
PHYSICAL REVIEW A 97, 063829 (2018)

Unusual electromagnetic modes in space-time-modulated dispersion-engineered media
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We report on electromagnetic modes in space-time-modulated dispersion-engineered media. These modes
exhibit unusual dispersion relation, field profile, and scattering properties. They are generated by coupled
codirectional space-time harmonic pairs and occur in space-time periodic media whose constituent materials
exhibit specific dispersion. Excitation of a slab of such a medium with subluminal modulation results in periodic
transfer of energy between the incident frequency and a frequency shifted by a multiple of the modulation
frequency, whereas superluminal modulation generates exponentially growing anharmonics. These modes may
find applications in optical mixers, terahertz sources, and other optical devices.
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I. INTRODUCTION

Periodic structures are an essential part of modern pho-
tonic and microwave technologies. Electromagnetic band
gaps emerging from such structures play a crucial role in
many applications, including photonic crystal waveguides
[1], filters [2], fiber gratings [3], etc. These band gaps
support evanescent electromagnetic modes characterized by
complex propagation numbers, i.e., exponential decay in
space [1].

The temporal counterparts [4] of conventional photonic
crystals, termed temporal photonic crystals, have been shown
to exhibit complex frequencies or vertical band gaps, as
opposed to horizontal band gaps in spatial photonic crystals
[5,6]. They represent electromagnetic media whose consti-
tutive parameters vary periodically in time [5–7]. Their
vertical band gaps describe instabilities [8], where the am-
plitude of electromagnetic waves grows and/or decays ex-
ponentially, i.e., with e±ωt time dependence, everywhere in
space.

Combining both time and space modulations allows one to
control not only the orientation—horizontal or vertical—of the
band gaps but also their oblique alignment [9–11]. Subluminal
space-time-modulated structures, where the phase velocity
of the modulation (vm) is smaller than the velocity of light
in the background medium (vb), support obliquely aligned
horizontally oriented band gaps, whereas superluminal space-
time-modulated structures with vm > vb support obliquely
aligned vertically oriented band gaps [11].

This paper considers periodic space-time-modulated media
composed of dispersive materials. It shows that the addition of
dispersion to space-time modulation brings about a unique di-
versity of electromagnetic modes. Particularly, such a medium
can support new modes with dispersion, field, and scattering
properties that are radically different from those accessible
in conventional or space-time periodic media composed of
nondispersive materials.

II. CODIRECTIONAL-COUPLED SPACE-TIME
HARMONICS

Consider first the case of space-time periodic media com-
posed of nondispersive materials. The corresponding permit-
tivity for spatiotemporal modulation along z may be written as

ε(r,t) = ε0εr[1 + Mfper(ωmt − βmz)], (1)

where r = (x,y,z), εr is the permittivity of the nondispersive
background medium, M is the modulation depth representing
the strength of the modulation, fper(.) is a periodic real function
with period 2π , and ωm and βm are temporal and spatial
modulation frequencies, respectively. The dispersion relation
of the nondispersive background medium (εr) is plotted in
green in Fig. 1(a). Electromagnetic waves in the modulated
medium can be expressed in the Floquet-Bloch form [9–11]

E(r,t) = ej (ωt−βz)
∞∑

n=−∞
Ene

jn(ωmt−βmz), (2)

where β is the Floquet-Bloch wave number. It can be shown
from the Fourier expansion in (2) that dispersion curves
are periodic along the vector pm = βmβ̂ + ωmω̂ [9]. Typical
dispersion curves for a vanishingly small modulation depth
(M → 0), called the “empty lattice approximation” in solid-
state physics, are plotted in Fig. 1(a). Since the green lines
are solutions to dispersion relations in this limit, the rest of
the dispersion diagram is obtained by periodically shifting
the background dispersion line along pm. This provides a
very close approximation of the dispersion curves everywhere
except at the points where these shifted curves, or space-time
harmonics, intersect. The two space-time harmonics forming
such intersections are phase matched and hence strongly cou-
ple to one another. For a nondispersive background medium,
such couplings involve a forward harmonic and a backward
harmonic, as emphasized by the circle in Fig. 1(a). In the case of
subluminal modulation, as in Fig. 1(a), the resulting forward-
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FIG. 1. Comparison of dispersion diagrams of space-time-
modulated periodic media composed of nondispersive and disper-
sive background materials for M → 0. (a) Case of nondispersive
background material. (b) Case of strongly dispersive background
material. The magenta arrow shows the modulation (or space-time
period) vector (pm). Here, unessentially, the modulation for both cases
is subluminal (vm = ωm/βm < vb). For clarity, the two space-time
harmonics n = 0 and n = −1 are emphasized.

