 10.
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�
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FIG. 7. Effective temperature kBTeff/εP as a function of the
detuning δ for the same value of the quality factors of Fig. 4. The
higher values of the temperature are of course obtained for the
highest Q.

shape of the static bistability region that apparently leaks on
the dynamically unstable region, as shown in Fig. 3.

In order to find the contribution of the fluctuations quan-
titatively we solve numerically the Fokker-Planck Eq. (19)
by discretizing the phase space x-p in Nx and Np points,
respectively. The operator entering Eq. (19) and acting on W

becomes thus a matrix of dimension N = NxNp. The station-
ary solution of Eq. (19) is found by solving the equation with
the constraint of the normalization of W . We find that typically
Nx = Ny = 100 is already sufficient to obtain a solution of the
equation in the range of interest of the parameters. The Fokker-
Planck equation can be rewritten in terms of the dimensionless
variables x̃ = x/�xe, p̃ = pωm/Fo, and t̃ = ωmt . This gives

∂W

∂t̃
= [−p̃∂x̃ + [x̃ − β1]∂p̃ + γ̃t ∂p̃p̃ + D̃t∂

2
p̃

]
W, (31)

where

γ̃t = ωm

�

[
λβ2

2
+ �

Qωm

]
, D̃t = −ωm

�
β3 + kBT

εP Q
. (32)

Results of the numerical solutions for the luminescence are
shown in Fig. 6 for kBT /εP = 0.01, ωm/� = 10−3, λ = 2
and for different values of Q. For small Q the luminescence
follows closely the mean-field result (shown dashed) apart
from the bistable region. Increasing Q one enters the region of
dynamical instability, as expected from Eq. (30) and Fig. 3, and
fluctuations increase dramatically, with the system spending a
sizable time on the heating region. This is confirmed by the
dependence of the effective temperature on δ for a given value
of Q, as shown in Fig. 7. One can note that large values of
Q the effective temperature increase for positive values of δ,
reaching values of the order of εP , and thus washing out the
bistable behavior. The result is a very smooth and asymmetric
line shape.

VIII. CONCLUSIONS

In this paper we studied the behavior of a slow mechan-
ical resonator (� � ωm) coupled to a laser driven TLS in
the strong-coupling regime. We began by the Born-Markov
description of the system [cf. Eq. (2)], and then, by eliminating
the TLS fast variables, we obtained Eq. (19) for the Wigner
function of the mechanical oscillator.
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By analyzing this equation we showed that the oscillator
effective temperature can be controlled by the laser detuning
and the coupling (cooling or heating). We found that, when
the coupling of the TLS dominates over the coupling to
the environment, the mechanical oscillator can only be in a
classical regime (kBTeff � h̄ωm).

We showed then that for sufficiently strong coupling the
mechanical system can undergo a bistability. The conditions on
the cooperativity and detuning for its observation are resumed
in Fig. 3. Contrary to optomechanical cavities, the coupling
controlling the instability cannot be tuned by the laser intensity
(that here is parametrized by�). As a rule of thumb, we find that
a coupling constant of the order of (ωm�)1/2 is necessary for the
bistability to take place. The bistability allows the possibility
that the two stable states are one in the cooling and the other
in the heating regime. This leads to a peculiar shape of the
luminescence linewidth (cf. Fig. 6), that is broadened mainly
due to the increase of the oscillator fluctuations induced by
the heating effect. A promising experimental system where
this effect could be observed is the one proposed in Ref. [18]
of single molecules coupled to carbon nanotubes. The typical
values of the parameters are m = 10−21 Kg, � > 107 Hz,
and g < 109 Hz, with a mechanical frequency of the carbon
nanotube that depending on its length can vary from kHz to
MHz. With these numbers it should be possible to reach large
values of λ, for instance, for g = 106 Hz, ωm = 2π × 105 Hz,
and � = 107 Hz one finds λ ≈ 0.5. For these couplings the
effective mechanical quality factor Qo = ωm/γo induced by
the coupling to the oscillator is (�/g)2β2/2 ≈ 102. Thus even
if the scale of the energy barrier between the two stable states
(εP ) is very small, when the coupling to the environment is
sufficiently weak (Q = ωm/γ � Qo) the effective tempera-
ture is controlled uniquely by the TLS and kBTeff � εP . This
should lead to the observation of a luminescence line similar
to the one predicted in Fig. 6.

