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Wolf effect of partially coherent light fields in two-dimensional curved space
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Wolf effect refers to a spectral shift of light during its propagation even in free space, which results from
the fluctuating (or correlation) nature of light sources. In conventional optics, the propagation laws of light are
usually considered in flat space. However, optical phenomena are fascinating in the presence of space curvature.
Here the problem of spectral changes of light during its propagation is addressed in a two-dimensional (2D)
curved space, and the influence of space curvature on the Wolf effect is revealed. The propagation expression for
a partially coherent polychromatic light beam is analytically derived for propagating inside 2D curved surfaces
of revolution with constant Gaussian curvature under a linear paraxial approximation. It shows that the curved
spaces with larger positive curvature accelerate and enhance the spectral shifts (blue- and redshifts) of light during
their propagation, and the spaces with larger negative curvature may decelerate and suppress the spectral shifts.
Furthermore, different correlation lengths of light sources also affect the behaviors of spectral shifts of light in
such curved surfaces of revolution. Our result provides a method to measure the curvature of curved space by
measuring the spectral shift of light during its propagation in curved space, like the cases of light propagating in
practical gravitational space.
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I. INTRODUCTION

Spectroscopy of light radiation is one of the most important
methods in science and technology, and it has become a very
powerful tool in many applications such as the characterization
of the properties of light sources, the energy-level structures
of atomic and molecular particles, and the absorption and
emission features from material media and/or biological units.
However, the spectrum of light radiation emitted by an object
can change on propagation to the observer even when it travels
through empty space. Currently, there are several well-known
mechanisms which can lead to the change of light spectrum.
For example, it is well known that due to the Doppler effect,
the spectrum of light suffers red- or blueshifts for an observer
who moves relatively away from or toward the source. The
spectral change also occurs in the electromagnetic emission of
surface systems in the near and the far zones because of the
loss of evanescent modes on propagation [1].

Here we want to address another important effect on spectral
change whose origin lies in the fluctuating (statistical) nature
of the light sources [2,3]. This kind of spectral change due
to the correlation of the light source is sometimes termed as
correlation-induced spectral change (see a review in Ref. [4]),
and it is also called the Wolf effect [5–7]. The spectral
change caused by the Wolf effect has been verified in several
experimental systems, such as ordinary partially coherent light
sources [8,9], acoustic-correlated systems [10,11], diffraction
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of light through an aperture system [12,13], thermal-emitted
spectra of the infrared source from a periodic microstruc-
ture with polar materials [7], and the propagation of light
in biological tissues [14]. The Wolf effect has also been
theoretically extended to study both the spectral changes of
light from scattering systems [15] and the application to
inverse scattering problems [16]. Although the theories and
applications of partially coherent sources have attracted much
attention [17–24], studies on the Wolf effect recognized as an
intriguing phenomenon of partially coherent sources are all
limited to simple optical systems in flat space. In this work, we
are going to investigate the Wolf effect of light propagating on
a special two-dimensional (2D) curved space whose curvature
effect may lead to the extraordinary spectral change of light.

Up to now, the physics of curved space-time predicted
by general relativity is still hard to be accessed directly
in laboratory experiments; however, researchers have sug-
gested various physical systems theoretically or experimen-
tally to demonstrate the analogous effects in curved space-time
[25–46]. For instance, it is possible to simulate the black-
hole evaporation and Hawking emission from the black-hole
analogs in a flowing fluid [25–27], and it is also known
to create a sonic horizon, Gibbons-Hawking effect, and a
sonic black-hole analog in Bose-Einstein condensed systems
[28–31]. More interestingly, optical and electromagnetic
analogs of curved spaces like gravitational fields and lenses
have been demonstrated in moving dielectric media [32–34],
designed electromagnetic waveguides [37–39], microstruc-
tured optical fibers [41], nonlinear Newton-Schrödinger sys-
tems [43,44], and metamaterial systems [45,46]. All these
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studies show that optical analogs are excellent table-top can-
didates for studying gravitational phenomena.

