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Wave scattering from two-dimensional self-affine Dirichlet and Neumann surfaces
and its application to the retrieval of self-affine parameters
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Wave scattering from two-dimensional self-affine Dirichlet and Neumann surfaces is studied for the purpose
of using the intensity scattered from them to obtain the Hurst exponent and topothesy that characterize the
self-affine roughness. By the use of the Kirchhoff approximation, a closed-form mathematical expression for
the angular dependence of the mean differential reflection coefficient is derived under the assumption that the
surface is illuminated by a plane incident wave. It is shown that this quantity can be expressed in terms of the
isotropic, bivariate (α-stable) Lévy distribution of a stability parameter that is two times the Hurst exponent of
the underlying surface. Features of the expression for the mean differential reflection coefficient are discussed,
and its predictions compare favorably over large regions of parameter space to results obtained from rigorous
computer simulations based on equations of scattering theory. It is demonstrated how the Hurst exponent and
the topothesy of the self-affine surface can be inferred from scattering data it produces. Finally, several possible
scattering configurations are discussed that allow for an efficient extraction of these self-affine parameters.
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I. INTRODUCTION

Research on the scattering of waves from rough surfaces
dates back as far as to the 1890s when Lord Rayleigh con-
ducted a series of seminal studies on the topic [1]. Since
then much progress has been made on the experimental and
theoretical aspects of the problem [2–9]. Today surfaces with
well-controlled statistical roughness can be manufactured to
facilitate the comparison between experimental and theoretical
predictions [10,11], and the full angular distribution of the
scattered intensity can be measured [12,13] and calculated for
both metallic and dielectric surfaces [14–20]. Initially, the the-
oretical treatment was concentrated around various perturba-
tion theories [4,21–24] and single scattering approximations,
like the Kirchhoff approximation [25–29], methods that are
expected to be accurate for weakly rough surfaces and/or
surfaces of small slopes. With the advent of the computer,
nonperturbative, purely numerical solutions of the scattering
problem started to become practically possible from the last
half of the 1980s. The first such simulations focused on the
scattering from one-dimensional random surfaces [7,9,30–32]
and only rather recently, due to its numerical complexity,
has wave scattering from two-dimensional randomly rough
surfaces been tackled by rigorous numerical methods [7,15–
20,29,33–37].

Scattering of waves from ordered or disordered rough
surfaces is of interest in various fields of science, engineering,
and medicine. For instance, x rays are used routinely in
material science to uncover the underlying crystal structure
of materials and in medicine and dentistry as a diagnostic
tool. Inverse scattering techniques are used in geophysical
exploration for reservoirs of hydrocarbons and fresh water,
ground-penetrating radar is used for imaging the subsurface for
the purpose of locating archaeological artifacts or mines, and

ultrasound imaging is a safe and noninvasive medical technique
used to image the inside of the body using sound waves
[38]. Recently, an inverse scattering technique was developed
that uses electromagnetic waves for the purpose of extracting
the statistical properties of two-dimensional randomly rough
surfaces from the knowledge of the in-plane and co-polarized
scattered intensity distribution [39]. The advantage of using
wave-based methods for this purpose relative to scanning probe
methods, like, for instance, atomic force microscopy or contact
profilometers, is that it is nondestructive and may cover large
surface areas in a short amount of time, which is essential
when the information that one seeks is statistical in nature.
The purpose of this paper is to develop similar capabilities for
two-dimensional scale-invariant rough surfaces.

Scale invariance is a concept that was pioneered by Mandel-
brot [40,41], and for surfaces, it takes the form of self-affinity. It
expresses itself as an invariance under scaling (or dilations) that
are different in the horizontal plane and in the vertical direction;
i.e., self-affinity is about invariance under anisotropic scaling.
Such transformations are in the language of geometry known as
affine transformations [42]. Surfaces that are invariant under
affine transformations are known as self-affine surfaces and
they are characterized by the roughness or Hurst exponent
and a length scale known as the topothesy that controls the
amplitude of the self-affine surface in much the same way as
the standard deviation does for more “classic” rough surfaces
[41]. In addition to these two parameters, any real self-affine
surface will also require two length scales that characterize the
lower and upper cutoffs in the self-affine scaling regime.

Self-affine surfaces are abundant in nature, but also many
industrial and other manmade surfaces display self-affine
scaling. Some examples are fractured surfaces in a wide range
of materials [43–47]; geological structures covering orders
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of magnitude in length scales [48,49]; the topography of
the sea floor [50]; surfaces resulting from interface growth
and roughening phenomena [51]; and the surfaces of cold-
rolled aluminum sheets used, for instance, in the building
and construction industry for making building facades [52],
to mention a few.

Numerous methods have been proposed in the literature
for measuring the Hurst exponents of self-affine surfaces
[41,53,54]. The majority of these methods are direct methods
in the sense that they require that the surface profile function
first is measured, often over a uniform grid of points in the
horizontal plane. Moreover, the uncertainty of the obtained
estimate for the Hurst exponent depends partly on the num-
ber of points and area covered by the grid over which the
surface is measured [55,56]. In addition, the methods used to
determine the Hurst exponent have their own biases, and it is
generally recommended to compare the predictions obtained
by several methods [55]. Recently, it was also studied how
the size of the tip of the stylus used in measuring the surface
topography introduces artifacts into the measurements and thus
the estimation of the Hurst exponent [57]. Almost without
exception, the available methods focus on the determining of
the Hurst exponent of the self-affine surface and only rarely
is its topothesy reported. In addition to the Hurst exponent, to
simultaneously, or independently, also be able to determine the
topothesy of the self-affine surface is of advantage since it will
aid in better analyzing measured topography maps in a reliable
manner [57].

Wave scattering from scale-invariant surfaces was first
studied by Berry in the late 1970s [58] in a paper where he
coined the term diffractals to mean wave diffraction from
fractals. In this study, the author analyzed the complex nature
of the diffractals (the scattered intensity) and showed that
the intensity drops off, away from the specular direction,
as a power law of an exponent that depends on the fractal
dimension of the surface. For nonfractal surfaces, the similar
drop in intensity typically is of an exponential-like character.
Since the publication of this seminal work by Berry, numerous
studies have been published on related aspects of the problem,
some of which can be found in Refs. [59–78]. The overall
majority of these studies are either purely numerical and/or the
scattered intensity is not obtained in a closed-form expression
but rather more typically as an infinite series where the terms
depend on the self-affine parameters. This latter situation
makes it more challenging to uncover the relevant self-affine
parameters of the surface from the measured scattering data.
There are, however, a few noticeable exceptions to this rule
for one-dimensional surfaces, that is, surface roughness that
is constant along one direction. In the studies reported in
Refs. [70,71], it was demonstrated that the electromagnetic
scattering from self-affine surfaces can be expressed as a
closed-form expression in terms of the (univariate) Lévy
distribution, also known as the α-stable distribution. By the
use of the well-known expansions of this distribution around
zero and for large values of its argument, the behavior of
the scattered intensity around the specular direction and in its
diffuse tails were obtained including the prefactors that depend
on the self-affine parameters of the surface. Soon thereafter,
this formalism was applied successfully for the inversion of
measured optical scattering data obtained from a self-affine

aluminum sample with respect to the self-affine parameters of
its surface [73]. The self-affine parameters obtained in this way,
that is, the Hurst exponent and the topothesy, were found to be
consistent with the corresponding values obtained by directly
analyzing the surface morphology of the sample measured by
atomic force microscopy.

The purpose of this work is to extend the formalism
developed for rough self-affine profiles in Refs. [70,71] so that
it can handle the much more practically relevant situation of
scattering from isotropic, two-dimensional self-affine surfaces.
It should be mentioned that this work was initially motivated
by a question raised by one of our experimental colleagues that
wanted to measure the Hurst exponent and topothesy of a soft
and relaxing fractured clay sample. For this purpose, contact
methods are less than ideal, as the time it takes to perform the
measurements is critical in order to obtain reliable results.

The remaining part of this paper is organized in the fol-
lowing way. In Sec. II, we present the scattering geometry
that we will be concerned with, including an introduction to
self-affine surfaces and their scaling properties. Then relevant
parts of scattering theory are presented in Sec. III. In the
following section, Sec. IV, the analytic expression for the mean
differential reflection coefficient (scattered intensity) is derived
within the Kirchhoff approximation, and the prominent fea-
tures that can be obtained from this expression are discussed.
In Sec. V, we compare the predictions obtained on the basis
of the analytic expression with results obtained by rigorous
computer simulations. Moreover, in this section it is also
discussed how the self-affine parameters, the Hurst exponent
and the topothesy, can be determined from in-plane scattering
measurements and the geometry best suited for doing so. The
conclusion that can be drawn from this study is presented in
Sec. VI.

II. THE SCATTERING GEOMETRY

The scattering system that we consider in this work is
depicted in Fig. 1. It consists of a medium where scalar waves
can propagate without absorption in the region x3 > ζ (x‖),
and a medium that is impenetrable to scalar waves in the
region x3 < ζ (x‖). Here x‖ = (x1,x2,0) represents the position
vector in the plane x3 = 0, and the surface profile function

x1

x2

x3 q
k

qk
φs

φ0

θs
θ0

FIG. 1. Schematics of the scattering geometry that we consider
in this work.
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x3 = ζ (x‖) is assumed to be a single-valued function of x‖
that is differentiable with respect to x1 and x2. It is assumed
to constitute a stochastic, isotropic random process that shows
self-affine scaling and is flat on average, i.e., 〈ζ (x‖)〉 = 0 where
the angle brackets denote an average over the ensemble of
surface realizations.

We start the discussion of self-affinity by considering two
arbitrarily chosen points, x‖ and x′

‖, at which positions the
surface profile takes the values ζ (x‖) and ζ (x′

‖), respectively.
These two points are separated by the distance �x‖ = x′

‖ − x‖
in the mean plane, and the corresponding height difference
between them is ζ (x′

‖) − ζ (x‖), which in the following we
denote �ζ (�x‖). In a statistical sense, and due to the isotropy
of the surface, this height difference will only depend on
�x‖ = |�x‖|. If the distance �x‖ is rescaled to��x‖, where �

is a positive constant, then the corresponding height difference,
�ζ (��x‖), will be statistically equivalent to �H�ζ (�x‖)
with H > 0 if the surface is self-affine and isotropic. Thus
self-affine scaling is defined as statistical invariance under the
transformation (or scaling) [41]

�x‖ → ��x‖, (1a)

�ζ (�x‖) → �H �ζ (�x‖). (1b)

In writing Eq. (1), we have introduced the so-called Hurst
exponent (or roughness exponent), H , that can take values
in the interval 0 < H < 1. This parameter characterizes the
self-affinity of the surface ζ (x‖). It can be shown that if H >

1/2, the height differences are positively correlated a situation
referred to as persistent self-affine surfaces; on the other hand,
if H < 1/2 the height differences are negatively correlated and
one talks about antipersistent self-affine surfaces [41]. Finally,
when H = 1/2 the height differences are uncorrelated and the
process is of the random walk (or Brownian) type.

