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Precise amplitude, trajectory, and beam-width control of accelerating
and abruptly autofocusing beams
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We show that it is possible to independently control both the trajectory and the maximum amplitude along the
trajectory of a paraxial accelerating beam. This is accomplished by carefully engineering both the amplitude and
the phase of the beam on the input plane. Furthermore, we show that the width of an accelerating beam is related
only on the curvature of the trajectory. Therefore, we are able to produce beams with predefined beam widths
and amplitudes. These results are useful in applications where precise beam control is important. In addition
we consider radially symmetric abruptly autofocusing beams. We identify the important parameters that affect
the focal characteristics. Consequently, we can design autofocusing beams with optimized parameters (such as
sharper focus and higher intensity contrast). In all our calculations the resulting formulas are presented in an
elegant and practical form in direct connection with the geometric properties of the trajectory. Finally we discuss
methods that can be utilized to experimentally realize such optical waves.
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I. INTRODUCTION

Over the past decade the study of optical beams with
engineered trajectories has been very successful in generating
novel classes of waves for particular applications. The research
in this field initiated with the prediction and experimental
observation of accelerating diffraction-free Airy beams [1,2].
By engineering the phase profile of the optical wave it is shown
that paraxial classes of curved beams with predefined arbitrary
convex trajectories can be generated [3–5]. Using a different
approach it is possible to generate Bessel-like beams that can
even bend along nonconvex types of trajectories [6,7]. Accel-
erating waves in the nonparaxial regime have a main advantage
that the trajectory of the beam can bend at large angles [5,8–14].
The curved trajectory and self-healing characteristics of such
optical waves have been proven very useful in a variety of
applications ranging from filamentation [15,16] and electric
discharge generation [17] to particle manipulation [18–22],
microscopy and imaging [23,24], and micromachining [23,24].
Accelerating waves have been utilized in generating an abrupt
wave focusing or abrupt autofocusing (AAF) by an on-axis
collapse of a ring-shaped caustic [25]. The maximum intensity
of such beams remains almost constant up until the focus
where it abruptly increases by orders of magnitude. Abruptly
autofocusing waves have been utilized in particle manipulation
[19], creating ablation spots in materials [26] and filamentation
[27]. In the nonparaxial regime abruptly autofocusing waves
are associated with increased intensity contrast [28].

In the bibliography there are some works that discuss
particular cases of amplitude manipulation of accelerating
beams [14,29]. However, most of the effort up to this point
has been devoted in engineering the trajectory and does not
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take into account other important beam parameters, such as
the amplitude and the beam width. In particular, no systematic
method has been developed for engineering these two very
important beam parameters. Note that, for example, in particle
manipulation it is important that the curved beam maintains
a constant maximum intensity so that the particles get trans-
ported without interruptions.

The purpose of this paper is to generate beams with judi-
ciously designed properties (trajectory, amplitude, and width)
in the paraxial domain. This is accomplished by engineering
both the amplitude and the phase of the beam on the input plane.
Specifically, we show that the beam width is solely related
with the curvature of the trajectory. In addition, the maximum
amplitude along the trajectory is related with both the geomet-
ric properties of the trajectory and the amplitude of the beam
on the input plane. As a result, accelerating beams can have
arbitrary predefined convex trajectories (and thus designed
beam widths) and engineered maximum amplitude. The only
requirement is that the amplitude on the input plane is relatively
slowly varying. We also analyze the focusing characteristics of
abruptly autofocusing beams. We find analytic expressions for
the trajectory and the maximum amplitude along the trajectory
which can be utilized to engineer autofocusing beams with op-
timal characteristics (sharper focus, maximum contrast). The
resulting mathematical formulas are expressed in an elegant
and practical form in connection to the geometric properties
of the beam trajectory. Finally, we discuss methods that can be
utilized to generate such beams with designed characteristics.