backward coupling generates evanescent modes, with complex
β corresponding to horizontally oriented gaps, as shown in the
inset. For a superluminal modulation, the forward-backward
coupling between space-time harmonics generates unstable
modes, with complex ω corresponding to vertically oriented
gaps (inset of Fig. 1(a) rotated by 90◦) [9,11].

In such a space-time-modulated periodic medium, com-
posed of nondispersive materials, only forward-backward cou-
pling between space-time harmonics is possible, as illustrated
in the inset of Fig. 1(a). In contrast, if the background
medium is dispersion-engineered [12–16], as in Fig. 1(b),
then it is possible to produce codirectional, forward-forward
(emphasized by the circle) or backward-backward, coupling
harmonic pairs. It is shown in Sec. III how such peri-
odic dispersive space-time harmonics can be generated in a

space-time-modulated dispersive medium. We investigate next
such scenarios in a space-time periodic dispersion-engineered
medium with Lorentz background material dispersion [17]
and the resulting unusual electromagnetic modes emerging
from such codirectional couplings for both subluminal and
superluminal modulations.

III. CODIRECTIONAL-COUPLED SPACE-TIME
HARMONICS IN UNBOUNDED LORENTZ MEDIA

The background material in the dispersive-background
medium is described by the following relative Lorentz per-
mittivity:

εr(ω) = 1 + ω2
p

ω2
r + jγω − ω2

, (3)

where ωr is the Lorentz resonance frequency, ωp = e
√

na

ε0me
is

the plasma frequency, γ is the relaxation rate, and na is the
molecular (atomic) density of the material. Such dispersion
occurs naturally in dielectric materials [17]. It can also be
produced artificially in metamaterials [12,18]. We assume that
the material density is spatiotemporally modulated as

na(r,t) = n0[1 + Mfper(ωmt − βmz)], (4)

which may be practically achieved by a modulated laser
in nonlinear materials [19], electric modulation in electro-
optic materials [20], acoustic waves in acousto-optic materials
[21], and transistors or varactors in electronically controlled
metamaterials [10,11].

To find the electromagnetic modes in this medium, equa-
tions

∇ × ∇ × E(r,t) + μ0
∂2

∂t2
D(r,t) = 0, (5)

D(r,t) = ε0E(r,t) + P(r,t), (6)

∂2

∂t2
P(r,t) + γ

∂

∂t
P(r,t) + ω2

r P(r,t) = na(r,t)e2

me

E(r,t), (7)

which are the wave equation, the displacement field equation,
and the classical Newton equation for a Lorentz medium [17],
respectively, are solved self-consistently. The solution of the
problem is found by expressing all the field quantities in these
equations in terms of the space-time Floquet-Bloch expansion

�(r,t) = ej (ωt−βz)
∞∑

n=−∞
�ne

jn(ωmt−βmz), (8)

where � = E,P,D, and �n = En,Pn,Dn are complex con-
stants. A straightforward Fourier analysis then provides the dis-
persion curves and the electromagnetic fields. (See Appendix A
for details.)

A. Subluminal modulation

Consider, as an example, a lossless Lorentz medium with
normalized parameters ωp/ωr = 0.6 and γ /ωr → 0 (loss-
less). The background material density is modulated as in
(4), with spatial and temporal modulation frequencies βm =
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FIG. 2. (a) Dispersion diagram of a subluminally space-time-
modulated lossless Lorentz medium for M → 0. The magenta arrow
represents the modulation vector. The three space-time harmonics
n = 0 (green), n = +1 (red), and n = −1 (blue) are emphasized. The
dashed lines represent the edges of the Brillouin zone. (b) Dispersion
diagram zoomed in at the crossing circled in Fig. 2(a) for the finite
modulation depth M = 0.01 and fper(.) = cos(.). The solid curves
represent the real parts of the dispersion. The imaginary parts are
zero.