In what follows, it will be of interest to know the typical
slope of the surface. To this end, we start by defining the
root-mean-square (rms) height difference of the surface over a
lateral distance �x‖ = |�x‖|

σ (�x‖) = 〈[ζ (x‖ + �x‖) − ζ (x‖)]2〉1/2
x‖ . (2)

Here, 〈·〉x‖ signifies an average with respect to x‖. From
the self-affine scaling relation (1), it readily follows that
σ (�x‖) � �−H σ (��x‖) where the symbol � is used to mean
“equivalent in a statistical sense.” Introducing a lateral length
scale—the topothesy—denoted by the symbol � and defined
so that σ (�) ≡ �, one finds that

σ (�x‖) = �1−H �xH
‖ . (3)

As the topothesy decreases, the surface looks flatter at the
macroscopic scale. With Eq. (3), the rms slope of the surface
calculated over a distance �x‖ becomes

s(�x‖) = σ (�x‖)

�x‖
=

(
�

�x‖

)1−H

. (4)

Equation (4) predicts that the rms slope is less than one
for �x‖ > �, it is larger than one for �x‖ < �, while at
�x‖ = � one has s(�) = 1. This result allows the geometrical
interpretation of the topothesy as the length scale in the mean
plane over which the surface has an average slope of one (or

45◦). At least in a box-counting sense, the self-affine surface
is fractal only for (lateral) length scales �x‖ < � [41] but it
is self-affine at any length scale [79]. Therefore, the physical
significance of the topothesy, �, is to distinguish the fractal
region from the nonfractal region of the self-affine surface.

The self-affine scaling in Eq. (1) is often written in the
more compact form ζ (�x‖) � �−H ζ (��x‖), where we recall
that � means “statistically equivalent.” For instance, statisti-
cal equivalence means that the probability density function,
p(�ζ ; �x‖), of finding a height difference �ζ over a lateral
distance �x‖ = |�x‖|, has to satisfy the relation

p(�ζ ; �x‖) = �Hp(�H �ζ ; ��x‖), (5)

which is a consequence of the transformation of random
variables [80]. By assuming that this probability distribution
function (pdf) has a Gaussian form, one finds that it is given as

p(�ζ ; �x‖) = 1√
2π�1−H �xH

‖
exp

⎡
⎣−1

2

(
�ζ

�1−H �xH
‖

)2
⎤
⎦,

(6)

where the expression for σ (�x‖) given by Eq. (3) can be
recognized in the denominators of both the exponent and
the prefactor of the exponential function that appear in this
expression. It is straightforward to show that the form for
p(�ζ ; �x‖) in Eq. (6) satisfies Eq. (5).

It remains to mention that for any physical system, self-
affine scaling cannot be expected to hold for all length scales.
Instead, there has to be a limitation in the range of scales
over which the self-affine scaling exists. To this end, one
introduces a lower and an upper length scale cutoff, denoted
ξ− and ξ+, respectively, outside which such scaling does not
hold. The topothesy � associated with the surface may be in,
or outside, the interval [ξ−,ξ+]. In the latter case, for length
scales �x‖ ∈ [ξ−,ξ+], we deal with a nonfractal self-affine
surface when � < ξ− and a self-affine fractal surface if � > ξ+.
When � ∈ [ξ−,ξ+], the fractal nature of the surface is only
present for �x‖ < �. In the following, we will assume that
� < ξ− since this is the situation for the surfaces that we will
be concerned with. For such a discretized self-affine surface
covering a square region of the x3 = 0 plane of area L × L,
where L is the length of one of its edges, we note that ξ+ = L

and ξ− is limited downward by the discretization interval that
we assumed to be larger than the topothesy.

III. SCATTERING THEORY

The self-affine surface x3 = ζ (x‖) is illuminated from above
by a time-harmonic plane incident scalar wave of angular
frequency ω. In the region x3 > ζ (x‖), the total field is the
sum of an incident and a scattered field

ψ(x,t) = [ψ(x|ω)inc + ψ(x|ω)sc] exp(−iωt), (7a)

where the incident field, characterized by the lateral wave
vector k‖ and wave number k‖ = |k‖|, has the form

ψ(x|ω)inc = exp[ik‖ · x‖ − iα0(k‖)x3], (7b)
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and the scattered field is given by

ψ(x|ω)sc =
∫

d2q‖
(2π )2

R(q‖|k‖) exp[iq‖ · x‖ + iα0(q‖)x3].

(7c)

In writing Eq. (7), we have introduced the scattering am-
plitudes R(q‖|k‖) from incident lateral wave vector k‖ into
scattered lateral wave vectors q‖, and defined

α0(q‖) =
⎧⎨
⎩
√

ω2

c2 − q2
‖ , q‖ � ω/c

i

√
q2

‖ − ω2

c2 , q‖ > ω/c
, (8)

where c denotes the velocity of propagation of the scalar wave
[in the region x3 > ζ (x‖)]. The quantity α0(q‖) represents the
third component of the wave vector q when the length of its
parallel component is q‖. The function α0(q‖) is defined in such
a way that the dispersion relation is satisfied for any value of
q‖. Moreover, it should be pointed out that the form of the
scattered field (7c) has also been subjected to an outgoing
radiation condition at infinity (Sommerfeld radiation condition
[81,82]).

The scattering amplitudes, R(q‖|k‖), that appear in Eq. (7c)
are important quantities for the following discussion since they
are directly related to physical observables. Our prime quantity
of interest of this kind is the mean differential reflection
coefficient (mean DRC), defined as [83, Sec. 3.1]〈

∂R(q‖|k‖)

∂
s

〉
= 1

S

( ω

2πc

)2 cos2 θs

cos θ0
〈|R(q‖|k‖)|2〉, (9)

where S is the area of the mean plane covered by the rough
surface, and the lateral wave vectors, k‖ and q‖, are expressed
in terms of the angles of incidence (θ0,φ0) [See Fig. 1]

k‖ = ω

c
sin θ0(cos φ0, sin φ0,0) (10a)

and the angles of scattering (θs,φs) [when |q‖| < ω/c]

q‖ = ω

c
sin θs(cos φs, sin φs,0). (10b)

Moreover, in the radiative region, one can infer from Eqs. (8)
and (10) that

α0(k‖) = ω

c
cos θ0, k‖ < ω/c, (11a)

α0(q‖) = ω

c
cos θs, q‖ < ω/c. (11b)

The DRC is defined such that [∂R(q‖|k‖)/∂
s]d
 s is the
fraction of the total time-averaged energy flux in an incident
field, of lateral wave vector k‖, that is scattered into fields,
of lateral wave vector q‖, within a solid angle d
 s about
the scattering direction defined by the polar and azimuthal
scattering angles (θs,φs). Since we are dealing with randomly
rough surfaces, it is the average of the DRC over an ensemble
of surface realizations, denoted 〈·〉, that we are interested in,
and this is what leads to expression (9).

The scattering amplitudes are determined by imposing
proper boundary conditions (BCs) on the rough surface x3 =
ζ (x‖). For an impenetrable substrate, two boundary conditions
are of particular interest. The first is the Dirichlet boundary

condition (or first-type BC) that is defined by requiring the
total field on the surface to vanish:

ψ(x|ω)|x3=ζ (x‖) = 0. (12a)

The second is the Neumann boundary condition (or second-
type BC) which states that the normal derivative of the total
field at the surface should vanish

∂nψ(x|ω)|x3=ζ (x‖) = 0, (12b)

where ∂n = n̂(x‖) · ∇ denotes the normal derivative of the
surface at x‖ and the unit normal vector at this lateral position
is given by

n̂(x‖) = −x̂1 ∂1ζ (x‖) − x̂2 ∂2ζ (x‖) + x̂3√
1 + [∇ζ (x‖)]2

, (13)

where ∂i = ∂/∂xi with i = 1,2, and a caret over a vector
indicates that it is a unit vector.

The scattering problem defined by Eqs. (7) and (12) can
be solved either rigorously, as done in Refs. [33,35,84], or by
adapting various approximations [25,83]. For instance, as an
example of the latter case, within the Kirchhoff approximation
the scattering amplitude is given as [83]

R(q‖|k‖) = ∓ (ω/c)2 + α0(q‖)α0(k‖) − q‖ · k‖
α0(q‖)[α0(q‖) + α0(k‖)]

×
∫

d2x‖ exp{−i(q‖ − k‖) · x‖

−i[α0(q‖) + α0(k‖)]ζ (x‖)}, (14)

where the upper and lower signs correspond to the Dirichlet
and Neumann boundary conditions, respectively. Thus, within
the Kirchhoff approximation, the scattering from Dirichlet and
Neumann surfaces should give rise to the same mean DRC
since this quantity, like any intensity, depends on the absolute
square of the scattering amplitude. However, in general it is
not true that the Dirichlet and Neumann surfaces scatter scalar
waves in the same fashion. To realize this, it suffices to note
that rough Neumann surfaces can support surface waves [85],
while Dirichlet surfaces cannot.

IV. THE MEAN DRC WITHIN THE KIRCHHOFF
APPROXIMATION

If the expression for the scattering amplitude within the
Kirchhoff approximation, Eq. (14), is substituted into the
expression for the mean DRC, Eq. (9), one obtains

〈
∂R(q‖|k‖)

∂
s

〉
= ω/c

α0(k‖)

[(ω/c)2 + α0(q‖)α0(k‖) − q‖ · k‖]2

[α0(q‖) + α0(k‖)]2

×L(q‖|k‖), (15a)

where

L(q‖|k‖)

= 1

(2π )2S

∫
d2x‖

∫
d2x ′

‖ exp[−i(q‖ − k‖) · (x‖ − x′
‖)]

×〈exp{−i[α0(q‖) + α0(k‖)][ζ (x‖) − ζ (x′
‖)]}〉, (15b)
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and the results in Eq. (11) have been used. The average over
the surface roughness that appears in Eq. (15b) is expressed in
terms of �ζ (�x‖) = ζ (x‖) − ζ (x′

‖). For a self-affine surface,
the pdf of these height differences is given by Eq. (6) and a
direct calculation that involves the evaluation of a Gaussian
integral results in

〈exp{−i[α0(q‖) + α0(k‖)][ζ (x‖) − ζ (x′
‖)]}〉

= exp
[− 1

2 [α0(q‖) + α0(k‖)]2�2−2H |x‖ − x′
‖|2H

]
. (16)

As expected, this result shows that the average over an
ensemble of realizations of the self-affine surface introduces a
dependence on the topothesy � and the Hurst exponent H that
characterize the amplitude and correlation, respectively, of the
self-affine surface x3 = ζ (x‖). On combining Eqs. (15b) and
(16) and making the change of variable u‖ = x‖ − x′

‖ in the
first integral of Eq. (15b), one obtains

L(q‖|k‖) = 1

(2π )2

∫
d2u‖ exp[−i(q‖ − k‖) · u‖]

× exp

[
−1

2
[α0(q‖) + α0(k‖)]2�2−2H |u‖|2H

]
,

(17)

where it has been used that the second integral in Eq. (15b)
simply evaluates to S.