II. AMPLITUDE-TRAJECTORY ENGINEERING
OF ACCELERATING BEAMS

The dynamics of an optical beam propagating in one
transverse dimension is governed by the Fresnel diffraction
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integral,

ψ(x,z) = 1

(iλz)1/2

∫ ∞

−∞
ψ0(ξ ) exp

[
ik

(x − ξ )2

2z

]
dξ, (1)

where x is the transverse and z is the longitudinal propagation
direction, k = 2πnν/c = 2π/λ, c is the speed of light, n

is the refractive index, ν is the optical frequency, λ is the
wavelength in the dielectric medium, and ψ0(x) is the optical
wave excitation on the input plane (z = 0). By decomposing
ψ0 into amplitude and phase as ψ0(x) = A(x)eiφ(x) we obtain
the total phase � that is involved in the Fresnel integrand,

�(ξ ; x,z) = φ(ξ ) + k
(x − ξ )2

2z
. (2)

In terms of catastrophe theory [30,31], � is the potential, x, z

are the control variables, ξ is the internal variable, and ∂ξ� = 0
is the surface of equilibria. The catastrophe condition in the
case of one internal variable consists of the points that lie
on the surface of equilibria and satisfy ∂ξξ� = 0. Following
the relevant calculations from the surface of equilibria we
derive the ray equation x = ξ + φ′(ξ )z/k. In addition, from
the catastrophe condition we obtain the high intensity beam
trajectory,

[xc(ξc),zc(ξc)] =
(

ξc − φ′(ξc)

φ′′(ξc)
, − k

φ′′(ξc)

)
, (3)

as a function of the phase on the input plane. Note that the
subscript c in the formulas stands for caustic. Importantly, we
can also solve the inverse problem of determining the required
phase as a function of the convex but otherwise arbitrary
predefined trajectory,

xc = f (zc). (4)

In particular, we have to take into account that the line that
is tangent at each point of the trajectory is described by a ray
equation and, thus,

dφ

dξ
= k

df [zc(ξ )]

dzc

, (5)

where zc(ξ ) is obtained from

ξ = f (zc) − zcf
′(zc). (6)

Note that since zc = −k/φ′′(ξc) > 0 (z = 0 is the incident
plane), a caustic is formed only when φ′′(ξ ) < 0.

In order to obtain an expression for the amplitude close to
the caustic we perturb the variables x and ξ with respect to
their values at the caustic [32],

x = xc + δx, ξ = ξc + δξ,

whereas we keep a constant value for z = zc. We then expand
the phase �(xc + δx,zc,ξc + δξ ) in a Taylor series and keep
all the terms up to cubic order [i.e., (δx)j (δξ )k, j + k � 3].
Importantly, we assume that the amplitude A is not constant
but is slowly varying with ξ . In our calculations, due to phase
stationarity at ξ = ξc we assume that A(ξc + δξ ) ≈ A(ξc).
Integrating with respect to δξ leads to

ψ = 2A(ξ )

(
π4z3

cκ
2

λ

)1/6

ei� Ai(s(2k2κ)1/3δx), (7)

where

� = φ + k(xc−ξ )2

2zc
+ k(xc−ξ )

zc
δx + k

2zc
(δx)2 − π

4 ,

κ(zc) =
∣∣∣ d2f (zc)

dz2
c

∣∣∣ (8)

is the curvature of the trajectory in the paraxial approximation,
s = sgn[d2f (zc)/dz2

c ] is the sign of the curvature, Ai is the
Airy function, and for simplicity we have replaced ξc with ξ .

Let us utilize Eq. (7) to obtain some significant information
about the properties of the beam close to the caustic. First of all
we note that, independent of the functional form of the selected
trajectory, close to the caustic the optical wave is described by
an Airy function that varies linearly with δx. It is interesting
to point out that the beam width,

w(z) = 1

[2k2κ(z)]1/3

depends solely on the paraxial beam curvature of the trajectory.
Specifically, the beam width is inversely proportional to the
cubic root of the curvature. We conclude that a beam has
constant width if and only if the curvature of the trajectory
is constant. Thus the only class of accelerating waves with
constant width are those of the Airy type that follow a parabolic
trajectory of the form xc = c0 + c1zc + c2z

2
c with cj being

arbitrary constants. We can generalize the above statement by
saying that a beam has constant width as long as its trajectory
remains parabolic. The other important parameter is the beam
amplitude. From Eq. (7) we note that it depends linearly on the
amplitude on the incident plane A(ξ ). In addition, it depends
on the geometric properties of the trajectory: It increases as
we increase the beam curvature κ and the distance from the
incident plane zc.