0.8673ωr/c and ωm = 0.18ωr, respectively. The correspond-
ing dispersion curves are plotted in Fig. 2(a) for M → 0.
Note that the dispersion curves are periodic along the oblique
modulation vector pm and therefore the Brillouin zone, rep-
resenting the smallest period containing all the dispersion
information, is also oblique, as represented by the dashed lines
in Fig. 2(a). Points on the dispersion curves connected by
integer multiples of the periodicity vector pm are equivalent
and may be represented by the same point in the Brillouin
zone.

Consider the intersections between forward space-time har-
monics emphasized by the circles in Fig. 2(a). Note that these
points are connected by integer multiples of the modulation
vector pm and therefore all represent the same mode. Next
we calculate the dispersion curves and the corresponding

(a) (b)

(c)

FIG. 3. Field profiles for (a) the additive mode (EA), correspond-
ing to the cyan point in Fig. 2(b), and (b) the subtractive mode
(ES), corresponding to the purple point in Fig. 2(b), and (c) their
superposition (EA + ES).

electromagnetic fields emerging from such forward-forward
coupling for finite modulation depths.

In the case of a finite nonzero modulation depth, these space-
time harmonics couple to each other as a result of phase match-
ing. Consider the forward-forward intersection at the point
(ω0,β0) in Fig. 2(a). The two crossing space-time harmonics
are n = 0, i.e., ej (ωt−βz) and n = +1, i.e., ej [(ω+ωm)t−(β+βm)z].
At the crossing point (ω0,β0) these harmonics are given by
ej (ω0t−β0z) and ej [(ω0+ωm)t−(β0+βm)z], respectively. Note that we
would have made the same conclusion considering any other
equivalent circled intersection in Fig. 2(a). As an example,
consider the circled intersection inside the Brillouin zone
located at the point (ω0 − 2ωm,β0 − 2βm). The intersecting
harmonics at this point are n = +2, i.e., ej [(ω+2ωm)t−(β+2βm)z],
and n = +3, i.e., ej [(ω+3ωm)t−(β+3βm)z]. At their crossing point
(ω0 − 2ωm,β0 − 2βm), these harmonics are given as before
by ej (ω0t−β0z) and ej [(ω0+ωm)t−(β0+βm)z], respectively, which is
expected by the periodicity of the dispersion curves.

As a result of coupling between these two harmonics for
finite nonzero modulation depths, the dispersion curves at the
intersection point changes and new electromagnetic modes
emerge. The resulting dispersion curves, zoomed in at the in-
tersection points, calculated numerically using Fourier-Bloch
analysis described in Appendix A, are plotted in Fig. 2(b). Note
that the frequency and the propagation constant are purely real.
At a fixed frequency ω0, two modes with slightly different
propagation constants have emerged. For a relatively small
modulation depth M � 1, the electromagnetic fields of these
modes are computed in Appendix B as

EA = a0e
j (ω0t−βAz) + a1e

j [(ω0+Nωm)t−(βA+Nβm)z], (9a)

ES = a0e
j (ω0t−βSz) − a1e

j [(ω0+Nωm)t−(βS+Nβm)z], (9b)

where the subscripts A and S stand for “additive” and “sub-
tractive,” respectively, in reference with the signs in (9), and
are plotted in Figs. 3(a) and 3(b) for M = 0.01. Here N is an
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integer equal to the difference between the harmonic index of
the crossing space-time harmonics (N = 1 in Fig. 2(a)).