Another route is to directly fabricate the geometry of a
curved space-time and investigate the consequence of space-
time curvature on light propagations with reduced dimension-
ality (i.e., one-dimensional (1D) curved lines or 2D curved
surfaces). As a matter of fact, studies of physics on curved
surfaces can trace back to the middle and late twentieth century
from two seminal works [47,48]. Now it is commonly accepted
that a curved surface offers a curvature-induced geometrical
potential which therefore influences the dynamics of particles,
electronic states, and fields. In the recent decade, there have
been an increasing number of interesting investigations on
light propagation in curved space [49–59], which are seen
as direct platforms to reveal the interplay effects between
light and curved space-time and promote the understanding of
the general-relativity concepts with light propagations. Light
propagations in 2D curved space can be achieved by covering
a thin film served as waveguide on a three-dimensional object
or by total internal reflection. An effective theory describ-
ing the propagation of light on a general curved surface
has been developed and the properties of linear propagation
of an initially Gaussian profile on surfaces of revolution
with constant Gaussian curvature were first investigated in
Ref. [49], and has since been experimentally demonstrated
on a sphere and a hyperbolic surface [50]. One can also
find the solutions for shape-preserving spatially accelerating
wave packets in curved space where accelerating wave pack-
ets may propagate along nongeodesic trajectories [53], and
such behaviors have been experimentally observed [54]. In
addition, topological phases in curved-space photonic lattices
have been introduced, which may lead to curvature-induced
topological edge states and topological phase transitions [55].
Very recently, the Hanbury-Brown–Twiss effect was revisited
in the presence of space curvature [57], and it was shown
that the evolution of speckle patterns is very distinct in 2D
surfaces of constant positive and negative Gaussian curvature
and the surfaces with constant Gaussian curvature act as ana-
log models for universes having nonvanishing cosmological
constants [57].

It is well known that in astronomy the redshift of light from
distant galaxies also happens due to the expansion of space, and
such a redshift is known as a cosmological redshift derived
from the Robertson-Walker metric under the formalism of
general relativity [60]. Although the spectral change caused by
the Wolf effect was seen as a noncosmological redshift which
may be responsible for inexplicable astronomical phenomena
such as observed spectral redshift of certain extragalactic
celestial bodies like quasars [6,61], it would be very physically
meaningful to consider the Wolf effect in the presence of
space curvature. Special types of surfaces can be emulated
as a uniform and isotropic universe because of translational
and rotational symmetry. In this work, the gravitational effect
is embodied in the shape of the surface, i.e., the distribution
of curvature, and a gravitational source is not necessarily
included, therefore the nonlinear process is not considered.
Here we reveal the influence of the curved space on the spectral
shift of a partially coherent polychromatic light propagating
along such surfaces of revolutions with positive or negative
constant Gaussian curvature.

FIG. 1. Surfaces of revolution with constant positive (a)–(c) and
negative (d) curvature. For positive curvature, different relations
between radius of curvature R and the constant R0 lead to three
types of surfaces: (a) spindle with R0 < R, (b) sphere with R0 = R,
and (c) bulge with R0 > R. While for negative curvature, there is
only the hyperboloid type of surface in our case. The curvilinear
coordinate on the surface defined in this work is also illustrated, where
the propagating axis of light is z and the proper length in the transverse
direction on the surface is x. Here we should note that on the initial
plane of z = 0, x is equal to coordinate ξ during the calculation, and
η at z > 0 is not x any more.