We can utilize the phase on the input plane to design beams
with predefined trajectory or beam width. The amplitude on the
input plane A(ξ ) provides an additional degree of freedom that
can be employed to engineer the maximum beam amplitude,

U (z) = {max(|ψ(x,z)|): x ∈ R}.
Specifically from Eq. (7) we obtain an explicit relation for the
required amplitude on the input plane,

A(ξ ) = U [zc(ξ )]

2.3

(
λ

κ2z3
c

)1/6

. (9)

Direct numerical simulations presented below confirm the
accuracy of this formula. We conclude that both the trajectory
(and thus the beam width) and the maximum amplitude along
the trajectory can be preengineered provided that we utilize
both the amplitude and the phase of the beam on the input
plane.

Although analytic expressions for different classes of con-
vex trajectories can be found in closed form, for the purposes
of this paper we restrict ourselves to the case of power-law
trajectories [3–5],

xc = f (zc) = βzα
c , (10)

with α > 1. Following the relevant calculations we obtain the
required phase profile on the input plane,

φ(ξ ) = −kβ1/αα2

(α − 1)1−1/α

(−ξ )2−1/α

2α − 1
, (11)
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FIG. 1. Accelerating beams following a parabolic trajectory [Eq. (10) with α = 2 and β = 0.01]. In the first column we can see the amplitude
dynamics and the theoretical prediction for the trajectory (dashed curve). In the second column the maximum amplitude as a function of the
propagation distance (solid curve) along with the theoretical prediction (shown in circles) is depicted. In the third and fourth columns cross
sections of the beam intensity at different propagation distances are presented with the theoretical predictions shown in circles. In the three rows
the theoretical maximum values of the field amplitudes are U (z) = 1, U (z) = exp[−(z − 160)2/1002], and U (z) = 1 + 0.5 sin2[(z − 160)/80],
respectively. The horizontal dashed lines in the first column correspond to the cross sections shown in the third and fourth columns.

where ξ < 0. For an arbitrary but relatively slowly varying am-
plitude profile U (zc) along the caustic we derive the following
prediction:

A[zc(ξ )] = U (zc)

2.3

(
λ

[α(α − 1)β]2z
(2α−1)
c

)1/6

(12)

for the required amplitude on the input plane, where zc(ξ ) =
{−ξ/[β(α − 1)]}1/α . A particularly interesting case is that
of constant amplitude along the trajectory U (zc) = c. From
Eq. (12) we see that this is possible by selecting A(ξ ) ∝
1/(−ξ )(2α−1)/(6α). In the particular case of a parabolic trajec-
tory we recover the characteristic amplitude profile A(ξ ) ∝
1/(−ξ )1/4 of the Airy function. Finally, the width of the beam
is given by

w(z) = 1

[2k2βα(α − 1)zα−2]1/3
.

We see that for α = 2 the beam width remains (as expected)
invariant, for α > 2 the beam width decreases with z, whereas
for 1 < α < 2 the beam width increases with z.

In our simulations we use normalized coordinates. Specif-
ically, we scale the transverse coordinates with respect to x0

(i.e., x → x0x), the longitudinal variables with respect to kx2
0

(i.e. z → kx2
0z), and the amplitude to an arbitrary scaling. With

these substitutions, all the parameters in the formulas derived
in this section become normalized and dimensionless with the
simple replacement k → 1. In Fig. 1 we present results in

the case of a parabolic trajectory [Eq. (10) with α = 2 and
β = 10−2]. In the three rows different functional forms for the
maximum amplitude along the caustic U (zc) are selected. In
particular, in the first row the maximum amplitude is constant,
in the second row a Gaussian profile is selected, whereas in
the third row the amplitude is the sum of a constant and a
sinusoidal function. We note that in all cases the theoretical
prediction U (z) is in excellent agreement with the numerical
results. However, in the first and the third rows we see a
transition distance before the maximum amplitude reaches the
theoretical value. Specifically, at the first stages of propagation
the numerical value of the amplitude is smaller than expected
but gradually increases and reaches the theoretical engineered
profile. This distance is negligible in the second row where
the maximum amplitude exhibits smooth changes due to its
Gaussian profile. In the last two columns of Fig. 1 we compare
the numerically computed amplitude profile at different cross
sections with the theoretical prediction given by Eq. (7). We see
that the agreement is excellent not only in describing the main
lobe, but also for several additional lobes both as it concerns the
frequency and as it concerns the amplitude of the oscillations.
This result is surprisingly accurate taken into account that in
our calculations δx is taken to be small.