In contrast to forward-backward crossings in subluminal
nondispersive systems, such as in static photonic crystals,
which produce complex modes, the modes in Fig. 2(b) have
purely real, but slightly distinct wave numbers and contain
the frequencies of the coupled space-time harmonics at the
crossing point, i.e., ejω0t and ej (ω0+Nωm)t [Eq. (9)]. Figures 3(a)
and 3(b) show the field plots for the additive and subtractive
modes, respectively, where the harmonics at ω0 and ω1 = ω0 +
Nωm are plotted separately in green and red, respectively. The
superposition of these two modes are plotted in Fig. 3(c). Note
that, due to the slight difference in the propagation constants
of the additive and subtractive modes, the resulting superposed
harmonics at ω0 and ω1 = ω0 + Nωm are periodic and out
of phase, with cos and sin spatial dependence, respectively.
The consequence of such field profiles is explained later when
electromagnetic scattering from such media is discussed.

B. Superluminal modulation

Next consider a superluminal modulation for a lossless
Lorentz medium with the same background parameters as
in the subluminal case (ωp/ωr = 0.6 and γ /ωr = 0). The
density of the medium is again modulated as in (4) but
with the superluminal spatial-temporal modulation [βm,ωm] =
[0.0724ωr/c,0.64ωr]. The corresponding dispersion curves are
plotted in Fig. 4(a) for M → 0, where the crossing (or phase-
matched) space-time harmonics are emphasized by circles. As
in the subluminal case, these intersections are all equivalent,
as they are connected by integer multiples of the modulation
vector pm.

In the case of a finite modulation depth, these space-time
harmonics couple to each other as a result of phase matching.
Consider the forward-forward intersection at the point (ω0,β0)
in Fig. 4(a). The two crossing space-time harmonics are n =
0, i.e., ej (ωt−βz) and n = +1, i.e., ej [(ω+ωm)t−(β+βm)z]. At the
crossing point (ω0,β0) these harmonics are given by ej (ω0t−β0z)

and ej [(ω0+ωm)t−(β0+βm)z], respectively. Note that, similar to
the subluminal case, we would have made the same conclu-
sion considering any other equivalent circled intersection in
Fig. 4(a).

As a result of coupling between these two harmonics for
finite modulation depths, the dispersion curves at the inter-
section point change and new electromagnetic modes emerge.
The resulting dispersion curves, zoomed in at the intersection
points, calculated numerically using Fourier-Bloch analysis
described in Appendix A, are plotted in Fig. 4(b). Note
that superluminal interaction between forward (codirectional)
harmonics produces complex propagation constants. At fre-
quencies close to ω0, two modes with complex conjugate
propagation constants have emerged. For a relatively small
modulation depth M � 1, the electromagnetic fields of the
modes emerging from such forward-forward (FF) coupling are
computed in Appendix B as

EG = a0e
j (ω0t−βGz) + a1e

j [(ω0+Nωm)t−(βG+Nβm)z], (10a)

ED = a0e
j (ω0t−βDz) − a1e

j [(ω0+Nωm)t−(βD+Nβm)z], (10b)
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FIG. 4. (a) Dispersion curves of a superluminal space-time-
modulated Lorentz medium for M → 0. The magenta arrow repre-
sents the modulation vector. The three space-time harmonics n = 0
(green), n = +1 (red), n = −1 (blue) are emphasized. The dashed
line represents the edge of the Brillouin zone. (b) Dispersion diagram
zoomed in at the crossing circled in Fig. 4(a) for the finite modulation
depth M = 0.01 and fper(.) = cos(.). The solid and dashed curves
represent the real and imaginary parts of the propagation constant,
respectively.

where the subscripts G and D stand for “growing” and “de-
caying,” respectively, and are plotted in Figs. 5(a) and 5(b) for
M = 0.01.