II. BRIEF REVIEW ON SURFACES OF REVOLUTION

First we briefly introduce a type of 2D curved spaces:
surfaces of revolution. For convenience of parametrization,
the profile curve of such 2D curved surfaces of revolution
can be expressed by the vector s = [r(z) cos ϕ,r(z) sin ϕ,h(z)]
in Cartesian coordinates [57], where the parameter z is the
proper length along the profile curve, thus (dr(z)/dz)2 +
(dh(z)/dz)2 = 1 is always satisfied. Once the radius
parametrization r(z) is known, such surfaces are determined.
For a surface of revolution with Gaussian curvature, its intrinsic
curvature is defined as K = κ1κ2, where κ1,2 = 1/R1,2 are
principal curvatures related to those two tangent circles with
maximal and minimal radii R1 and R2 for every regular point
on the surface. The parameter K is merely determined by the
metric gij of the surface and is not related to its topological
shape, and it can even be negative when tangent circles locate at
opposite sides of the surface. It should be mentioned that such
surfaces of revolution always obey the differential equation
dr2(z)/d2z + Kr(z) = 0, which can also give the value of K

for a given function r(z).
As in Refs. [49,50,57], we consider the surfaces of revolu-

tion parametrized by r(z) = R0 cosq(z/R), whereq = sgn(K),
and R0 is an arbitrary positive constant which scarcely influ-
ences physical properties but decides the shape of the surface
(see Fig. 1). We define these functions sinq(a), cosq(a), and
tanq(a) to be sin(a), cos(a), and tan(a) for q = +1 and to
be sinh(a), cosh(a), and tanh(a) for q = −1. Clearly, in this
situation the Gaussian curvature is a constant given by K =
1/R2 for q = +1 or K = −1/R2 for q = −1. For constant
K > 0, when R = R0, it is a spherical surface; when R >

R0, it is a spindle-type surface; when R < R0, it becomes
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the bulge type. Since the value of r(z) should be positive,
the range of z should be (−πR/2,πR/2) for R � R0 or
(−R arcsin(R/R0), R arcsin(R/R0)) for R < R0. For K < 0,
we have |z| < R arcsin h(R/R0). With ξ = R0ϕ, we get the
following metric:

ds2 = dz2 + cos2
q(z/R)dξ 2, (1)

with ξ ∈ [−πR0,πR0). Therefore the covariant Laplace
operator is given by [49]

� = ∂2
z − q

R
tanq (z/R)∂z + cos−2

q (z/R)∂2
ξ . (2)

Therefore we obtain the Helmholtz equation of light in 2D
curved space.

III. PROPAGATION OF LIGHT IN 2D CURVED SPACE

We consider the propagation of a partially coherent
polychromatic light beam inside a 2D curved surface. As
shown in Fig. 1, the light propagates along the longitudinal
direction z on surfaces from the initial plane z = 0 to an
arbitrary plane z > 0. In this work, we only discuss the rota-
tionally symmetric macroscopic case when the wave number
of light is significantly large compared to the curvature K . The
effect of the extrinsic (or mean) curvature H related to the
topology is negligible because light cannot distinguish local
surroundings [50]. Using the above covariant Laplace operator
and the Helmholtz equation, for a 2D curved surface with
constant K , the point spread function (or Green’s function)
of light, from the source plane ξ at z = 0 to arbitrary plane η

at z > 0 in the paraxial approximation, can be derived and it
is given by [57]

hq(ξ,η,z) = f (z)

[
keff

2πiR sinq(z/R)

]1/2

e
ikeff(ξ−η)2

2R tanq (z/R) , (3)

where keff = ωneff/c is the effective wave number
with the effective refractive index neff in such
curved surfaces, c is the speed of light in vacuum,
f (z) = exp [ikeffz + i

2keff

∫ z

0 Veff,q (z
′
) dz

′
], and Veff,q =

q[1 + cos−2
q (z/R)]/(4R2) is the effective potential caused by

the curved space and it only depends on z. Here we denote ξ

as η for the plane of z > 0. As for nonparaxial case, i.e., when
the divergence angle is large or the beam width is comparable
with wavelength, unfortunately, Eq. (3) is no longer valid.
However, although paraxial approximation is strictly satisfied
in this work and discussion will consequently focus on the
paraxial case, nonparaxial propagation in curved space is an
intriguing problem which is worth further exploration. With
the knowledge of the point spread function hq(ξ,η,z) and the
theory of coherence, the output cross-spectral density from
the correlated source at z = 0 to arbitrary position z can be
expressed by [62]