To highlight the potential of our method we also obtain
results in the case of power-law trajectories with different
exponents and a selection of different amplitude profiles U (z).
Specifically, in Fig. 2 the exponent is α = 3/2, and U (z) is
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FIG. 2. Accelerating beams following a power-law trajectory [Eq. (10) with α = 3/2 and β = 1/5]. In the first column we can see the
amplitude dynamics and the theoretical prediction for the trajectory (dashed curve). In the second column the maximum intensity as a function
of the propagation distance (solid curve) along with the theoretical prediction (shown in circles) is depicted. In the third and fourth columns cross
sections of beam intensity at different propagation distances are presented with the theoretical predictions shown in circles. In the three rows the
theoretical maximum values of the field amplitudes are U (z) = 1, U (z) = 0.5 + 0.5 exp[−(z − 160)2/1102] and U (z) = 0.1z + 6 sin2(z/80),
respectively. The horizontal dashed lines in the first column correspond to the cross sections shown in the third and fourth columns.

constant in the first row, an elevated Gaussian in the second row,
and sinusoidal with an additional linear term in the third row.
Finally, in Fig. 3 we select a cubic trajectory. In the three rows
the amplitude along the trajectory is constant, sinusoidal with
an additional linear term, and a sigmoid function, respectively.
Comparing these two cases, we can see that the transition
region for the amplitude in Fig. 2 is smaller as compared to
Fig. 3. For example, in the first row of these figures the expected
amplitude profile is constant and unitary. The numerically
computed amplitude converges to the theoretical at z = 60 in
Fig. 2 and at z = 100 in Fig. 3. This happens because during the
early stages of propagation the paraxial curvature κ is smaller
along the trajectory of Fig. 3 as compared to Fig. 2.

III. AMPLITUDE-TRAJECTORY ENGINEERING
OF ABRUPTLY AUTOFOCUSING BEAMS

In the case of abruptly autofocusing waves the radial
symmetry of the beam results in the following Fresnel-type
diffraction integral:

ψ(r,θ ) = kei(kr2/2z)

iz

∫ ∞

0
ρψ0(ρ)J0

(
krρ

z

)
ei(kρ2/2z)dρ, (13)

where r, ρ are radial coordinates and ψ0(r) = A(r)eiφ(r) is
the field profile on the incident plane and its amplitude and
phase decomposition. Using large argument asymptotics for

the Bessel function,

J0(x) ≈
√

1

2iπx
(eix + ie−ix), (14)

and utilizing first- and second-order stationarity of the phase
we derive the equations for the rays and the caustics. From these
equations we can solve both the direct and the inverse problems
between the phase on the incident plane and the trajectory of the
beam. The resulting equations are identical to Eqs. (3)–(6) with
the substitutions x → r and ξ → ρ. There is a clear physical
picture behind this equivalence: The rays propagate in a linear
fashion and cannot distinguish between Cartesian and radial
coordinates.

We would like to utilize Eq. (13) in order to derive analytic
expressions for the amplitude of the AAF beam close to the
caustic. We follow a similar approach as in Sec. II by using
the expansion r = rc + δr, ρ = ρc + δρ, z = zc close to the
caustic and large argument asymptotics for the Bessel function
[Eq. (14)]. We keep all the terms in the phase of the integrand
in Eq. (13) up to cubic order [(δρ)j (δr)k with j + k � 3]. The
resulting expression reads

ψ = 2A(ρ)

√
ρ

ir

(
π4z3

cκ
2

λ

)1/6

ei� Ai(−(2k2κ)1/3δr), (15)
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FIG. 3. Accelerating beams following a cubic trajectory [Eq. (10) with α = 3 and β = 1/32 000]. In the first column we can see the
amplitude dynamics and the theoretical prediction for the trajectory (dashed curve). In the second column the maximum intensity as a function
of the propagation distance (solid curve) along with the theoretical prediction (shown in circles) is depicted. In the third and fourth rows
cross sections of beam intensity at different propagation distances are presented with the theoretical predictions shown in circles. In the three
rows the predicted maximum values of the field amplitudes are U (z) = 1, U (z) = z + 15 sin(z/20), and U (z) = 1 + tanh[0.015(z − 160/2)],
respectively. The horizontal dashed lines in the first column correspond to the cross sections shown in the third and fourth columns.