The function L(q‖|k‖) is, in fact, a probability distribution
function. It is related to the isotropic bivariate Lévy distribution
of stability parameter (or index) α that is centered at zero, and
it is defined by [86–89]

Lα(Q‖; γ ) = 1

(2π )2

∫
d2v‖ exp(−iQ‖ · v‖) exp(−γ |v‖|α),

(18)

with 0 < α � 2 and γ > 0. The parameter γ is called the
scale parameter, and it controls the width of the distribution.
It should be noted that in the mathematics and statistics
literature, the probability distribution function Lα(Q‖; γ ) is
more commonly referred to as the isotropic bivariate α-stable
distribution. Only for two values of the stability parameter α

can the Lévy distribution (18) be expressed in closed form by
elementary functions. The first of those values are α = 2, in
which case the resulting distribution is the isotropic bivariate
Gaussian distribution of standard deviation

√
2γ . The second

value is α = 1, which corresponds to the isotropic bivariate
Cauchy-Lorentz distribution (of scale parameter γ ). For all
other values of α ∈ (0,2], the probability distribution function
(18) has to be evaluated numerically, in which case Eq. (A1)
is useful. The appendix gives additional details and properties
of the Lévy distribution that will be useful for this work. It
should be noted that only when α = 2 is the standard deviation
of the Lévy distribution finite; in all other cases 0 < α < 2 it
is infinite.

After combining Eqs. (17) and (18), and substituting the
resulting expression into Eq. (15), we find that the mean differ-
ential reflection coefficient within the Kirchhoff approximation
can be written in terms of the Lévy distribution of stability

parameter, 2H , as〈
∂R(q‖|k‖)

∂
s

〉

= (ω/c)[(ω/c)2 + α0(q‖)α0(k‖) − q‖ · k‖]2

α0(k‖)[α0(q‖) + α0(k‖)]2

×L2H

(
q‖ − k‖;

1

2
[α0(q‖) + α0(k‖)]2�2−2H

)
. (19a)

Here the quantities k‖, α0(k‖), q‖, and α0(q‖) should be under-
stood in terms of the angles of incidence (θ0,φ0) and the angles
of scattering (θs,φs) as given by Eqs. (10) and (11).

For the later discussion, it will be useful to express the Lévy
distribution that appears in Eq. (19a) in terms of a scaling
parameter that is independent of both the Hurst exponent and
the topothesy that characterize the self-affinity of the rough
surface. This is done with the aid of Eq. (A2) and it is found
that the mean DRC alternatively can be expressed as〈

∂R(q‖|k‖)

∂
s

〉

= (ω/c)[(ω/c)2 + α0(q‖)α0(k‖) − q‖ · k‖]2

α0(k‖)[α0(q‖) + α0(k‖)](2+2H )/H �(2−2H )/H

×L2H

(
q‖ − k‖

[α0(q‖) + α0(k‖)]1/H �(1−H )/H
;

1

2

)
. (19b)

The advantage of this form over the form in Eq. (19a) is that
for any self-affine surface the scale parameter of the Lévy
distribution that appears in Eq. (19b) is constant and therefore
independent of the parameters of the self-affine surface. More-
over, with γ = 1/2 the Lévy distribution L2(x; γ ) equals the
standard Gaussian distribution of zero mean and one standard
deviation.

Equation (19) represents a generalization of the results
reported previously for the angular distribution for the intensity
scattered from a one-dimensional self-affine randomly rough
surface [70,71,73]. It is worth noticing that for the one-
dimensional case it was also found that within the Kirchhoff
approximation the mean differential reflection coefficient can
be expressed in terms of a symmetric (univariate) Lévy distri-
bution of stability parameter 2H .

Since the substrate that we consider is impenetrable to the
incident scalar wave, all energy incident on the self-affine
surface has to be scattered away from it. This represents
an energy conservation condition that can be expressed
mathematically as

U (k‖) ≡
∫

d
 s

〈
∂R(q‖|k‖)/∂
s

〉 = 1. (20)

However, the expression in Eq. (19) for the mean DRC is
obtained on the basis of the Kirchhoff approximation, and
hence, it does not necessarily respect the condition (20) for
all self-affine surface parameters and angles of incidence. To
verify for which combination of values of H, �, and θ0 the
Kirchhoff approximation and therefore Eq. (19) are valid, the
energy conservation condition in Eq. (20) can be used.

To aid the subsequent discussion, it will be useful to have
available simplified expressions for the intensity distribution
(19) around the specular direction q‖ = k‖ and in the diffuse
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tails of the distribution far away from this direction. The former
expression is obtained by first introducing q‖ = k‖ + Q‖ into
Eq. (19), where Q‖ is the lateral wave-vector transfer, and then

using the small argument expansion of the Lévy distribution
(A3) to expand the resulting expression to orderQ2

‖. In this way,
a lengthy but in principle straightforward calculation results in

〈
∂R(k‖ + Q‖|k‖)

∂
s

〉
≈

〈
∂R(k‖|k‖)

∂
s

〉 [
1 + 1 − H

H

k‖ · Q‖
α2

0(k‖)
+ 6H 2 + 9H + 4

H 2

(
k‖ · Q‖
α2

0(k‖)

)2

− 1

2H

Q2
‖

α2
0(k‖)

{
1 + H

�(2/H )

�(1/H )

2−(1+H )/H

[α0(k‖)�](2−2H )/H

}]
,

Q‖�
[α0(k‖)�]1/H

� 1, (21)

where the mean DRC at the specular direction that appears in Eq. (21) is defined as〈
∂R(k‖|k‖)

∂
s

〉
= 2−(1+2H )/H �(1 + 1/H )

π

ω
c
�

[α0(k‖)�](2−H )/H
, (22)

and obtained after using the identity �(1/H )/H = �(1 + 1/H ). In the following, our main concern will be surface roughness for
which �/λ � 1. If we disregard the possibility of gracing incidence, which is of less practical importance, the condition �/λ � 1
is equivalent to α0(k‖)� � 1, in which case the dominating Q2

‖ term of Eq. (21) is the last term in the curly brackets, so that〈
∂R(k‖ + Q‖|k‖)

∂
s

〉
≈

〈
∂R(k‖|k‖)

∂
s

〉[
1 + 1 − H

H

k‖ · Q‖
α2

0(k‖)
− �(1/2 + 1/H )

23−1/H
√

π

Q2
‖

α2
0(k‖)[α0(k‖)�](2−2H )/H

]
. (23)

In writing this expression, we have used the identity
�(2/H )/�(1/H ) = 2(2−H )/H �(1/2 + 1/H )/

√
π , known as

the duplication formula [90, Ch. 5]. Expression (23) can be
used to obtain an estimate for the full width at half maximum
(FWHM) value of the peak, and one finds

W (k‖,H,�) =
√

24−1/H
√

π

�(1/2 + 1/H )
α0(k‖)[α0(k‖)�](1−H )/H .

(24)

It should be noted that the nontrivial dependencies on the
self-affine parameters that are present in the expressions in
Eqs. (22) and (24) can in fact be deduced from simple scaling
arguments. A detailed explanation of how this can be done
for one-dimensional self-affine surfaces has already been
presented in Ref. [71], and since these arguments also are valid
for the scattering from two-dimensional surfaces, we will here
only present the main arguments. The loss of phase coherence
(or “dephasing”) of the incident beam when it is scattered
by a rough surface is due to the competition between two
different effects. From the arguments of the two exponential
functions that are present in Eq. (15b) one finds them to be
(i) the scattering away from the specular direction, Q‖ · �x‖,
and (ii) the scattering from different heights at the surface,
Q3�ζ (�x‖). Here a wave-vector transfer has been defined as
Q = q − k with the incident and scattered wave vectors given
as k = k‖ − x̂3α(k‖) and q = q‖ + x̂3α(q‖), respectively. The
two competing effects can be characterized by the two length
scales χ‖ and χ3 that are defined, respectively, via Q‖χ‖ = 2π

and Q3�σ (χ3) = 2π . The transition between the specular
regime where χ3/χ‖ � 1 and the diffuse regime for which
χ3/χ‖ � 1 takes place when χ3/χ‖ = 1. The full width W

of the peak in the specular direction is determined from the
condition χ3/χ‖ = 1 and a direct calculation that uses Eq. (3)
leads to

W ∼ 2Q‖ ∝ α0(k‖)[α0(k‖)�](1−H )/H , (25)

which has the same scaling as Eq. (24). The amplitude of
the mean DRC in the specular direction follows from the en-
ergy conservation condition

∫
d
 s〈∂R(q‖|k‖/∂
s〉 = 1 [see

Eq. (20)]. If it is assumed that most of the intensity scattered by
the rough surface ends up inside the region |q‖ − k‖| < W/2,
then after using the relation d2q‖ = (ω/c)α0(q‖)d
s one finds〈

∂R(k‖|k‖)

∂
s

〉
∼

ω
c
α0(k‖)

π
(

W
2

)2 ∝
ω
c
�

[α0(k‖)�](2−H )/H
, (26)

which has the same scaling as Eq. (22).
The behavior of the diffuse tails of the scattered intensity

distribution (19) is obtained from the large argument asymp-
totic expansion of the Lévy distribution, Eq. (A6), with the
result that

〈
∂R(q‖|k‖)

∂
s

〉
� m(q‖|k‖)

[
�(1 + H )

π

]2 sin (πH )

|q‖ − k‖|2+2H
,

∣∣q‖ − k‖
∣∣

ω
c

[
ω
c
�
](1−H )/H � 1, (27a)

where a geometric factor has been defined by

m(q‖|k‖) = ω/c

α0(k‖) [(ω/c)2 + α0(q‖)α0(k‖) − q‖ · k‖]2.

(27b)

Also the behavior 〈∂R(q‖|k‖)/∂
s〉/m(q‖|k‖) ∼ |q‖ −
k‖|−2−2H can be obtained from scaling analysis. This can be
done by noting that the power spectrum of a two-dimensional
self-affine surface satisfies g(k‖) ∼ k−2−2H

‖ [9] and use it to
repeat the arguments of Ref. [71, Sec. 4].

