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Reexamination of group velocities of structured light pulses
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Recently, a series of theoretical and experimental papers on free-space propagation of pulsed Laguerre-Gaussian
and Bessel beams was published, which reached contradictory and controversial results about group velocities of
such pulses. Depending on the measurement scheme, the group velocity can be defined differently. We analyze how
different versions of group velocity are related to the measurable travel time (time of flight) of the pulse between
input (source) and output (detecting) planes. The analysis is tested on a theoretical model—the Bessel-Gauss
pulse whose propagation path exhibits both subluminal and superluminal regions. Our main conclusion from
resolving the contradictions in the literature is that different versions of group velocity are appropriate, depending
on whether or not the beam is hollow and how the pulse is recorded in the output plane—integrally or with spatial
resolution.
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I. INTRODUCTION

Structured light fields, particularly the nondiffracting and
twisted beams, are being increasingly used in different fields
of research (see reviews [1–3]). Recently, a series of papers
[4–13] was published, which deal with slower than c group
velocities of pulses of these beams in free space and indicate
promising applications of such subluminal light propagation.

In Ref. [4], using time-correlated photon pairs and a so-
phisticated measurement of propagation delays via the Hong-
Ou-Mandel dip, the subluminality of photons in both a Bessel
beam and in a focused Gaussian beam was shown. This paper
garnered substantial coverage in the general media because the
study purported to discover subluminal photons. Since, at least
for the physical optics community, the observed phenomenon
had been well known, the paper [4] encountered significant
criticism. In particular, a comment [5] finds the interpretation
of the results and the title of the paper misleading and states
that the measurements only provide the projection of the
photon velocity onto the axis of beam propagation. From our
point of view, the most valuable contribution of Ref. [4] is
a new concept of spatially averaged group velocity and its
theoretical reasoning. As we will see below, although this new
definition of group velocity corresponds well to a particular
type of time-of-flight measurements of light pulses, it leads to
a contradiction in the case of certain Bessel beam pulses.

The next theoretical paper [6] generalizes the concept of
spatially averaged group velocity to Gaussian beams with
orbital angular momentum (OAM). The same (twisted) beams
were studied in Ref. [7], where curves of group velocity, cal-
culated from the common (not spatially averaged) expression,
were related to experimental data. However, our analysis [8]
led to the conclusion that the results of [7] are questionable
in several respects and, in particular, that when interpreting
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the measured relatively large propagation delays, one must not
use the absolute value of the group velocity as done in [7], but,
instead, its projections onto the beam axis. The very recent
paper [9] shows that the group velocity obeys a relationship
similar to one proposed 80 years ago by Majorana between
spin and mass for relativistic particles. This paper also points
out that what was measured in Refs. [4,7] as group velocity
was, in fact, its projection onto the beam propagation axis.

In the theoretical paper [10], reduction of the group velocity
(not spatially averaged) below the value c in the case of certain
Bessel beam pulses has been considered. We pointed out in
our critical comment [11] that the authors treat the problem
as if only one type of Bessel pulse exists, no matter how it is
generated, while it is well known from the literature that such
pulses may be not only subluminal but superluminal as well.

The very recent study [12], which is a continuation of the
work [4] and uses the same experimental technique, deals with
the intrinsic delay introduced by “twisting” a photon. The
authors reach the surprising result that the addition of OAM
reduces the delay (i.e., makes the pulse somewhat faster) with
respect to exactly the same beam with no OAM. Finally, a
recent paper [13] analyzes theoretically how to set the group
velocity of ultrashort light pulses in vacuum to arbitrary values
within the focal region.

As distinct from focused beams, pulses of
(pseudo)nondiffracting beams are propagation invariant,
i.e., their intensity profile changes neither in any lateral nor
in the axial direction over a large spatial range. Experimental
realizability of the simplest type of such pulses, called the
Bessel-X pulse, was demonstrated in [14], where we used the
same optical scheme, with an annular slit, as Durnin et al. in
their seminal work [15] on the Bessel beam. A narrow annular
slit with angular radius θ ensures that the frequency-dependent
phases of all Bessel beam constituents of the polychromatic
field are proportional to the frequency: z cos θ ω/c. The group
velocity in this case is c/ cos θ , i.e., superluminal, since it is
given by the reciprocal of the mixed derivative of the phase
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with respect to frequency and propagation coordinate z. There
is massive literature on various nondiffracting pulsed waves
(also called propagation-invariant localized waves) which are
classified into superluminal, luminal, and subluminal types
(see [3] and reviews [16–20]).

In a sense, the discussion of subluminality of structured light
in the recent literature is déjà vu: in the preceding decade, the
meaning of superluminality of nondiffracting pulses was inten-
sively debated. Despite the experimental proofs [14,21,22], the
feasibility of superluminal group velocities of Bessel-X-type
pulses was questioned until we carried out direct measurements
[23,24] of the spatiotemporal electric field of such pulses
generated by a refractive axicon (conical lens).

In contradistinction to superluminal nondiffracting pulses
generated by an annular-slit-and-lens scheme or a refractive or
reflective axicon, the so-called pulsed Bessel beams generated
by circular diffraction gratings—which are precisely what
were considered in [4] and [10]—are always subluminal and
are not propagation invariant because they spread temporally.
This was shown theoretically a long time ago [25–27] and
experimentally in [28,29] with femtosecond-range temporal
and micrometer-range spatial resolution of the propagating
field. A mistake in the mathematical derivation of group
velocities, which led to the inability of some authors to
distinguish the Bessel-X pulse from the pulsed Bessel beam
and to accept the superluminality of the former, is analyzed in
the review article [30].