Wout(η1,η2,z,ω) = 〈Eout(η1,z,ω)E∗
out(η2,z,ω)〉

=
∫∫

Win(ξ1,ξ2,0,ω)hq(ξ1,η1,z)

×h∗
q(ξ2,η2,z)dξ1dξ2, (4)

where Win(ξ1,ξ2,0,ω) is the initial cross-spectral density of the
source, and ξ1,2 and η1,2 are the transverse coordinates at z = 0

and z > 0, respectively. Here the proper length in the ξ or η

direction is x = ξ cosq(z/R) or x = η cosq(z/R). We assume
the spot size σs of the initial light source is extremely smaller
than the value of |πR0| for a well-collimated narrow beam, i.e.,
σs � |πR0|, then the integral interval can be mathematically
expanded into the range of (−∞, + ∞). For simplicity but
without loss of generality, the initial cross-spectral density
of the partially coherent polychromatic light source here is
described by a Gaussian Schell-model with a single spectral
peak. Thus Win(ξ1,ξ2,0,ω) for such a light source can be
expressed as [3,63]

Win(ξ1,ξ2,0,ω) = S0(ω)e
− ξ2

1 +ξ2
2

4σ2
s e

− (ξ1−ξ2)2

2σ2
g , (5)

whereσs andσg are the beam half-width and spectral coherence
width of the source, respectively, and S0(ω) is the initial
spectrum of light. Substituting Eq. (5) into Eq. (4), we can
analytically derive the output cross-spectral density as

Wout(x1,x2,z,ω)

= S0(ω)

�q(z,ω)
exp

[
−

(
x2

1 + x2
2

)
4σ 2

s �2
q(z,ω)

]

× exp

[
− (x1 − x2)2

2σ 2
g �2

q(z,ω)
+ ikeff

(
x2

1 − x2
2

)
2�(z,ω)

]
, (6)

where

�q(z,ω) = [
cos2

q(z/R) + R2 sin2
q(z/R)/Z2

R(ω)
]1/2

(7)

is the beam-expansion coefficient in such curved surfaces,
the function �(z,ω) = Z2

R(ω)�2
q(z,ω)/[R tanq(z/R)] is re-

lated to the radius of curvature of such a partially coherent
polychromatic light beam in curved spaces, and ZR(ω) =
2keff σ

2
s /[1 + 4σ 2

s /σ 2
g ]1/2 is the frequency-dependent Rayleigh

distance of the initial beam. When R → ∞, the above results
will tend to be the same as those in the flat space [64]. In
the above calculation, we have already replaced the transverse
coordinates η1,2 with the proper lengths x1,2.

From Eq. (6), we obtain the output spectrum as follows:

S(x,z,ω) ≡ Wout(x,x,z,ω)

= S0(ω)

�q(z,ω)
exp

[
− x2

2σ 2
s �2

q(z,ω)

]
. (8)

Since the quantity �q(z,ω) is a function of frequency and it
also depends on both the curvature K of curved surfaces and
the parameters of light beams, it is clearly expected that the
resulting spectrum is affected by all these factors.

IV. RESULTS AND DISCUSSION

In the following discussion, we assume the initial spectrum
has only a single spectral line with a Gaussian profile [3,4],

S0(ω) = 1

δ
√

2π
exp[−(ω − ω0)2/(2δ2)], (9)

where ω0 is the central angular frequency, and δ is the effective
half-width of the spectral line with δ < ω0 in our consideration.
For better explanations on the spectral shifts, we define the
relative shift of the spectral line as α = (ω1 − ω0)/ω0, where
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ω1 is the new peak frequency of the propagated spectrum at an
observation point. Below, we take the parameters as follows:
ω0/2π = 500 THz, and δ/ω0 = 0.1. Our results can also be
extended to the cases for other types of spectral profiles like a
Lorentzian line.