Figure 2 presents as solid lines the in-plane dependence
of the mean DRC, Eq. (19), under the assumption that waves
were incident at polar angles θ0 = 0◦ and θ0 = 25◦ onto a self-
affine surface that was characterized by the parameters H =
0.70 and � = 10−5λ. These results display no well-defined
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FIG. 2. The mean DRCs calculated on the basis of Eq. (19) [“Full
solution”]; Eq. (23) [“Specular expansion”]; and Eq. (27) [“Diffuse
expansion”] for the polar angles of incidence θ0 = 0◦ and 25◦. The
self-affine surface parameters were H = 0.70 and � = 10−5λ.

specular peaks in the scattered intensity distributions that for
plane incident waves should be proportional to δ(q‖ − k‖),
where k‖ is the lateral wave vector of the incident wave.
Instead one finds that the self-affine surface gives rise to fully
diffuse, wide-angular intensity distributions that are centered
around the specular direction. Furthermore, to test the quality
of the specular and diffuse expansions, Eqs. (23) and (27),
respectively, we in Fig. 2 also present these expansions. It
is found that the quality of both these expansions is rather
good; in particular, this is the case for the diffuse expansion.
The specular expansion is accurate only within a rather narrow
region around the specular directions; including higher order
terms into the expansion (23) may have extended the region of
validity, but here we opted for not doing so. It should be noted
that the quality of the expansions are good for any value of the
topothesy (results not shown).

Before proceeding, one ought to comment on how the mean
DRC data presented in Fig. 2 (and later figures) were obtained
from Eq. (19). The challenging part of such calculations is
the numerical evaluation of the Lévy distribution defined in
Eq. (18), or equivalent, by the Hankel transform form (A1).
The Bessel function J0(Q‖v‖) that is present in the integral of
the latter equation has an oscillatory character that may lead to
loss of numerical significance in the calculation of the integral
if not treated properly. To reduce this effect, we performed the
calculation in the following way. First, we calculated the zeros
of the Bessel function J0. Then the integration over the original
domain was converted into a sum of definite integrals In

performed between the zeros of the Bessel function. These def-
inite integrals were evaluated using a global adaptive 21-point
Gauss-Kronrod quadrature as implemented in the routine QAGS

from QUADPACK [91]. To obtain the final result for the integral
present in Eq. (A1), Wynn’s ε method [92,93] was applied to
the sum over In for the purpose of improving the convergence
rate of the sum (or series). For this purpose, the routine
QELG from QUADPACK was used. Performing the numerical
calculations of the Lévy distribution in the manner outlined
above was found to produce reliable results for all the values
of the Hurst exponent and the topothesy that we considered.

V. RESULTS AND DISCUSSION

This section starts with a presentation and discussion of
the properties and features of the expression in Eq. (19) for
the mean DRC obtained within the Kirchhoff approximation
[Sec. V A]. Next, the prediction of this expression is compared
to what can be obtained for the same quantity from rigorous
computer simulations [Sec. V B]. Finally, in Sec. V C we dis-
cuss and give several examples of how the analytic expression
for the mean DRC in Eq. (19) can be used together with
scattering data for the purpose of reconstructing the self-affine
parameters of the surface.

A. The mean DRC within the Kirchhoff approximation, Eq. (19)

In Fig. 3, we present the in-plane and out-of-plane depen-
dencies of the mean DRCs obtained on the basis of Eq. (19).
These results assumed three values of the Hurst exponent,
H = 0.30, 0.50, and 0.70, and polar angles of incidence
θ0 = 0◦ and 50◦. Without loss of generality, these results
were obtained under the assumption that φ0 = 0◦ so the x1x3

plane corresponds to the plane of incidence. The value of the
topothesy assumed in producing these results was � = 10−5λ,
where λ = 2πc/ω denotes the wavelength of the incident
plane wave. Figure 4 presents the in-plane and out-of-plane
dependencies of the mean DRCs for five values of the topothesy
in the range from 10−6λ to 10−2λ when the value of the
Hurst exponent is H = 0.70. The results in Figs. 3 and 4
show that the scattered intensity distributions are all centered
around the specular direction, as expected, which is indicated
by the vertical dashed lines in these figures. However, the
most striking features of the results presented in Figs. 3 and
4 are the strong dependencies of the amplitudes and widths
of the scattered intensity distributions on the values of the
Hurst exponent and the topothesy—that is, on the parameters
characterizing the self-affine surface. For instance, for the
situation plotted in Fig. 3(a), one observes that the mean DRC
curve corresponding to H = 0.30 is 16 orders of magnitude
higher at the specular direction than the corresponding mean
DRC curve for H = 0.70 for the same direction. A general
trend is found in the results reported in Figs. 3 and 4; on
increasing the value of the Hurst exponent and/or the topothesy,
the amplitude of the peak will decrease while its width will
increase. At the same time, the scattered intensity in the
tails of the distribution will increase. For normal incidence,
the out-of-plane [φs = ±90◦] scattered intensity distributions
are identical to the corresponding in-plane distributions since
in this case the distributions are rotational symmetric about
the specular direction [Figs. 3(a) and 4(a)]. For non-normal
incidence [θ0 �= 0◦], however, this is no longer the case. In
Figs. 3(c) and 4(c), we present the out-of-plane dependence
of the mean DRCs for a selection of values of the self-affine
parameters H and �. As is to be expected, these results show
a symmetry with respect to the plane of incidence and the
intensity of the scattered wave is reduced for directions away
from θs = 0◦.

The features observed in Figs. 3 and 4 concerning the
dependence of the mean DRC around the specular direction
and how they depend on the self-affine parameters H and �

can be understood theoretically in terms of the expressions
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FIG. 3. The in-plane or out-of-plane angular dependence of the mean DRC of the scattered wave for self-affine surfaces characterized
by Hurst exponents H = 0.30, 0.50, and 0.70 and fixed topothesy � = 10−5λ, where λ denotes the wavelength of the incident plane wave.
The results were obtained on the basis of the analytic expression in Eq. (19). The subplots correspond to (a) the polar angle of incidence
θ0 = 0◦ (in-plane and out-of-plane scattering coincide here due to the assumed isotropy of the surface); (b) θ0 = 50◦, in-plane scattering; and
(c) θ0 = 50◦, out-of-plane scattering [φs = φ0 ± 90◦]. In all cases, the azimuthal angle of incidence was φ0 = 0◦. The vertical dashed lines in
Figs. 3(a) and 3(b) indicate the specular direction. The open symbols, added for reasons of clarity, represent the value of the mean DRCs at the
specular directions. Note the logarithmic scale used on the second axis.

in Eqs. (22) and (24). From a more physical perspective, the
behavior around the specular direction of the mean DRC can
alternatively be understood in terms of the rms roughness of
the surface; for a surface of edges L, the global rms roughness
of the surface is σ (L) = �(L/�)H , according to Eq. (3). For the
situation we are dealing with, L/� � 1, so the rms roughness
of the surface will decrease with decreasing values of H and
�. In other words, decreasing the values of the self-affine

parameters H and � will result in a surface that scatters the
wave in a more “mirror-like” fashion. This is consistent with
what is observed from the results of Figs. 3 and 4.

In the results presented in Figs. 3 and 4, the inverse power-
law tail of the scattered intensity distribution predicted by
Eq. (27) is not very apparent. To this end, we in Fig. 5 present
the in-plane mean DRCs, normalized by the prefactor m(q‖|k‖)
defined in Eq. (27b), as functions of |q‖ − k‖|/(ω/c) for the

FIG. 4. The in-plane or out-of-plane angular dependence of the mean DRC of the scattered wave for self-affine surfaces characterized by
Hurst exponent H = 0.70 and different values of the topothesy �. The results were obtained on the basis of the analytic expression in Eq. (19).
The subplots correspond to (a) the polar angle of incidence θ0 = 0◦ (in-plane and out-of-plane scattering coincide here due to the assumed
isotropy of the surface); (b) θ0 = 50◦, in-plane scattering; and (c) θ0 = 50◦, out-of-plane scattering [φs = φ0 ± 90◦]. In all cases, the azimuthal
angle of incidence was φ0 = 0◦. The vertical dashed lines in the top two subfigures correspond to the specular direction. Note the logarithmic
scale used on the second axis.
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FIG. 5. The scaled in-plane mean DRC, 〈∂R(q‖|k‖)/∂
s〉 ×
m−1(q‖|k‖), defined by Eqs. (19) and (27b), as functions of |q‖ −
k‖|/(ω/c) using a double logarithmic scale. The self-affine parameters
were assumed to be H = 0.70, � = 10−6λ (blue line) and � = 10−5λ

(orange line) and the polar angle of incidence was θ0 = 50◦. The
dashed lines represent inverse power-law function scaling as |q‖ −
k‖|−2−2H [see Eq. (27a)] for the two values of the Hurst exponent
H = 0.70 and H = 0.50 as indicated in the figure.

polar angle of incidence θ0 = 50◦ and under the assumption
that H = 0.70 and � = 10−6λ or � = 10−5λ. From the results
presented in this figure, the inverse power-law behavior |q‖ −
k‖|−(2+2H ) of the scattered intensity is readily observed in the
tail of the distributions. One should in particular note how
different values of the Hurst exponent affects the fatness of
the tail of the intensity distribution; this is exemplified in
Fig. 5 where the dashed lines correspond to the behavior of the
tails of 〈∂R/∂
s〉/m(q‖|k‖) for Hurst exponents H = 0.70
and H = 0.50. As will be demonstrated explicitly below, this
dependence can be used to extract the Hurst exponent from
scattering data. The results of Figs. 4 and 5, as well as the
expression in Eq. (27), also show that the topothesy of the
self-affine surface alters the amplitude of the inverse power
law but not its tail exponent; in particular, Eq. (27) predicts
that the amplitude of the tail should scale with the topothesy
as �2−2H .

Until now, we have presented either in-plane or out-of-plane
cuts of the scattered intensity distributions. It is instructive
to also have available the full angular intensity distribution
of the scattered intensity. Therefore, in Fig. 6 we present
contour plots of the angular dependence of the logarithm of
the mean DRCs for Hurst exponents H ∈ {0.70,0.50,0.30}
[rows of subfigures in Fig. 6], topothesy � = 10−5λ, and a set
of angles of incidence θ0 ∈ {0◦,25◦,50◦} [columns in Fig. 6].
The results of this figure show, as is to be expected, that the
scattered intensity distributions are rotational symmetric when
the wave is incident normally onto the self-affine surface. For
non-normal incidence, θ0 �= 0◦, only sufficiently close to the
specular direction do we observe an approximate rotational
symmetry around this direction. However, as we move away
from the specular direction the rotation symmetry about the
specular direction is lost, while a mirror symmetry with respect
to the plane-of-incidence, the q1q3 plane, remains.