In contrast to forward-backward intersections in nondisper-
sive superluminal periodic media, such as temporal photonic
crystals that produce complex frequencies, forward-forward
superluminal intersections produce modes with complex con-
jugate wave numbers, βG = β + jα and βD = β − jα, corre-
sponding to exponentially growing and decaying modes along
z, respectively. Note that in contrast to evanescent modes in
subluminal space-time periodic media, that are also described
by complex conjugate wave numbers; the modes in Fig. 4(b)
carry real nonzero Poynting power and therefore describe
growing and/or decaying propagating modes. Evanescent
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(a) (b)

(c)

FIG. 5. Field profiles for (a) the growing mode (EG), correspond-
ing to the cyan point in Fig. 4(b), and (b) the decaying mode (ED), cor-
responding to the purple point in Fig. 4(b), and (c) their superposition
(EG + ED), where β = Re(βG) = Re(βD), α = Im(βG) = −Im(βD).

modes, however, carry no real power, i.e., the real part of their
Poynting vector is zero along the direction of the waveguide.

As in the subluminal case, the temporal spectrum of the
modes in Fig. 4(b) consists of the two frequencies ω0 and
ω0 + Nωm, where N is an integer equal to the difference
between the harmonic index of the crossing space-time har-
monics (N = 1 in Fig. 4(a)). Figures 5(a) and 5(b) show the
field plots for the growing and decaying modes, respectively,
where the harmonics at ω0 and ω1 = ω0 + Nωm are plotted
separately in green and red, respectively. The superposition
of these two modes are plotted in Fig. 5(c). Note that due to
the nonzero imaginary part of the propagation constant, the
resulting superposed harmonics at ω0 and ω1 = ω0 + Nωm

grow exponentially with cosh and sinh spatial dependence,
respectively. The consequence of such field profiles is ex-
plained later when electromagnetic scattering from such media
is discussed.

IV. SCATTERING BY A FINITE SLAB

Next a slab of a space-time periodic Lorentz material is
excited by a plane wave, and reflected and transmitted fields
as well as the modes excited inside the slab are computed
using the full-wave mode-matching technique (see Appendix C
for details). This technique provides a great deal of physical
insight into the physics of the system, since it provides
exact information on the contribution of the unbounded slab
contributing to the different waves. Moreover, it is immune
to most of the numerical errors that plague other full-wave
numerical techniques, such as numerical dispersion error and
errors associated with absorbing boundary conditions and
excitation models.
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FIG. 6. Transmission power in dB scale, T = 20 log10 |Et|/|Ei|,
through a slab of the medium in Fig. 2(b) excited by a plane wave
versus its length L. The magnitude of different transmitted harmonics
at ω0 + nωm are plotted separately.

A. Subluminal modulation

In the subluminal case, the incident wave must be matched
to the additive and subtractive modes (9) in order to excite them
effectively. Note that at z = 0, the superposition of the two
modes,E = 1

2 (EA + ES) = aejω0t , include only the frequency
ω0 and, since βA ≈ βS ≈ β0, an incident plane wave Ei =
x̂ej (ω0t−β0z) is well matched to E = 1

2 (EA + ES) and excites
EA and ES equally. Therefore, the incident medium should
either have the permittivity εr1 = (ω0/cβ0)2 or be matched to
such a permittivity through a matching section in order to excite
these modes efficiently.

Figure 6 shows the spectrum of the field transmitted through
the slab versus its length for a slab with subluminal space-time-
modulated Lorentz medium in Fig. 2(b) excited by a plane
wave Ei = x̂ej (ω0t−β0z). Note that electromagnetic energy is
periodically transferred between the harmonics at ω0 and ω0 +
ωm, while the rest of the harmonics are more than 50 dB weaker.
At the coherence length, a maximum of energy, possibly with
gain due the energy of the modulation, is transferred to the
ω0 + ωm harmonic without any undesirable intermodulation
effects, in contrast to what occurs in conventional modulators
or mixers. This process is similar to energy exchange between
two forward coupled waveguides. Since the additive and
subtractive modes in (9) have a slightly different propagation
constant, their harmonics at ω0 acquire some gradual phase
mismatch as they propagate along the structure, until they
completely fall out of phase at the coherence length, while their
harmonics at ω0 + ωm arrive in phase at the coherence length,
and the process is next reversed and repeated periodically.
Note that similar transitions may occur between different states
of a space-time-modulated photonic crystal, termed interband
photonic transitions in the photonics literature in analogy to
electronics [22,23]. In this sense, the transitions in Fig. 6 may
be called intraband photonic transitions.