where

� = φ(ρ) + k(rc − ρ)2

2zc

+ kg(zc)δr,

rc = ρ + φ′(ρ)

k
zc, zc = − k

φ′′(ρ)
, (16)

and g = dfc(zc)/dzc is the slope of the trajectory. In the above
formulas we have taken the second derivative of the trajectory
to be negative (s = −1) and for simplicity we replaced ρc →
ρ. Note that we are going to use the same replacement in
the formulas derived in the rest of this section. As in the
case of accelerating waves the resulting expression depends
on the geometric properties of the trajectory as well as on the
amplitude on the input plane. Due to our assumption that the
argument of the Bessel function is relatively large (krρ/z 	 1)
the above equation diverges as r → 0 and thus fails to describe
the optical wave close to the focus. However, Eq. (15) is very
useful in describing the amplitude profile on the transverse
plane before the wave focuses (0 < z < zf ).

An expansion that works both at the early stages of
propagation as well as close to the focus is r = rc, z = zc +
δz, ρ = ρc + δρ. This is a two-stage process followed by a
global asymptotic expression. At the first stage, using the
same methodology as before and assuming that krρ/z 	 1

we obtain

ψ(r) = A(ρ)

(
2κ

k

)1/3(2πkρz2
c

ircz

)1/2

ei�

× Ai((2k2κ)1/3g(zc)δz), (17)

where

� = φ(ρ) + k(ρ − rc)2

2zc

− kg2(zc)

2
δz. (18)

Due to our assumption that krρ/z 	 1 this formula also
becomes inaccurate close to the optical axis: The denominator
in Eq. (17) is proportional to

√
r , and thus the amplitude

diverges as r → 0. Since the caustic approaches the axis when
z approaches the focal distance zf we conclude that Eq. (17)
is valid for 0 < z < zf .

At the second stage, we use the same expansion ρ =
ρc + δρ, z = zc + δz but now with r = 0 in order to derive an
expression that is valid close to the focus. We employ a similar
methodology as in the previous cases. Keeping the dominant
terms we end up with

ψ(0,δz) = A

(
2κ

k

)1/3 2πkρzc

iz
ei� Ai((2k2κ)1/3gδz), (19)

where Eqs. (16) and (18) are still valid (with rc = 0).
By inspection of the two asymptotic expressions given by

Eqs. (17) and (19) we see that they have the same argument
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inside the Airy function and the same phase factor. Thus,
their only difference lies in the amplitude that multiplies the
Airy function. There are several ways to combine these two
formulas into a single global asymptotic expression. We select
the following:

ψ = A(ρ)ei� (2κ/k)1/32πkzcρ

[2πikρzrc − z2]1/2
Ai((2k2κ)1/3gδz) (20)

for its simplicity and accuracy. Equation (20) is valid close
to the caustic and for propagation distances z that can even
exceed by a small amount the focal distance zf . Depending
on the magnitude of 2πkρrc/zc the asymptotic expressions
of Eqs. (17) and (19) are recovered. Assuming that the terms
that contribute to the amplitude in Eq. (20) are slowly varying
functions of ρ in comparison to the Airy function, we can
estimate the location zf and the intensity of the focus by setting
rc = 0 and the argument of the Airy function to −1. We see
that the focal distance,

zf = zc − 1

[2k2κ(zc)]1/3g(zc)
(21)

is shifted from zc by an amount that is inversely proportional to
the slope and the curvature of the trajectory [note that g(zc) <

0]. The maximum field amplitude at the focus is then given by
the following estimate:

|ψmax(zf )| ≈ 2πρA(ρ)(2k2κ)1/3 Ai(−1). (22)

We conclude that there are only three fundamental parameters
that affect the intensity of the beam at the focus: The amplitude
A(ρ) and the distance from the axis on the input plane ρ of the
ray that converges to the focus and the curvature of the beam
at the focus.

We still need to compute the amplitude profile after the focus
z > zf . Interestingly, in this regime, the maximum amplitude
does not lie close to the caustic as in the previous cases: At the
focus a beam transformation takes place with a consequence
that the maximum amplitude of the optical wave lies in a region
close to the optical axis. For our calculations it is sufficient to
assume that krρ/z is relatively small for z > zf . Applying
first-order stationarity of the phase in Eq. (13) we obtain

kρ

z
+ φ′(ρ) = 0.