In the studies of wave scattering from one-dimensional
self-affine surfaces [71], it was argued that the rms-slope
over a wavelength s(λ), Eq. (4), potentially is a more rele-
vant parameter to characterize the angular-dependent intensity
scattered from self-affine surfaces than the topothesy; this is
in particular the case when comparing the scattering from
surfaces of different Hurst exponents. As the reader can
confirm, the expressions in, for instance, Eqs. (19) and (24) can
readily be expressed in terms of s(λ)—the average slope over
a lateral distance that equals the wavelength of the incident
wave—as was the case for the corresponding result for the
one-dimensional self-affine surfaces. In Fig. 7, we compare
the angular-dependent in-plane and out-of-plane variation of
the mean DRCs for self-affine surfaces characterized by the
rms slope s(λ) = 0.0631 and different Hurst exponents. These
results show that when the average slope of the surface is
constant, significantly less variation with Hurst exponent is
observed for the intensity scattered into the specular direction,
as compared to, for instance, the results depicted in Fig. 3
for which the topothesy was kept constant. This indicates, as
was pointed out for one-dimensional self-affine surfaces in
Ref. [71], that the rms slope over a wavelength is a relevant
quantity for characterizing the scattered intensity from a self-
affine surface.

B. Comparison to rigorous computer simulation results

The analytic expression for the mean DRC in Eq. (19) was
derived within the Kirchhoff approximation, which is a single
scattering approximation, and under the assumption that the
incident wave is a plane wave. We will now compare the
predictions from this expression to the results that can be
obtained from rigorous computer simulations which take all
multiple scattering effects into account. Such simulations were
performed on the basis of Green’s second integral identity
by the method detailed in Refs. [33–35,84]. Because of the
restrictions on computer resources, like computer memory
and CPU time, we were unfortunately not able to perform
simulations for plane-wave illumination which would require
the surface area covered by the rough surface to be large to
suppress diffraction effects from the edges of the surface.
Instead, an incident finite-sized Gaussian beam was used when
performing the rigorous computations [35,84] and its use
reduces, and potentially eliminates, edge effects. However, the
use of an incident finite beam has the undesired side effect that
the scattered intensity at, and around, the specular direction will
differ from what is obtained when the surface is illuminated
by a plane incident wave. An incident Gaussian beam can be
modeled as a superposition of plane waves of amplitudes that
gradually go to zero for directions away from the intended
propagation direction of the beam; see Refs. [35,84] for details.
A sample that produces a scattered intensity distribution
displaying a well-defined peak in the specular direction when
illuminated by a plane wave is therefore expected to produce
a less intense and broader peak around the same direction
when illuminated by a Gaussian beam of the same polar
angle of incidence. That such behavior indeed is correct is
illustrated in Fig. 8, where the in-plane dependencies of the
mean DRCs are presented for the polar angles of incidence
θ0 = 0◦ and θ0 = 50◦ using the analytic expression (19) that
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FIG. 6. The full angular distribution of the mean DRC of the scattered wave based on Eq. (19) for self-affine surfaces for a series of Hurst
exponents and incident angles. The topothesy is fixed at �/λ = 10−5 where λ denotes the wavelength of the incident plane wave. Row (a)
corresponds to H = 0.70, row (b) to H = 0.50, and row (c) to H = 0.30. The polar angle of incidence is constant in each column, and is
θ0 = 0◦, 25◦, and 50◦ for each column from left to right. Notice the significant difference in values of the color scale between the rows. The log
symbol used in the labels denotes the base 10 logarithm.

assumes a plane incident wave (solid lines) and simulation
results performed on the basis of the Kirchhoff approximation
using an incident Gaussian beam of width w/λ ∈ {4,10,32}
(open symbols). From the different results presented in Fig. 8,
it is observed that a plane incident wave produce the most
intense and the most narrow peak in the specular direction.
On the other hand, the most narrow incident Gaussian beam
(w = 4λ) causes the broadest and less intense peak in the
specular direction. As the width of the incident Gaussian beam
is increased, the scattered intensity distribution that it gives rise
to starts to approach the distribution produced by an incident
plane wave. In particular, it is noted from the results in Fig. 8
that the computer simulation result produced assuming an
incident Gaussian beam of width w = 32λ and surface edges
L = 96λ is rather close to the plane wave prediction; at least
this was the case for the self-affine parameters assumed in
producing this result. For the relevant practical applications
that we are concerned about, the width of the incident beam
will be much larger than its wavelength, w � λ. In such cases,
the assumption of a plane incident wave should not represent
any serious restriction. It should be mentioned that we could
have pursued a derivation of an analytic expression similar to
Eq. (19) but which assumes a Gaussian beam as the source of

illumination. Here we have not done so for several reasons.
First, for most practically relevant cases a plane incident wave
is a fair assumption. Second, the mathematical expression
obtained for the mean DRC using a Gaussian beam would have
been significantly more complicated without any significant
benefit.

We now turn to a comparison of the results obtained from the
single scattering results in Eq. (19) and the results that can be
obtained from rigorous computer simulations for the scattered
intensity. The first set of rigorous computer simulation results
that we will present are for the wave scattering from self-affine
Dirichlet surfaces, and the obtained results are present in
Fig. 9 as solid lines. This figure shows the in-plane angular
dependence of the mean DRCs as functions of the scattering
angle θs for self-affine surfaces characterized by H = 0.70 and
�/λ ∈ {10−4,10−5,10−6}. In producing these and all remaining
simulation results in this work, the width of the incident
Gaussian beam was assumed to be w = 10λ, if nothing is
said to indicate otherwise; the value of the edges of the
surfaces was L = 3w; and the spatial discretization length
was assumed to be �x‖ = λ/7. The reported results were
obtained as an averaging over Nζ = 5000 surface realizations.
These simulation results satisfied energy conservation within
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FIG. 7. The in-plane or out-of-plane dependence of the mean DRC of the scattered wave for self-affine surfaces characterized by the
same slope s(λ) = 0.0631. The results were obtained on the basis of the analytic expression in Eq. (19). The subplots correspond to the polar
angle of incidence (a) θ0 = 0◦ (in-plane and out-of-plane scattering coincide here due to the assumed isotropy of the surface); (b) θ0 = 50◦,
in-plane scattering; and (c) θ0 = 50◦, out-of-plane scattering. The vertical dashed lines in panels (a) and (b) correspond to the specular direction.
Note the logarithmic scale used on the second axis.

an error of no greater than 0.1%. The prediction based on
the analytic expression (19), assuming the same self-affine
parameters used in performing the rigorous simulations, are
displayed in Fig. 9 as dashed lines. The results in Fig. 9
reveal a rather good agreement between the analytic results
(19) and the rigorous computer simulation results. The largest
discrepancy between these two sets of results are found for
the largest scattering angles for which the analytic expression,
for a Dirichlet surface, overestimates the value of the scattered
intensity. Furthermore, increasing the value of the topothesy
also increases the discrepancy, but the increase is not dramatic.
It should also be noted from Fig. 9 that increasing the topothesy
of the surface seems to produce a better agreement between
the two sets of results around the specular direction. This
we believe is a result of the increased diffusive nature of the
scattered intensity distributions obtained for self-affine sur-
faces of increasing value of the topothesy. The fair agreement
between the two sets of results depicted in Fig. 9 indicates that
multiple scattering effects do not play any significant role for
the self-affine parameters assumed in obtaining these results.

Figure 10 presents the in-plane and out-of-plane intensity
distributions for waves scattered from self-affine Neumann
surfaces. With the exception of the difference in boundary
condition that applies on the rough surface, this is exactly the
same scattering system for which the results were presented for
Dirichlet surfaces in Fig. 9. We recall that within the Kirchhoff
approximation the scattering amplitude for the Neumann and
the corresponding Dirichlet system only differ by a sign so
that the mean DRCs for the two problems are the same; see
Eq. (19). However, when the scattering amplitudes are obtained
by rigorous means this is no longer the case. By comparing the
simulation results presented in Figs. 9 and 10 it is observed
that qualitatively the results obtained for the two systems
are still rather similar. However, a closer inspection of these
results reveals that the scattered intensity in the tails of the
intensity distribution is different. While the analytic expression

for the mean DRC (19) overestimated the scattered intensity
in the tails of the distribution for Dirichlet surfaces, the same
expression underestimates the intensity for the corresponding
Neumann surfaces.

We have also performed rigorous simulation for self-affine
surfaces of constant slope over a wavelength, s(λ). The results
are presented for the Dirichlet boundary condition in Fig. 11
for slope s(λ) = 0.0631 and the same values for the self-
affine parameter assumed in producing Fig 7. Reasonable
quantitative agreement is found between the corresponding
results from Figs. 7 and 11.

C. Extraction of self-affine parameters from measured
scattering data

After having established that the expression in Eq. (19) well
represents the intensity scattered from a self-affine surface,
we now turn to how it in combination with the results of
a scattering experiment performed on a self-affine surface
can be used to determine the Hurst exponent and potentially
the topothesy of the surface. From the preceding discussion,
it should be apparent that the in-plane dependence of the
scattered intensity is probably best suited for such inversions.
Hence, in the following, it will be assumed that the scattering
measurements are performed for the in-plane configuration for
one or several angles of incidence. Under this assumption,
one should be able to extract the Hurst exponent from the in-
plane dependence of 〈∂R(q‖|k‖)/∂
s〉/m(q‖|k‖) as a function
of the lateral wave vector transfer |q‖ − k‖|, in particular,
from the tail of the distribution; see Fig. 5 and Eq. (27).
In Fig. 12, we present rigorous computer simulation results
(open symbols) for the intensity scattered from self-affine
Dirichlet and Neumann surfaces characterized by the Hurst
exponent H = 0.70 and two values of the topothesy � = 10−6λ

[Figs. 12(a) and 12(b)] and � = 10−5λ [Figs. 12(c) and 12(d)].
These simulation results were obtained by the use of a Gaussian
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FIG. 8. Comparison of the in-plane angular dependence of the
mean DRCs obtained on the basis of the Kirchhoff approximation
using an incident plane wave, Eq. (19), or a Gaussian beam of width
w/λ ∈ {4,10,32}, for a self-affine surface of parameters H = 0.70
and � = 10−6λ. The polar angles of incidence were (a) θ0 = 0◦ and (b)
θ0 = 50◦. The value of the edges of the surfaces assumed in obtaining
these results was L = 3w.

beam of width w = 10λ and the polar angle of incidence was
θ0 = 0◦ [Figs. 12(a) and 12(c)] and θ0 = 50◦ [Figs. 12(b) and
12(d)]. In addition, we present two sets of results obtained
on the basis of the Kirchhoff approximation. The first set of
results was generated from Eq. (19) under the assumption of
a plane incident wave and is shown as dashed black lines
in Fig. 12. The other set, depicted as solid orange lines in
Fig. 12, was calculated numerically, again within the Kirchhoff
approximation, by assuming the same incident Gaussian beam
as was used to generate the rigorous results presented in the
same figure. It is observed from Fig. 12 that the Dirichlet
and Neumann results are rather similar except for the largest
wave-vector transfers that correspond to angles of scattering
that are close to grazing. Moreover, very good agreement in the
central part of the scattered intensity distributions is observed
between the data sets generated by the rigorous simulations and
those obtained on the basis of the Kirchhoff approximation
assuming the Gaussian incident beam. In particular, these

results display an inverse power-law behavior of the form
predicted by Eq. (27) and its use for the extraction of the Hurst
exponent produce a value for the Hurst exponent in the range
from H� = 0.70 to 0.75 depending on the region of the lateral
wave vector used in the fit and if Dirichlet or Neumann data
are used. For instance, from the power-law tail of the Neumann
scattering data in Figs. 12(a) and 12(c), we obtain the estimates
H� = 0.74 ± 0.02 and H� = 0.73 ± 0.01, respectively. These
values for H� agree reasonably well with the value H = 0.70
used to generate the self-affine surfaces on which the scattering
calculations were based. It should be remarked that the study
of Schmittbuhl et al. [55] found that estimates of the Hurst
exponent by various methods often could display errors in the
range of 10%. Moreover, these authors also reported that the
size and discretization interval of the surface analyzed could
significantly affect the reliability of the self-affine parameters
that were retrieved.