B. Superluminal modulation

As in the subluminal case, in the superluminal space-time-
modulated dispersion-engineered medium shown in Fig. 4(b),
an incident wave at frequency ω0 excites both the growing and
decaying modes. Figure 7 presents scattering from a slab of
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FIG. 7. Transmission power in dB scale, T = 20 log10 |Et|/|Ei|,
from a slab of the medium in Fig. 4(b) excited by a plane wave, versus
its length L. The magnitude of different transmitted harmonics at
ω0 + nωm are plotted separately.

the superluminal space-time-modulated medium in Fig. 4(b).
Note that the transmitted harmonics at ω0 and ω0 + ωm grow
exponentially as the length of the slab is increased, while the
rest of the harmonics are more than 60 dB weaker. The growing
mode EG dominates the exponentially decaying mode ED as
the length of the slab is increased, and since the growing mode
contains both harmonics at ω0 and ω0 + ωm, these harmonics
grow exponentially and are transmitted when they reach the
other end of the slab.

V. CONCLUSIONS

We study electromagnetic modes in space-time-modulated
dispersion-engineered media. It is shown that intercoupling
between codirectional space-time harmonics produces elec-
tromagnetic modes exhibiting anomalous dispersion relation,
field profile, and scattering properties. The most striking
results of the paper are summarized in Fig. 8. As a result of
forward-backward or contradirectional space-time harmonic
coupling in subluminal nondispersive periodic space-time
systems shown in Fig. 8(a), evanescent modes characterized
by complex propagation constants are generated. This paper
predicts that forward-forward or codirectional coupling in
subluminal dispersive systems, shown in Fig. 8(b), produces
purely real propagation constants. As a result of forward-
backward or contradirectional space-time harmonic coupling
in superluminal nondispersive periodic space-time systems,
shown in Fig. 8(c), unstable modes characterized by complex
frequencies are generated. This paper predicts that forward-
forward or codirectional coupling in superluminal dispersive
systems, shown in Fig. 8(d), produces complex propagation
constants describing exponentially growing or decaying prop-
agating modes with real nonzero Poynting power along the
direction of propagation.

Excitation of a slab of such dispersive media with sublumi-
nal modulation results in periodic transfer of energy between
the incident frequency and a single frequency shifted by a
multiple of the modulation frequency, whereas superluminal
modulation generates two exponentially growing anharmonics.
These effects may be generated in any strongly dispersive sys-
tem whose parameters are modulated spatiotemporally, such
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FIG. 8. Different scenarios for intercoupling between space-time
harmonics. Top row: nondispersive systems supporting only forward-
backward or contradirectional coupling. Bottom row: dispersive
systems supporting forward-forward or codirectional space-time
harmonic coupling. The left and right columns describe subluminal
and superluminal space-time-modulated media, respectively. The
dashed black curves represent the background (uncoupled) space-time
harmonics. The solid blue curves represent the real parts of the
dispersion relations. The red and green curves represent the imaginary
parts of the complex propagation constants and complex frequencies,
respectively.

that two codirectional space-time harmonics intersect. Such
space-time modulation may be produced in nonlinear materials
pumped by a laser beam, in electro-optic materials biased by
a traveling electromagnetic wave, in acousto-optic materials
modulated by an acoustic wave, or in tunable metamaterials
controlled by biasing electronic circuits.

The reported unusual electromagnetic modes may find ap-
plications in efficient harmonic generators and perfect mixers,
as they provide unprecedented control over the generation
of electromagnetic harmonics without undesired intermodu-
lation effects. Moreover, since the generated harmonics are
exponentially amplified, such modes can be used to produce
electromagnetic sources in frequency ranges that are not easily
accessible, such as terahertz gaps.