In Fig. 2, we plot the typical effect of the curvature K

on the light spectral shifts in such 2D surfaces of revolution
at different observation points. From Fig. 2(a), it is evident
that at the on-axis observation point (x = 0), all the spectral
shifts move to the higher frequencies and they increase as
|K| increases in the cases of K > 0; while the spectral shifts
decrease as |K| increases in the cases of K < 0, although they
are still positive (i.e., blueshifts). In the inset of Fig. 2(a),
on the propagating axis, it is seen that the light spectrum in
the curved space with positive K has a larger blueshift than
the case in the flat (free) space, while the spectrum of light in
the curved space with negative K suffers a suppressed blueshift
compared with the case of the flat space. In Fig. 2(b), when the
observation point is at x = 1 mm (which is slightly away from
the propagating axis), we also see that in the cases of K > 0,
the spectral shift may change from the blue- to redshifts as |K|
increases; while it may move to the larger blueshift and then
decrease in the cases of K < 0. When the observation point
is at x = 3 mm (which is farther away from the propagating
axis), see Fig. 2(c), as |K| increases, we find that the spectral
shift is toward the lower frequencies (the redshifts) in the cases
of K > 0, while in the cases of K < 0, the spectral redshift
gradually reduces and may even become the blueshift. The
insets of Figs. 2(b) and 2(c) demonstrate spectral changes in
different situations compared with the results of the flat space
and the corresponding initial cases. Clearly the curvature of
space does influence the spectral shifts of light as it propagates
in curved space.

Compared with the result of K = 0 (i.e., the flat space),
at on-axis observation points, it is found that the curved
spaces with larger positive Gaussian curvatures K lead to
larger blueshifts, while the curved spaces with larger negative
Gaussian curvatures K lead to smaller blueshifts. When the
observation point moves away from the propagating axis,
the spaces with larger positive K lead to larger redshifts, while
the spaces with larger negative K result in smaller redshifts.
These properties are demonstrated in Fig. 3. From Fig. 3,
we can conclude that, compared with the results in the flat
space, the 2D spaces with large positive K accelerate and
enhance the spectral shifts from the blue- to redshifts along
the transverse coordinates, while the 2D spaces with large
negative K decelerate and reduce the spectral shifts from blue-
to redshifts along the transverse coordinates.

To explain the above dependence of the spectral shifts on the
curvatures of surfaces and the observation points, we further
derive the peak frequency ω1 of the light spectrum at a certain
observation point. Since the initial spectrum is assumed to have
only one single peak located at ω0, the new peak frequency ω1

must obey ∂S(x,z,ω)/∂ω|ω=ω1
= 0. In general, the relation

between ω1 and the spatial coordinates (x,z) should satisfy the
equality as follows:

S ′
0(ω1) + S0(ω1)

[
x2

σ 2
s

1

�2
q(z,ω1)

− 1

]
�′

q(z,ω1)

�q(z,ω1)
= 0, (10)

FIG. 2. Typical effect of curvature K on the relative spectral shift
α on such 2D surfaces of revolution at different transverse observation
positions: (a) x = 0, (b) x = 1 mm, and (c) x = 3 mm, with z = 3 m.
Here different cases with positive and negative curvature are indicated
by the red and blue solid lines, respectively. The insets in (a)–(c)
show the normalized output light spectra S(ω) at the corresponding
observation points for the curvature K = 0.04m−2, −0.04 m−2, in
comparison with the initial spectrum and the case of free space
(K = 0). Other parameters in the calculations are ω0/2π = 500 THz,
δ/ω0 = 0.1, σs = 1 mm, σg = 0.5 mm, and neff = 1.51.