It should be pointed out that the use of a Gaussian incident
beam reduces the range of |q‖ − k‖| values over which the scal-
ing relation (27) holds; this is shown explicitly in Fig. 12 where
the dashed black lines are predictions of the analytic expression
in Eq. (19) that were derived under the assumption of a plane
incident wave. As was mentioned in the discussion of the re-
sults in Fig. 8, we expect plane-wave illumination to be a good
approximation in most practically relevant cases. Hence, by us-
ing such illumination, a larger region of |q‖ − k‖| values will be
available for the determination of the Hurst exponent, which is
expected to result in more accurate estimates for this parameter.

The topothesy of the self-affine surface can also be
determined from the results presented in Fig. 12. In the case
of a plane incident wave, the value of this parameter can be
extracted from the scattered intensity in the specular direction
[q‖ = k‖], Eq. (22), or from the width of the specular peak,
Eq. (24), given that an estimate for the Hurst exponent already
has been obtained by other means. For instance, previously
we estimated the Hurst exponent to be H� = 0.73 ± 0.01
from the Neumann data set in Fig. 12(c), for which the use of
an incident plane wave or a Gaussian beam produces almost
the same specular scattered intensity. If the expression in
Eq. (22) is applied to this data set, we are led to the estimate
�� = 2.2 × 10−6λ for the topothesy of the surface when the
value H� given above was assumed. This is only 20% of the
value of the topothesy assumed in generating the scattering
data [� = 10−5λ]. To get reliable estimates for the topothesy
based on Eq. (22) unfortunately requires high precision
in the estimate of the Hurst exponent. This is due to the
Hurst-dependent exponent that appears in Eq. (22). In order
to increase the precision of the topothesy estimated obtained
in this way, several data sets corresponding to different polar
angles of incidence may be considered. In principle such an
estimate can also be carried out for an incident Gaussian beam;
however, in this case the scattered intensity is not available as
an analytic expression that can be evaluated readily and it must
instead be calculated by much more time-consuming methods.

Instead of pursuing such an approach, it is more fruitful to
perform a joint (or simultaneous) inversion of the data sets in
order to reconstruct the values of the Hurst exponent and the
topothesy. To this end, the full function form of the scattering
data are used. Before delving into the technical details of such
an inversion procedure, we aim to investigate how well the
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FIG. 9. The in-plane dependence of the mean DRC of the scattered wave for self-affine surfaces characterized by Hurst exponent H = 0.70
and different values of the topothesy � using the Dirichlet boundary condition. The wavelength of the incident wave was λ. The results shown
with solid lines were obtained on the basis of rigorous simulations that assumed an incident Gaussian beam of width w = 10λ, and the dashed
lines show results based on the analytic expression in Eq. (19) derived under the assumption of an incident plane wave. The subplots correspond
to the topothesy: (a) � = 10−6λ, (b) � = 10−5λ, (c) � = 10−4λ. Each plot contains the in-plane cuts for polar incidence angle θ0 = 0◦ and
θ0 = 50◦. The vertical dashed lines in panels (a) and (b) correspond to the specular direction. The vertical dashed lines in panels (a) and (b)
correspond to the specular direction. Note the logarithmic scale used on the 2nd axis.

scattering data in Fig. 12, obtained by rigorous simulations
and the use of a Gaussian incident beam, can be reproduced
by the use of the same incident Gaussian beam and a single
scattering approach based on the Kirchhoff approximation,
the same approximation used to derive the analytic result in
Eq. (19) when a plane incident wave is assumed. This is
done by evaluating the equation of scattering theory within
the Kirchhoff approximation [25] for an ensemble of surface
realizations assuming the same incident Gaussian beam and
self-affine parameters of the rough surfaces as were assumed
in producing the rigorous results presented in Fig. 12. This
approach does not require solving a large system of linear
equations for the field and normal derivative of the field
evaluated at the surface, as is the time-consuming part of the
rigorous method. In this way, the data sets corresponding to
the orange solid lines in Fig. 12 (labeled Kirchhoff) were
obtained and they agree quite well with the data sets obtained
by rigorous simulations for the same polar angle of incidence.
There is only a noticeable discrepancy between the single and
multiple scattering results for the largest values of |q‖ − k‖|
corresponding to large polar scattering angles. The results of
Fig. 12 testify to the accuracy of the Kirchhoff approach for
the values of the self-affine parameters that were assumed in
producing the results in this figure.

The two Kirchhoff results presented in each of the panels in
Fig. 12 are equivalent as they only differ in the type of incident
beam that was assumed in producing them, and, as a result,
in how 〈∂R(q‖|k‖)/∂
s〉 was obtained; for a plane incident
beam this quantity was calculated by evaluating the analytical
expression in Eq. (19), while for an incident Gaussian beam,
the calculation was performed on the basis of a Monte Carlo
calculation assuming the Kirchhoff approximation. Based on
these results, we will in the following assume that if we were

able to obtain rigorous simulations results for the mean DRC
using a plane incident wave, or a sufficiently wide incident
beam, that the result obtained on the basis of Eq. (19) would
reproduce the corresponding rigorous results with a similar
level of accuracy as was found in Fig. 12 when an incident
Gaussian beam was used.

We are now prepared to perform nonlinear optimization of
scattering data obtained from controlled computer experiments
with respect to the expression in Eq. (19b) in order to recon-
struct the values of the Hurst exponent and the topothesy of the
self-affine surface used in obtaining the scattering data. To this
end, we define the cost function to be used in the optimization

χ2(P) =
∫

q‖<ω/c

d2q‖
(2π )2

W (q‖|k‖)

[
log10

〈
∂R(q‖|k‖)

∂
s

〉

− log10

〈
∂R(q‖|k‖)

∂
s

〉∣∣∣∣
{H,�}=P

]2

,

(28)

where P = {H�,��} is the set of parameter values that the op-
timization aims to determine. Here 〈∂R(q‖|k‖)/∂
s〉 denotes
the measured mean DRC while 〈∂R(q‖|k‖)/∂
s〉|{H,�}=P is
a data set obtained on the basis of Eq. (19b) using parameter
values {H,�} = P and the same values for q‖ used in obtaining
the measured data set. In writing Eq. (28), we have defined
a potential weighting function, W (q‖|k‖), that is different
from a constant over the domain q‖ < ω/c only if weighted
optimization is performed; we use the logarithm of the mean
DRCs in the definition of the cost function in order to reduce
the dynamical range that these quantities possess. In the
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FIG. 10. Same as Fig. 9 but for a self-affine Neumann surface [H = 0.70].

optimization that will be performed, we have restricted our-
selves to the use of in-plane scattering data (for which q2 = 0).

The first inversion that we will perform used input data
obtained on the basis of the Kirchhoff approximation using
a Gaussian beam of width w = 32λ and self-affine surface
parameters H = 0.70 and � = 10−6λ; this data set is depicted
by blue open symbols in Fig. 13(a). This and subsequent
inversions (minimizations) started from the initial parame-
ter values P = {0.50,10−3λ} and was performed using the
Levenberg-Marquardt algorithm [94,95], where the elements
of the Hessian that this algorithm requires were calculated by
finite difference approximations. For the weighting function,
we used unity for all values of its argument. The minimiza-
tion of cost function (28) for the input data specified above

converged toward the data set given as an orange solid line
in Fig. 13(a) and an excellent agreement between the input
and reconstructed mean DRC curves is found. The self-affine
parameter values reconstructed in this way were H� = 0.70
and �� = 1.25 × 10−6λ which are in good agreement with the
values assumed when generating the input scattering data on
which the inversion was based [H = 0.70 and � = 10−6λ].
The results presented in Fig. 13(a) demonstrate explicitly that
the use of an incident Gaussian beam of width w = 32λ

is sufficiently wide to produce a mean DRC that is well
approximated by a mean DRC that assumes a plane incident
wave and is given by Eq. (19). Moreover, since both the input
data set and the expression in Eq. (19) were generated on
the basis of the Kirchhoff approximation, though for different

FIG. 11. The in-plane or out-of-plane dependence of the mean DRC of the scattered wave for self-affine surfaces characterized by the slope
s(λ) = 0.0631. The results were obtained on the basis of rigorous simulations using the Dirichlet boundary condition. The subplots correspond
to the polar angle of incidence (a) θ0 = 0◦ (in-plane and out-of-plane scattering coincide here due to the assumed isotropy of the surface); (b)
θ0 = 50◦, in-plane scattering; and (c) θ0 = 50◦, out-of-plane scattering. The vertical dashed lines in panels (a) and (b) correspond to the specular
direction. Note the logarithmic scale used on the second axis.
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FIG. 12. The scaled mean DRCs, 〈∂R(q‖|k‖)/∂
s〉/m(q‖|k‖), as functions of |q‖ − k‖|/(ω/c) obtained within the Kirchhoff approximation
(solid and dashed lines) or by rigorous computer simulations for Dirichlet and Neumann surfaces (open symbols). The parameters assumed
for the self-affine surfaces were H = 0.70, � = 10−6λ [Figs. 12(a) and 12(b)] and � = 10−5λ [Figs. 12(c) and 12(d)], the wavelength of the
incident wave was λ and the polar angles of incidence were θ0 = 0◦ [Figs. 12(a) and 12(c)] and (b) θ0 = 50◦ [Figs. 12(b) and 12(d)]. The dashed
black lines were obtained on the basis of Eq. (19) and therefore assume plane-wave illumination. The result corresponding to the solid lines
and rigorous results (open symbols) were obtained under the assumption of incident Gaussian beams of width w = 10λ and the edges of the
surfaces were L = 3w = 30λ. In performing the rigorous simulations, the sampling interval assumed for the surfaces was �x‖ = λ/7 and the
reported results were obtained as averages over Nζ = 1000 surface realizations. As a guide to the eye, we have included two sets of gray lines;
the solid gray lines of slopes −2 − 2H represent the tail behavior of the scattered intensity distribution in Eq. (27) and the dashed horizontal
gray lines correspond to the specular intensity for a plane incident wave, Eq. (22).

types of incident beams, these results hint at the quality that
can be achieved for the reconstructed values of the self-affine
parameters of the surface.