The above equation supports two solutions provided that they
are smaller than the aperture ra (i.e., ρ1 < ρ2 < ρa). Defining
by zc,j = −k/φ′′(ρj ) the location in the longitudinal direction
where the rays emitted from ρj contribute to the caustic, we
have that zc,1 < z < zc,2. Thus one of the rays contributes to
the caustic before and the other after the selected value of z.
Using a stationary phase method we obtain

ψ(r,z) =
∑
j=1,2

ρjA(ρj )

∣∣∣∣ 2πkzc,j

z(zc,j − z)

∣∣∣∣
1/2

J0

(
krρj

z

)

× exp

{
i

[
k
(
r2 + ρ2

j

)
2z

+ φ(ρj ) + (μj − 2)
π

4

]}
,

(23)

where

μj = sgn(zc,j − z),

and thus μ1 = −1, μ2 = 1. The above equation holds for
z � zf and for relatively small values of krρ/z. An analytic
expression for the wave amplitude can be obtained by defining
the amplitude Cj and the phase θj of the two terms in Eq. (23)
and utilizing the formula |C1e

i�1 + C2e
i�2 | = [C2

1 + C2
2 +

2C1C2 cos(�1 − �2)]1/2. Due to destructive interference in
Eq. (23) the maximum intensity is not always located exactly
at the origin. However, it can always be found in an area that is
close to the optical axis. After ρ2 exceeds the aperture ρ2 > ρa

only the first term (j = 1) is involved in Eq. (23), and from this
point on the maximum amplitude is always located exactly at
the origin,

|ψmax(z)| = ρ1A(ρ1)

∣∣∣∣ 2πkzc,1

z(zc,1 − z)

∣∣∣∣
1/2

.

In our simulations below we consider the case of abruptly
autofocusing beams with power-law trajectories of the form

r0 − rc = βzα
c , (24)

where r0 is the radius of the Airy ring on the input plane. The
resulting phase is

φ(ρ) = −kβ1/αα2

(α − 1)1−1/α

(ρ − r0)2−1/α

2α − 1
. (25)

In Fig. 4 we see a typical example of an abruptly autofo-
cusing wave with a parabolic trajectory and an exponential
truncation of the form

A(r) = A0 sig

(
r − r0

w1

)
sig

(
ra − r

w2

)
ec(r0−r), (26)

where we define the sigmoid function sig as

sig(x) =
{

tanh(x), x � 0,

0, x < 0.

wj ’s are the slopes of the sigmoid functions, and ra is the
selected aperture. In Fig. 4(c) we compare the numerically
derived maximum intensity contrast on the transverse plane
as a function of the propagation distance with the theoretical
prediction. Specifically, we utilize Eq. (20) for z � zf and
Eq. (23) for z > zf . We see that our theoretical results are
in good agreement with the numerical simulations. Some
deviations appear in the slope of the maximum amplitude just
before the focus. Specifically, the theoretical curve is steeper
as compared to the numerical curve. In addition, the theoretical
prediction gives a slightly higher intensity contrast at the focus.
We attribute both of these differences to diffraction effects that
are not taken into account in the theoretical calculations. In
the third row of Fig. 4 we see typical cross sections of the
beam intensity before the focus. The numerical results are
compared with the theoretical formula given by Eq. (15). The
agreement is very good in capturing the behavior of the first
Airy lobe, whereas deviations in the amplitude start to appear
in the subsequent lobes. In the fourth row of Fig. 5 we show
the transverse beam amplitude (f) at the focus and (g) after the
focus. The theoretical results provided by Eq. (23) compare
quite well with the numerical simulations. In Fig. 5 we see
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FIG. 4. An abruptly autofocusing beam following a parabolic
trajectory (α = 2) with β = 1, r0 = 20, c = 0.06, w1 = 1. In (a) we
see the spectrum and the amplitude profile on the input plane. In
(b) the three-dimensional wave dynamics are depicted along with the
theoretical prediction for the trajectory (black-white dashed curve). In
(c) the intensity contrast is presented as a function of the propagation
distance along with the theoretical prediction (shown with circles).
In the last two rows we depict the intensity profile of the horizontal
cross sections shown in (b) with the theoretical predictions shown
with circles. Specifically, in the third row the cross sections are taken
before the focus, and the analytic prediction is obtained from Eq. (15).
In the last row (f) is computed exactly at the focus, and (g) is computed
after the focus whereas the theoretical estimates are given by Eq. (23).

similar results in the case of a cubic trajectory. The higher
contrast is attributed to the increased value of the curvature at
the focus and the larger value of ρc.