where S ′
0 and �′

q , respectively, denote the derivatives of the
functions S0 and �q over frequencies at ω1. From Eq. (10), it
is clear that the spectral shifts are mainly affected by the factor
�q(z,ω) and they are also influenced by transverse coordinate
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FIG. 3. Typical behaviors of the relative spectral shifts of light
along the transverse direction on 2D surfaces of revolution under
different values of curvature. Here we take K = ±0.0625, ±0.025,
and ±0.01m−2, with z = 3 m. For comparison, the case of flat space
(K = 0) is also plotted by the dashed line. Other parameters in the
calculations are the same as those in Fig. 2.

valuesx. Since�q (z,ω) contains the influence of the curvatures
of curved surfaces, the spectral shifts strongly depend on the
value of K . In a special case, when ω1 = ω0, i.e., there is no
spectral shift, then Eq. (10) can be simplified to

x = ±σs�q(z,ω0). (11)

In the above, we have already used the property of
S ′

0(ω0) = 0. Clearly the zero spectral shift happens along
the change of beam width at the center frequency. In math-
ematics, since �q(z,ω) decreases as frequency increases,
also see Eq. (7), �′

q(z,ω1) is always negative. Meanwhile
both S0(ω1) and �q(z,ω1) are always positive, and S ′

0(ω1) >

0 when ω1 < ω0 and S ′
0(ω1) < 0 when ω1 > ω0. There-

fore, from Eq. (10), it is known that in the region of
|x| < σs�q(z,ω0), only the blueshifts are possible; while in
the region of |x| > σs�q(z,ω0), there only exist the red-
shifts. Interestingly, on the propagating axis (i.e., x = 0),
from Eq. (10), it can be simplified into S ′

0(ω1)/S0(ω1) =
�′

q(z,ω1)/�q(z,ω1) < 0, which indicates the blueshift effect.
For a single Gaussian spectral line like Eq. (9), the peak
frequency ω1 of the resulting spectrum satisfies a quartic equa-
tion: Bω4

1 − Bω0ω
3
1 + ω2

1 − ω0ω1 − δ2 = 0, where the con-
stant B = (4n2

effσ
4
s σ 2

g )/[c2R2 tan2
q(z/R)(σ 2

g + 4σ 2
s )] depends

on both the parameters (such as the coherence width and beam
width) of the light source and the curvatures of the curved
surfaces. Our numerical calculations show that only one root
of this quartic equation is a real and positive value under the
above condition.

Figure 4 clearly demonstrates the distributions of the
relative spectral shifts under different situations with different
coherence. In all these cases, when the observation point is
close to the propagating axis z, the resulting spectrum always
moves to the higher frequency; while it moves to the lower
frequency when the observation point is far away from the
propagating axis z. In the cases of K > 0, when the light
source has good coherence with a large value of σg , it is seen
that the blueshift range reduces as the propagating distance

increases [see Fig. 4(a1)]. This effect is due to the oscillation
term contained in Eq. (7), which can be rewritten as

�+1(z,ω) =
{

1 +
[

R2

Z2
R(ω)

− 1

]
sin2 (z/R)

}1/2

(12)

for K > 0. From Eqs. (11) and (12), the blueshift range shrinks
under the condition of R2 < Z2

R0 ≡ Z2
R(ω0), where ZR0 is the

Rayleigh distance of such partially coherent polychromatic
light beams at the center frequency. That is to say, when
K > 1/Z2

R0, the blueshift range never exceeds the range of
(−σs,σs) in the transverse direction, and it can even reduce
because of the negative coefficient (R2/Z2

R0 − 1) in the front
of the factor sin2 (z/R). For partially coherent light, the smaller
the value of σg , the smaller the values of both ZR0 and ZR(ω).
Thus for a fixed value R (or K), both R2 = Z2

R0 and R2 > Z2
R0

may also happen when σg decreases. Figures 4(a2) and 4(a3),
respectively, plot the other two different situations. It is clear
that the blueshift range does not change under the critical
condition for R2 = Z2