APPENDIX A: COMPUTATION OF DISPERSION CURVES
IN AN UNBOUNDED SPACE-TIME-MODULATED

LORENTZ MEDIUM

Consider a Lorentz medium with relative permittivity (3),

where ωp = e
√

na
ε0me

is the plasma frequency, ωr is the Lorentz

resonance frequency, γ is the collision rate, and na is the
atomic (molecular) density. Assume that na is modulated
spatiotemporally as in (4), where fper is a periodic function
with period 2π . The classical Newton equation describing the
polarization density P(r,t) in such a medium is described by (7)
where E is the electric field. To find the dispersion relation of
the electromagnetic waves propagating in such a medium, (7) is
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solved in conjunction with the wave equation in a space-time-
varying medium, (5), (6). To find the dispersion relation we use
a Floquet-Bloch analysis, expanding all the fields in a series
involving infinite space-time harmonics, ej [(ω+nωm)t−(β+nβm)z],
as in (8), where� = E,P,D, and �n = En,Pn,Dn are unknown
complex constants. Next the space-time periodic density (4) is
expanded in its Fourier series,

na(r,t) =
∞∑

n=−∞
dne

jn(ωmt−βmz), (A1)

where dns are the corresponding Fourier coefficients. Then (8)
and (A1) are substituted in (7), (5), and (6), and, leveraging
the orthogonality of the space-time harmonics, the resulting
system of equations is reduced to a matrix equation A(β,ω)x =
0, where x = [En, . . . Pn, . . . Dn]T is a column vector of the
unknown coefficients in (8). To find the dispersion curves at
a given frequency ωi , the nonlinear equation |A(ωi,β)| = 0 is
solved numerically for the unknown β, or equivalently, the
dispersion relation for a given βi can be found by solving
the nonlinear equation |A(ω,βi)| = 0 for the unknown ω.
Once solved, the corresponding unknown coefficients x =
[En, . . . Pn, . . . Dn]T for the (known) (ω,β) pair are found by
solving for the null space of the (singular) matrix A(ω,β).
And finally, the field profiles are determined by substituting
x = [En, . . . Pn, . . . Dn]T in (8).

APPENDIX B: ELECTROMAGNETIC FIELD PROFILE OF
THE UNUSUAL CODIRECTIONAL-COUPLED

ELECTROMAGNETIC MODES

The Floquet-Bloch analysis in Appendix A is used to
calculate the dispersion curves and electromagnetic fields
for the structures in Figs. 3 and 5 in the main manuscript.
The spectrum of the fields for subluminal and superluminal
modulations is presented next.

1. Subluminal modulation: Additive and subtractive modes

For the subluminal structure in Fig. 3 in the main manuscript
the corresponding field spectrum for the additive and subtrac-
tive modes are presented in Fig. 9. Figure 9(a) shows the
magnitude spectrum of the additive (solid) and subtractive
(dashed) modes. The two harmonics at ω0 (green), ω0 + ωm

(red) corresponding to the coupled space-time harmonics at the
circled intersection in Fig. 2 in the main text (n = 0 and n =
−1) are the strongest, and the rest of the harmonics are more
than 50 dB weaker. Figure 9(b) shows the phase difference
between the additive and subtractive mode harmonics. The
harmonics atω0 (green) are in-phase, whereas those atω0 + ωm

(red) are out of phase. Therefore the field profile of these
modes can be effectively represented as (9), (10) in the main
manuscript.

2. Superluminal modulation: Growing and decaying modes

For the subluminal structure in Fig. 5 in the main manuscript
the corresponding field spectrum for the growing and decaying
modes are presented in Fig. 10. Figure 10(a) shows the
magnitude spectrum of the growing (solid) and decaying
(dashed) modes. The two harmonics at ω0 (green), ω0 + ωm

(a)
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(b)

(ω − ω0)/ωm

p
h
a
se

d
iff

er
en

ce

FIG. 9. Magnitude and phase of the harmonics for the additive
and subtractive modes in Fig. 2(b). (a) Magnitude of the harmonics
of the additive and subtractive modes. For clarity the dashed lines are
shifted by 0.1 units. (b) The phase difference between the harmonics
of the additive and subtractive modes.