We would like to optimize the properties of the abruptly
autofocusing beams by: (a) reducing the intensity of the

FIG. 5. The same as in Fig. 4 for a cubic trajectory (α = 3) with
β = 1, r0 = 10, c = 0.05, w1 = 1.

oscillations that take place after the focus and (b) increasing
the contrast at the focus. We take as a reference the results of
Fig. 5 and select to keep the same caustic trajectory. We can
achieve (a) (reduced intensity after the focus) by decreasing the
aperture as much as possible as long as it does not significantly
affect the contrast (due to diffraction effects). In Fig. 6 the
intensity drops much faster after the focus due to the reduced
value of the aperture. Considering point (b), from Eq. (22) we
can compute the intensity contrast at the focus as

Imax(z = zf )

Imax(z = 0)
≈ 17.98

(
(k2κ)1/3ρcA(ρc)

max[A(ρ)]

)2

. (27)

We see that the contrast depends on the curvature of the
trajectory at the focus κ(ρc) on ρc and on the fraction
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FIG. 6. Intensity contrast as a function of the propagation dis-
tance. In the insets the initial conditions are shown. The parameters
for the trajectory are the same as in Fig. 5. In (a) the amplitude on
the input plane is the same as in Fig. 5, but the aperture is reduced to
ra = 45 and w2 = 1. In (b) the amplitude is constant c = 0 whereas
ra = 45 and w2 = 5.

A(ρc)/max[A(ρ)]. Both κ(ρc) and ρc depend on the geometric
properties of the caustic trajectory—a different trajectory with
increased values of κ and ρc is going to exhibit increased
focal contrast. However we can use the same trajectory and
still achieve increased contrast by increasing the value of
A(ρ)/max(A) up to unity. Specifically, in our simulation shown
in Fig. 6(b) we select to keep a constant amplitude A on the
input plane in order to diminish possible diffraction effects. We
clearly see a significant enhancement of the intensity contrast
at the focus and a fast decrease in the intensity oscillations after
the focus.

IV. IMPLEMENTATION

An important question is whether there are efficient methods
to experimentally observe the families of optical waves
discussed in this paper. In this respect, there are several works
that have proposed methods to encode both amplitude and

phase information by modulating only one of these two degrees
of freedom. Such methods result in significant reduction of the
experimental complexity. In Refs. [33,34] different techniques
are suggested that allow for the storage of both amplitude and
phase information into binary computer-generated holograms.
For example, for an aperture function,

1

2

{
1 + sgn

[
cos

(
2πx

L
+ φ(x,y)

)
− cos πq(x,y)

]}

=
∞∑

n=−∞
q(x,y)sinc[πnq(x,y)] exp

[
in

(
2πx

L
+ φ(x,y)

)]
,

where
1

π
sin πq(x,y) = A(x,y),

sinc(x) = sin(x)/x, and sgn is the sign function, we see that
the first diffraction order reproduces both the amplitude and
the phase of an optical wave. This technique has been utilized
to generate different classes of nonparaxial accelerating
plasmon beams [35].

In addition, both amplitude and phase information can
be encoded into a phase-only filter [36]. In particular, a
phase pattern of the form eiA(x,y)φ(x,y) with the phase spatially
modulated is used, and the desired waveform is obtained in the
first diffraction order. Such a configuration has been applied
for the generation of abruptly autofocusing waves [26].

V. CONCLUSIONS

In conclusion, we have shown that it is possible to generate
an accelerating beam where in addition to its trajectory we
are able to dynamically engineer the beam width and the
maximum amplitude along the trajectory. In addition in the
case of abruptly autofocusing waves we are able to predict
the amplitude profile along the trajectory and the intensity
contrast, but more importantly, we are able to optimize the
focusing procedure by revealing the particular parameters that
should be taken into account. The results of the asymptotic
calculations are expressed in an elegant form in terms of the
parameters of the trajectory. Our results might be useful in
areas where precise beam control is important, such as particle
manipulation and micromachining.
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