R0, which corresponds to the critical
value of the coherence width σg,c = 2σsR/(4k2

eff,0σ
4
s − R2)1/2,

where keff,0 = ω0neff/c is the effective wave number at the
center frequency. In this example, σg,c ≈ 0.255 mm. When
R2 > Z2

R0, the blueshift range increases as the propagating
distance z increases [see Fig. 4(a3)]. One should also notice
that when R2 > 4k2

eff,0σ
4
s , σg,c does not exist, therefore in this

situation the typical spectral shifts in such curved surfaces with
K > 0 have the same behavior similar to the result in Fig.
4(a3). From Figs. 4(a1)–4(a3), it is found that although the
curvature of the curved space is fixed, the spectral changes in
the curved space are affected by different values of σg , i.e., the
correlation property of the light source. Such spectral changes
in Figs. 4(a1)–4(a3) also provide the possibility to determine
the curvature of the curved space.

Different from the results in the cases of K > 0, the
blueshift range always increases with the propagating distance
z in the curved space of K < 0 [see Figs. 4(c1)–4(c3)].
Meanwhile, it should also be noticed that in the curved space
of K < 0, the blueshift range increases much quickly with a
decrease in the value of coherence width σg . Compared with
the cases in the flat space with K = 0 [see Figs. 4(b1)–4(b3)
and Figs. 4(d1)–4(d3)], in each corresponding case of σg ,
the positions of zero-spectral shifts in the cases of K > 0
are always smaller than those in K = 0; but the positions of
zero-spectral shifts in the cases of K < 0 are always larger
than those in K = 0. These properties further demonstrate
that under the same condition of σg , the spectral shifts are
accelerated to the blue- or redshifts due to the curved surfaces
with K > 0, and they are decelerated to the blue- or redshifts
due to the surfaces with K < 0. Lastly, it should be emphasized
that in the limit of an incoherent light (σg → 0), since the value
of �q(z,ω) goes to infinity, ideally the blueshift phenomenon
always occurs for any finite transverse coordinate x at z > 0.
The limit value of the blueshift is given by α ≈ δ2/ω2

0 for a
single Gaussian spectrum.

V. CONCLUSION

We have investigated the Wolf effect of a partially coher-
ent polychromatic light beam on the 2D curved surfaces of
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FIG. 4. Distributions of relative spectral shifts on such 2D surfaces of revolution with positive (a1)–(a3) and negative (c1)–(c3) curvature
under different correlation lengths σg . For comparison, the corresponding distributions of relative spectral shifts in 2D flat space (K = 0) are
also shown in (b1)–(b3). The black dashed lines in each case denote the trajectories for zero spectral shifts, see Eq. (11). For a better comparison,
the trajectory curves for no spectral shifts in columns (a)–(c) for different σg are plotted together in (d1)–(d3), respectively. The parameters of
the curved spaces are (a1)–(a3) K = 0.0625 m−2 and (c1)–(c3) K = −0.0625 m−2, and the values of σg are (a1), (b1), (c1), (d1) σg = 1 mm;
(a2), (b2), (c2), (d2) σg ≈ 0.255 mm; and (a3), (b3), (c3), (d3) σg = 0.1 mm. Other parameters are the same as those in Fig. 2.

revolution. Under the paraxial approximation, the space cur-
vature has strong influence on both the on-axis blueshifts and
off-axis redshifts of light spectra during their propagations in
curved spaces. Besides the correlation of source, curvature also
gives rise to the red- and blueshift. Compared with the results
of the Wolf effect in flat space, these results indicate that the
surfaces with larger positive curvature accelerate the spectral
shift to the blue- or redshift along the transverse coordinates,
while the spaces with larger negative curvature decelerate and
reduce such shifts. By controlling the correlation length of light
sources, different evolutions of the Wolf effect are obtained
even in the same curved space. This may provide another
possible method to probe the curvature of space by measuring
the changes in light spectra during their propagation in curved

spaces, like the method for measuring the evolution of speckle
sizes in curved spaces [57].
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