Concerning the approximations used in the paper, it turns
out that one of the main conditions is that the spread of
the quantum variable x− is small: �x−/xz � �/g. This is
necessary to include the term gx− in the slow component (Ls)
of the master equation, leaving the fast operator independent on
x−. A less technical way of stating this condition is to say that
it fixes a limit on the quantum nature of the mechanical degree
of freedom. In terms of the coupling constant the condition is
given by Eq. (24). One finds that the scale of validity is set by
g � �(�/ωm)1/2 [or λ � (�/ωm)2]. The bistable behavior as
described above is thus well inside the limit of validity of the
approximation. For g � (�/ωm)1/2, the coupling is so strong
that quantum coherence cannot be neglected anymore between
two transition events, even if � � ωm. This regime is of course
relevant for investigations on quantum manipulation of the
mechanical states and constitutes an interesting perspective
for future work.
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APPENDIX: RELATION TO THE QUANTUM NOISE
METHOD

Let us briefly comment on the physical interpretation of
the fluctuation and dissipation terms. For weak coupling it is
known [32] that the dissipation and fluctuation can be derived
directly from the quantum correlation function of the force
operator. In our case this is defined as SFF (t) = (h̄g/xz)2Szz(t)
with

Szz(t) = 〈σz(t)σz(0)〉 − 〈σz〉2, (A1)

where the time evolution is ruled by only the TLS part of
the Hamiltonian (g = 0). The quantity Szz can be obtained
explicitly:

Szz(t > 0) = (w0,Mze
Lf tMzρ

0) − (w0,Mzρ
0)2, (A2)

where Mz = (L− + L+)/(ig) is the superoperator for σz and
we introduced L+ = ig diag(0,1,−1,0) by analogy with the
definition of L−. Introducing the Laplace transform Szz(s) =∫ +∞

0 dt estSzz(t) (with Res < 0) we have

Szz(s) = (w0,(Mz)ρ
0)2/s − (w0,Mz(s − Lf )

−1Mzρ
0). (A3)

Using the projectors Q and P one can readily show that

Szz(s) = −(w0,MzQ(s − QLfQ)−1QMzρ
0). (A4)

For s = 0 the inverse has to be performed in the subspace
defined by the projector Q. The power spectrum Szz(ω) =∫ +∞
−∞ dt eiωtSzz(t) can then be related directly to the Laplace

transform by using the property S∗
zz(t) = Szz(−t) that leads to

Szz(ω) = 2 Re[Szz(s = iω − 0+)]. (A5)

We note that w0L+ = 0. By explicit calculation one can verify
that the term proportional to L+ coming from the Mz on the
right matrix element of Eq. (A4) gives an imaginary term for
s = 0, and thus it does not contribute to Szz(ω → 0). One can
thus substitute L− into the definition of Mz = L−/(ig) in this
case. For ωm � � we can obtain the diffusion constant of the
Fokker-Plack equation from the vanishing frequency value of
the force fluctuation spectrum:

D0 = SFF(ω → 0)/2 = h̄2α3/x
2
z . (A6)

This value coincides with the adiabatic approach result. One
can also verify by direct calculation that the derivative with
respect to ω of SFF(ω) gives also correctly the damping term
entering Eq. (19). Thus the weak-coupling calculation allows
one to find the form of the coefficients entering the Fokker-
Plack equation, but it does not allow one to prove the validity
of the approach. According to the derivation presented in the
main text, actually it is not the weak-coupling condition that
allows one to obtain the Fokker-Planck description, but the
separation of time scales.
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