We will now turn to the more relevant and interesting case of
the inversion of in-plane scattering data obtained on the basis
of a rigorous and therefore multiple scattering approach. For
this purpose, we use the Neumann scattering data presented in
Fig. 10(a) that were obtained on the assumption of a normally
incident Gaussian beam and self-affine parameters H = 0.70
and � = 10−6λ; this data set is presented as blue open circles
in Fig. 13(b). Based on this data set, the cost function (28) was
minimized in a completely equivalent manner to what was
done above to produce the orange solid line in Fig. 13(b), and
the reconstructed self-affine parameter values were H� = 0.71
and �� = 1.41 × 10−6λ. These values agree rather well with
the self-affine parameters that characterize the surface from
which the input scattering data were generated. Moreover, the

angular dependence of the input and inverted mean DRC curves
are also rather similar; the main discrepancies between them
are found around the normal scattering direction due to the
different forms of the incident beams that they assume and
in the tails of the scattering distributions (probably caused by
multiple scattering). In addition to the two mean DRC curves
in Fig. 13(b) for θ0 = 0◦, we also in this figure present, for
reasons of comparison, the mean DRCs for the polar angle of
incidence θ0 = 50◦. Here the blue open square symbols refer
to results obtained for the same surface by rigorous computer
simulations for this polar angle of incidence while the dashed
orange line was produced from Eq. (19) assuming the self-
affine parameters previously obtained by reconstruction of the
data set that corresponds to normal incidence.

The last inversion example that we will give is based on the
Dirichlet scattering data from Fig. 9(b) for normal incidence
[blue open circles in Fig. 13(c)]. These data were generated
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FIG. 13. Inversion of in-plane scattering data obtained in computer experiments for Gaussian incident beams scattered from self-affine
surfaces of Hurst exponent H = 0.70 and several values of the topothesy �. (a) Monte Carlo simulated input data (blue open circles) for
polar angle of incidence θ0 = 0◦ generated within the Kirchhoff approximation for a self-affine surface of topothesy � = 10−6λ where λ is
the wavelength of the incident field. These data were obtained by averaging the results over Nζ = 10 000 surface realizations and the incident
Gaussian beam had width w = 32λ. The orange sold mean DRC curve was produced by inverting the input data to obtain the reconstructed
self-affine parameters of values H� = 0.70 and �� = 1.25 × 10−6λ. (b) In-plane scattering data (blue open symbols) generated by rigorous
simulations for self-affine Neumann surfaces of topothesy � = 10−6λ and obtained by averaging the results over Nζ = 5000 surface realizations.
Incident Gaussian beams of width w = 10λ and polar angles of incidence θ0 = 0◦ and θ0 = 50◦ were assumed in generating these results.
Inversion of the computer generated data set for polar angle of incidence θ0 = 0◦ produced the orange solid line and the reconstructed self-affine
parameters H� = 0.71 and �� = 1.41 × 10−6λ. The dashed orange line was produced from Eq. (19) using the reconstructed values for H and
�. (c) Same as Fig. 13(b) but computer-simulated data sets (open blue symbols) corresponding to a Dirichlet surface of topothesy � = 10−5λ.
The inversion of the θ0 = 0◦ date set was performed for |q1| < 0.5ω/c; this produced the solid orange line and the reconstructed parameter
values H� = 0.71 and �� = 7.0 × 10−6λ. Using these values and θ0 = 50◦ in Eq. (19) produced the orange dashed line.

by rigorous simulations in an equivalent manner to how the
input data from our previous examples were obtained; the main
difference is that now the topothesy is � = 10−5λ. In order to
invert this data set, we used a weighting function in Eq. (28) that
rapidly tapered off outside |q1| < 0.5ω/c. In this way, the mean
DRC shown as an orange solid line in Fig. 13(c) was obtained
and it corresponds to the reconstructed parameters H� = 0.71
and the topothesy �� = 7.0 × 10−6λ. Also in this case, we have
for reasons of comparison added results for θ0 = 50◦, and
the orange dashed line is generated from Eq. (19) assuming
the self-affine parameters reconstructed from the data set for
normal incidence. The results in Fig. 13(c) show reasonable
agreement between the simulated and analytic results, and
the reconstructed self-affine parameters are in good agreement
with the parameters assumed in producing the simulation data.

Until now we have discussed methods for the extraction of
self-affine parameters that required angular resolved scattering
intensity measurements for one or several angles of incidence,
or specular intensity measurements for many angles of inci-
dence. Without access to automated specialized equipment,
such measurements are time-consuming to perform due to
the alignment procedure that they require. An alternative
experimental configuration will now be described that assumes
fixed source and detector positions and measurements based
on this configuration should therefore be both simpler and

require less sophisticated (and therefore cheaper) equipment
to perform. This configuration, here referred to as the “rocking
scan” geometry, consists of given polar angles of incidence
and scattering relative to the laboratory frame, θ0 and θs ,
respectively, and a tilt of the sample around a normal vector
to the plane of incidence that lies in the mean plane of the
surface. Such a tilt of the sample through an angle ϑ in the
counterclockwise direction, realizable by the use of a rotation
stage, for instance, will effectively change the (in-plane) polar
angle of incidence from θ0 to θ ′

0 = θ0 + ϑ , and at the same
time change the (in-plane) polar angle of scattering from θs

to θ ′
s = θs − ϑ . Equivalently, these polar angles correspond

to the lateral wave vectors of incidence and scattering, k′
‖

and q′
‖, respectively, defined by Eq. (10) after θ0 and θs have

been replaced by their primed equivalents and the relations
φ′

0 = φ0 and φ′
s = φs have been used. The lateral wave vector

transfer that corresponds to a given rocking (or tilt) angle ϑ

thus becomes

Q′
‖(ϑ) ≡ q′

‖ − k′
‖ = Q‖ cos ϑ − k̂‖

[
α0(q‖) + α0(k‖)

]
sin ϑ,

(29)

where Q‖ = q‖ − k‖. Figure 14(a) presents the in-plane de-
pendence of the mean DRC as function of the rocking angle
ϑ when θ0 = θs = 45◦, or equivalently Q‖ = 0. The solid
lines in this figure were obtained on the basis of the analytic
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FIG. 14. Rocking scan curves for self-affine surfaces character-
ized by (a) several values of the Hurst exponent (see legend) and
topothesy � = 10−5λ and (b) Hurst exponent H = 0.70 and several
values of the topothesy � (see legend) for θ0 = θs = 45◦. The solid
lines were obtained on the basis of Eq. (19) while the red open
symbols were produced by rigorous computer simulations assuming a
self-affine Neumann surface of parameters H = 0.70 and � = 10−5λ

and an incident Gaussian beam of width w = 10λ. The rocking angle
ϑ is defined so that the effective polar angle of incidence is θ0 + ϑ ,
and the effective polar angle of scattering is θs − ϑ .

expression in Eq. (19) and under the assumption of a self-affine
surface characterized by topothesy � = 10−5λ and a Hurst
exponent H as indicated in the legend. The red symbols in
Fig. 14(a) were obtained by rigorous computer simulations of
the scattering from Neumann surface of parameters H = 0.70
and � = 10−5λ when the incident beam was assumed to have
width w = 10λ. Similar results are presented in Fig. 14(b) but
here the value of the Hurst exponent is fixed to H = 0.70 and
several values of the topothesy are considered as specified
in the legend. Note that the symbols and the orange lines
in Figs. 14(a) and 14(b) depict the same data. The results
presented in Fig. 14 demonstrate that the rocking scan curves
display dependencies with respect to both the Hurst exponent
and the topothesy of the self-affine surface that are suitable

for performing reconstruction of these parameters based on
measured rocking scan curves. Even if we will not do such
reconstruction here, it is noted that the data obtained by
rigorous simulations, red symbols in Fig. 14, agree rather
favorably with what is obtained from the analytic expression
(19).

So far we have discussed several of the many methods
that exist for extracting the values of the parameters that
characterize a self-affine surface from the (in-plane) scat-
tered intensity that it gives rise to when an incident beam
impinges on it. Before closing this study, we will mention
an additional method of reconstruction based on rescaling.
This is particularly interesting since scaling is at the heart of
the self-affine property. Moreover, a similar property obtained
for the scattered intensity from one-dimensional self-affine
surfaces has previously been established [70,71], so for reasons
of completeness, we want here to establish a similar scaling
relation of the intensity that is scattered from two-dimensional
self-affine surfaces. Below we will see that if the in-plane
scattering data are rescaled in a certain manner, they should, if
single scattering is dominating, collapse onto a master curve
that only depends on the Hurst exponent of the self-affine
surface and not on, for instance, the topothesy or the polar
angle of incidence used when performing the measurements.
To see how this comes about, we return to Eq. (19b) that we
for convenience rewrite in the alternative form

〈
∂R(q‖|k‖)

∂
s

〉
= M(q‖,k‖; H,�) L2H

(
χ (q‖,k‖; H,�);

1

2

)
,

(30a)

where we have defined the functions

M(q‖,k‖; H,�)

= (ω/c)[(ω/c)2 + α0(q‖)α0(k‖) − q‖ · k‖]2

α0(k‖)[α0(q‖) + α0(k‖)](2+2H )/H �(2−2H )/H
(30b)

and

χ (q‖,k‖; H,�) = |q‖ − k‖|
[α0(q‖) + α0(k‖)]1/H �(1−H )/H

. (30c)

From the expressions in Eq. (30), it should be apparent
that if we plot 〈∂R(q‖|k‖)/∂
s〉M−1(q‖,k‖; H,�) against
χ (q‖,k‖; H,�), the result for a given Hurst exponent, H , should
collapse onto the master curve L2H (χ ; 1/2) for any polar angle
of incidence θ0 (or k‖) and any value of the topothesy �; at least,
this is the case within the single scattering approximation. If a
double logarithmic scale is used for making the plot, the Hurst
exponent can be extracted from the slope of the power-law tail
of the Lévy distribution L2H (·) onto which the scattering data
scaled in this manner should collapse. According to Eq. (A5),
or Eq. (27), the slope of the resulting power-law tail should be
−2 − 2H from which the Hurst exponent of the surface can be
obtained. The data collapse relies on the expression in Eq. (19)
being an accurate description of the mean DRC for the surface,
or, in other words, that the scattering is dominated by single
scattering. This may, or may not, be the case depending on
the values of the self-affine parameters of the surface that are
assumed.