(red) corresponding to the coupled space-time harmonics at
the circled intersection in Fig. 4 in the main text (n = 0
and n = −1) are the strongest, and the rest of the harmonics
are more than 50 dB weaker. Figure 10(b) shows the phase
difference between the growing and decaying mode harmonics.
The harmonics at ω0 (green) are in-phase, whereas those at
ω0 + ωm (red) are out of phase. Therefore the field profile of
these modes can be effectively represented as (11), (12) in the
main manuscript.

APPENDIX C: SCATTERING FROM A FINITE SLAB OF A
SPACE-TIME-MODULATED LORENTZ MEDIUM: THE

MODE-MATCHING ANALYSIS

Consider a slab of space-time-modulated dispersion-
engineered Lorentz medium, (3) and (4), sandwiched between
two semi-infinite nondispersive media as shown in Fig. 11
and excited by a plane wave Ei = x̂ej (ωt−kz). We represent
the electromagnetic fields inside the slab as a superposition of
all the modes of the infinite space-time-modulated medium.
The wave Ei incident at the left interface excites the forward-
propagating slab modes; these modes are then reflected at the
second interface and excite backward-propagating slab modes.
Therefore a complete solution of the electromagnetic field
inside the slab should contain both forward- and backward-
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FIG. 10. Magnitude and phase of the harmonics for the growing
and decaying modes in Fig. 4(b). (a) Magnitude of the harmonics
of the growing and decaying modes. For clarity the dashed lines are
shifted by 0.1 units. (b) The phase difference between the harmonics
of the growing and decaying modes.

propagating modes. The forward-propagating field inside the
slab, E+(z,t), is expressed as a superposition of all the forward-
propagating modes of the unbounded space-time-modulated
medium, E+

p (z,t), with unknown coefficients

E+(z,t) =
∞∑

p=−∞
a+

p E+
p (z,t). (C1)

Similarly, the backward-propagating field inside the slab,
E−(z,t), is expressed as a superposition of all the backward-
propagating modes of the unbounded space-time-modulated

z

L

Ei

Er Et

r1

space-time slab
r2

FIG. 11. A slab of space-time-modulated dispersion-engineered
medium is sandwiched between two nondispersive media and excited
by a forward-propagating wave Ei . Er and Et represent reflected and
transmitted fields.

medium, E−
p (z,t), with unknown coefficients

E−(z,t) =
∞∑

p=−∞
a−

p E−
p (z,t), (C2)

where

E±
p (z,t) = x̂ej(ωt−β±

p z)
∞∑

n=−∞
E±

p,ne
jn(ωmt−βmz) (C3)

are the forward- (E+
p ) and backward- (E−

p ) propagating modes
of the infinite space-time-modulated medium, which were
calculated in Appendix A.

The reflected and transmitted waves contain all the fre-
quency content of the slab modes, i.e., ωp = ω0 + pωm.
Therefore, they are represented as superposition of plane waves
at frequencies ωp with unknown coefficients,

Er(z,t) = x̂
∞∑

p=−∞
ar

pej (ωpt+kr
pz), (C4)

Et(z,t) = x̂
∞∑

p=−∞
at

pej (ωpt−kt
pz), (C5)

where kr
p = ωp

√
μ0ε0εr1 and kt

p = ωp
√

μ0ε0εr2.
Similarly, the magnetic fields inside the slab are represented

as a superposition of the forward- and backward-propagating
slab modes

H+(z,t) =
∞∑

p=−∞
a+

p H+
p (z,t), (C6)

H−(z,t) =
∞∑

p=−∞
a−

p H−
p (z,t), (C7)

where the corresponding magnetic fields for each mode
[H±

p (z,t)] are calculated by applying the Maxwell-Faraday
equation to (C3), leading to

H±
p (z,t) = ŷej(ωt−β±

p z)
∞∑

n=−∞
H±

p,ne
jn(ωmt−βmz), (C8)

where

H±
p,n = β±

p + nβm

μ0(ω + nωm)
E±

p,n. (C9)

Application of the boundary conditions, i.e., continuity of
the tangential electric and magnetic fields at the slab interfaces,
then leads to a system of equations for the unknown coeffi-
cients, a+

p , a−
p , ar

p, at
p, whose solution provides the reflected

and transmitted fields as well as the fields inside the slab.
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