063825-17



STRAND, NESSE, KRYVI, HEGGE, AND SIMONSEN PHYSICAL REVIEW A 97, 063825 (2018)

FIG. 15. Rescaled in-plane mean DRCs from Fig. 9 that were
generated by rigorous computer simulations of w = 10λ wide nor-
mally incident Gaussian beams scattered from self-affine Dirichlet
surfaces of Hurst exponent H = 0.70 and topothesies � as indicated
in the legend (open symbols). The rescaling was done according to
Eq. (30) so what is presented is 〈∂R(q‖|k‖)/∂
s〉M−1(q‖,k‖; H,�) as
function of χ (q‖,k‖; H,�). The blue solid line is the “master curve”
L2H (χ,1/2) that is predicted by Eq. (30). The data collapse brings
out the Lévy shape in accordance with Eq. (19).

Figure 15 presents as open symbols the rescaled
quantity 〈∂R(q‖|k‖)/∂
s〉M−1(q‖,k‖; H,�) as function of
χ (q‖,k‖; H,�) obtained on the basis of the mean DRC data sets
in Fig. 9 for normal incidence that were generated by rigorous
computer simulations for a w = 10λ wide incident Gaussian
beam scattered from a self-affine Dirichlet surface of Hurst
exponent H = 0.70. In Fig. 15, the solid line represents the
“master curve” L2H (χ,1/2) that is predicted from Eq. (30) for
a plane incident wave. Note that we could in producing Fig. 15
also have included data for θ0 = 50◦ and we have found that
also these would end up on the master curve but these results
are not shown here.

From the results presented in Fig. 15, we find that the idea of
a data collapse of the rescaled mean DRC data onto a master
curve works rather well for a wide range of topothesies and
angles of incidence even when the incident beam is not a plane
wave. Still some deviations from this Lévy master curve are no-
ticeable and expected, in particular, for the larges values of the
topothesy and/or for grazing angles of incidence and scattering
which corresponds to situations when multiple scattering ef-
fects are expected to become important. The results in Fig. 15,
obtained for the scattering from two-dimensional self-affine
surfaces, should be compared to similar results established for
the scattering from one-dimensional self-affine surfaces; for
instance, see Figs. 3 and 7 in Refs. [70,71], respectively.

Before closing this section, a few remarks are in order.
The current work can potentially be extended to the scatter-
ing of electromagnetic waves and/or to penetrable self-affine
surfaces (isotropic or anisotropic). In the case of the scattering
of linearly polarized electromagnetic waves from perfectly
conducting self-affine surfaces, the extension is expected to be
possible given the current results; the expected additional com-

plications come from more complicated analytic expressions
and added computational cost for performing the numerical
validation of them based on rigorous simulations. It is also
expected that in certain spectral ranges, typically for low
frequency, it is justified to make a scalar wave approximation
(using Dirichlet or Neumann boundary conditions) for the cor-
responding electromagnetic perfectly conducting self-affine
scattering problem.

We now turn to the situation where the substrate is penetra-
ble and the incident wave is either a scalar or an electromagnetic
wave (this means in the latter case that the substrate is either a
dielectric or a metal). The main challenge, in principle, when
extending the current analysis to the scattering from penetrable
self-affine surfaces, is the potential difficulty of obtaining an
analytic expression for the mean DRC [analogous to Eq. (19)
of this work] on which the self-affine parameter inversion can
be based upon. Recently, surface parameters of exponentially
or Gaussianly correlated rough surfaces were reconstructed
from the in-plane intensity distribution of the co-polarized light
scattered from a two-dimensional rough penetrable surface;
these results were obtained by basing the analytic expression
for the mean DRC used in the reconstruction on the so-called
phase perturbation theory [39]. In principle, this approach
should also be applicable to the scattering from self-affine
penetrable surfaces. The results for all these extensions to the
current analysis of scattering from self-affine surfaces will have
to await further research.

VI. CONCLUSIONS

Within the Kirchhoff approximation, we have derived an
analytic expression for the mean differential reflection coeffi-
cient for the wave scattering from two-dimensional self-affine
Dirichlet and Neumann surfaces. Under the assumption of a
plane incident wave, the angular dependence of this quantity
is expressed in terms of the isotropic, bivariate (α-stable)
Lévy distribution of stability parameter 2H where H is
the Hurst exponent of the surface. We find good agreement
between the prediction of the analytic expression that we
derived for the mean differential reflection coefficient and
the results for the scattered intensity obtained from rigorous
computer simulations. Motivated by the analytic results, we
present several successful methods for reconstructing from
the scattered intensity the values of the parameters that char-
acterize the self-affine surface. We hope that the results of
this study may motivate experimentalists to apply inverse
scattering techniques more extensively for the large-scale
characterizations of self-affine surface morphologies.
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APPENDIX: PROPERTIES OF THE ISOTROPIC
BIVARIATE LÉVY DISTRIBUTION

In this appendix some useful relations for the isotropic
bivariate Lévy distribution, Lα(Q‖; γ ), will be derived. This
distribution is defined by Eq. (18) as the two-dimensional
Fourier transform of its characteristic function—the stretched
exponential exp(−γ |v‖|α). Since this latter function is circular
symmetric, it follows that the isotropic bivariate Lévy distri-
bution may be expresses in the alternative form

Lα(Q‖; γ ) = 1

2π

∫ ∞

0
dv‖ v‖ J0(Q‖v‖) exp(−γ vα

‖ )

≡ H0

[
exp(−γ vα

‖ )

2π

]
(Q‖). (A1)

Here J0(·) denotes the Bessel function of the first kind and
order zero and H0[f ] represents the zeroth-order Hankel (or
Fourier-Bessel) transform [96] of a function f (v‖) which is
defined implicitly by Eq. (A1). The fact that the isotropic
bivariate Lévy distribution can be expressed as a zeroth-order
Hankel transform of the characteristic function is a direct
consequence of a general property of the two-dimensional
Fourier transform of a circular symmetric function [97].

It shows explicitly that the distribution Lα(Q‖; γ ) depends on
its argument Q‖ only through its norm Q‖ = |Q‖| but not its
direction, as is to be expected for an isotropic distribution.
When Lα(Q‖; γ ) is evaluated numerically, the form (A1) is
preferred over the form (18), since the former expression can
be evaluated more efficiently numerically than the expression
that appears in the latter. This is due to the one-dimensional
integral that the former expression contains compared to the
two-dimensional integral that is present in the latter form.

Lévy distributions of given stability parameter α but differ-
ent scale parameters γ are related. By making the change of
variable v‖ = u‖/γ̄ 1/α (with γ̄ > 0) in Eq. (18) or Eq. (A1),
the following scaling relation is obtained:

Lα

(
Q‖; γ

) = 1

γ̄ 2/α
Lα

(
Q‖
γ̄ 1/α

;
γ

γ̄

)
. (A2)

This relation is useful for modifying the scale parameter of the
isotropic bivariate Lévy distribution.

For a general stability parameter α, the Lévy distribution
Lα(Q‖; γ ) has several important series expansions. For in-
stance, for arguments of small norm Q‖ = |Q‖|, expanding
the Bessel function that appears in Eq. (A1) around zero
and integrating the resulting series term by term [90,98],
leads to

Lα

(
Q‖; γ

) = 1

2παγ 2/α

∞∑
m=0

(−1)m

22m(m!)2
�

(
2m + 2

α

)(
Q‖
γ 1/α

)2m

≈ 1

2παγ 2/α

[
�

(
2

α

)
− 1

4
�

(
4

α

)(
Q‖
γ 1/α

)2

+ 1

64
�

(
6

α

)(
Q‖
γ 1/α

)4

− · · ·
]
,

Q‖
γ 1/α

� 1, (A3)

where �(·) denotes the � function [90, Ch. 5].
On the other hand, for 0 < α < 2, a large argument asymp-

totic expansion of Lα(Q‖; γ ) displays the inverse power-law
tail Q−2−α

‖ . This can be established from Eq. (A1) by first
expanding into a power series in v‖ the stretched exponential
function exp(−γ |v‖|α) that is present in the integrand, revers-
ing the order of the integration and summation, and formally
performing term-by-term integration over v‖ of the resulting
expression to produce [99, Integral 6.561-14]

Lα(Q‖; γ ) = 1

2π

∞∑
m=0

(−γ )m

m!

21+αm

Q2+αm
‖

�
(
1 + αm

2

)
�
(−αm

2

) . (A4)

Since the function �(z) tends to infinity for vanishing argument
[90, Ch. 5], the m = 0 term will not contribute to the sum
in Eq. (A4). Hence, the leading term in the large argument
asymptotic expansion of Lα(Q‖; γ ) becomes

Lα(Q‖; γ ) ∼ −2α

π

�
(
1 + α

2

)
�
(−α

2

) γ

Q2+α
‖

,
Q‖
γ 1/α

� 1,

= − 2α

πγ 2/α

�
(
1 + α

2

)
�
(−α

2

) (
Q‖
γ 1/α

)−2−α

. (A5)

The function �(−α/2) is strictly negative for 0 < α < 2, so the
right-hand side of Eq. (A5) is guaranteed to be non-negative,
as it has to be for a probability distribution function. How-

ever, we prefer to rewrite expression (A5) into an alternative
form where the negative sign does not appear. To this end,
we take advantage of Euler’s reflection formula for the �

function [90, Formula 5.5.3] �(z)�(1 − z) = π/ sin(πz) (for
z �= 0,±1, . . .). Using this relation with z = −α/2 and the fact
that the sinusoidal is an antisymmetric function of its argument
enables us to rewrite the expression in Eq. (A5) in the form
[0 < α < 2]

Lα(Q‖; γ ) ∼ 2α�2
(
1 + α

2

)
π2 γ 2/α

(
Q‖
γ 1/α

)−2−α

sin
(πα

2

)
,

Q‖
γ 1/α

� 1

= 2αγ

(
�
(
1 + α

2

)
π

)2
sin

(
πα
2

)
Q2+α

‖
. (A6)

Equation (A6) represents the generalization to isotropic bivari-
ate Lévy distributions of the more well-known large argument
asymptotic expansion of the univariate symmetric Lévy distri-
bution, known as the “Wintner’s expansion” [89,100–102]. It
should be noted that for the case α = 2, the pdf L2(·) equals the
bivariate Gaussian distribution and thus decays exponentially
with increasing Q2

‖.
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