In some forthcoming calculations, we resort to two-
dimensional (2D) analogues of cylindrically symmetric 3D
fields, i.e., to fields that depend—in addition to the longitudinal
coordinate and time—on only one transverse coordinate. In
expressions for such 2D fields, the zeroth-order Bessel function
J0 is replaced by a cosine. Propagation properties of 2D field
pulses coincide, mutatis mutandis, with those of 3D ones. For a
propagation-invariant nondiffracting pulse, the so-called focus
wave mode which was theoretically intensively studied at the
end of the previous century, this coincidence was shown in
[31], where experimental feasibility of this exactly luminal
wideband pulse had also been demonstrated. A general theory
of 2D luminal and superluminal propagation-invariant (local-
ized) waves was developed in [32]. Having in mind, e.g., the
fast development of light-sheet microscopy and emerging ap-
plications of Airy beams, the 2D nondiffracting pulses cannot
be considered as inferior to the 3D ones. A very recent article
[33] demonstrates the generation of 2D nondiffracting pulses of
different group velocities by means of a spatial light modulator.

For the forthcoming analysis, it is useful to recall that even
the pulses of the fundamental Gaussian beam may exhibit
both slightly superluminal and slightly subluminal propagation
near their focus or the Rayleigh range [34–38]. The behavior
of the group velocity of a polychromatic beam depends on
the frequency dependence of the (interrelated) parameters
of the monochromatic constituent beams, which in turn is
determined by the optics generating the beam. On the basis
of the character of the frequency dependence, pulses built
from Gaussian, Bessel, Airy, etc. beams can be generally
divided into different types [37,39–41], each possessing its
own specific group-velocity properties.

If we juxtapose the recent papers [4–12] with the earlier
literature referred to above, the following questions arise. How

is the group velocity that is evaluated in an ordinary way related
to the propagation time (time of flight) of the pulse between
the input (source) and output (recording) planes? How does
one take into account nonconstancy of the velocity over the
propagation distance? Is the axial projection of the velocity or
some other quantity appropriately related to the times or delays
in flight, measured in experiments with hollow beams—such
as the Laguerre-Gauss and other beams with OAM? And last
but not least, how does one resolve the contradiction between
the notion of the spatially averaged group velocity—which
is always subluminal and was introduced in [4] for relating
to time-of-flight experiments—and the superluminality of
X-type nondiffracting pulses? The purpose of the present study
is to give answers to these questions based on a model pulsed
beam—the Bessel-Gauss pulse. This model pulse seems to
be the most appropriate one for our purpose since it exhibits
both superluminal and hollow-beam propagation stages and is
physically realizable.

The paper is organized as follows. In the next section,
different definitions of group velocities at off-axis field points
are considered and the most suitable quantity for relating to the
axial time of flight is chosen using a cylindrically symmetric
Bessel-Gauss pulse [42–45] as a numerical test. Having in
mind that the notion of group velocity generally describes
well the propagation of narrowband pulses only, in Sec. III
spatiotemporal evolution of an ultrashort Bessel-Gauss pulse
with a particular wideband spectrum is calculated, resulting in a
series of 3D plots. These plots can be considered as “snapshots
in flight” of the pulse and they are analyzed in order to verify
and to more deeply interpret the results of Sec. II. Finally,
Sec. IV is devoted to solving the paradox that the formula
of spatially averaged group velocity derived in [4], which
supposedly is equal to the ratio of propagation distance and
time, does not apply to superluminal pulses.

II. DIFFERENTLY DETERMINED GROUP VELOCITIES
FOR EXAMPLE OF BESSEL-GAUSS PULSE

The well-known expression of the group velocity at a point
R of a three-dimensional wave packet with the carrier (mean)
frequency ω reads [46]

v(R) = 1

|∇[ϕ′
ω(R)]| , (1)

where ϕ′
ω(R) denotes the derivative of the spatial phase of

the monochromatic constituents of the packet with respect
to frequency. From an experimentalist’s point of view, the
observable quantity of primary interest is time τ that the pulse
peak (or other feature) needs to travel from a certain starting
(source) plane to the output (recording) plane. In the case of a
plane-wave pulse or when the pulse peak propagates along a
straight line—the optical axis z of a paraxial beam—it is not a
problem to relate v(R), the time τ , and the propagation depth
z = zout − zin with each other. But generally, even for paraxial
beams, the quantity v(R) is inappropriate for finding the travel
time τ for a given propagation depth. For example, the intensity
of a Laguerre-Gaussian beam is concentrated not on the axis but
at a certain radial distance from it which increases as the pulse
moves away from the focus. Due to the latter circumstance, as
pointed out in [8], the pulse travel time τ is not determined
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by v(R), which is the magnitude of the group velocity vector,
but rather by its projection onto the propagation axis z. Also,
it should be stressed here that this z projection is generally not
given by replacing the gradient operator in Eq. (1) with ∂/∂z.

In order to propose such velocity quantities which are
appropriate for relating to travel time versus propagation depth
data from time-of-flight-type experiments, let us take one step
back in the derivation of Eq. (1). As shown in [46], the instant
of time at which the modulus of the field reaches its local
maximum at position R is given by

τ (R) = ϕ′
ω(R). (2)

If the pulse peak, i.e., its absolute maximum, passes through
the point R, the quantity ϕ′

ω(R) directly measures the time of
flight of the pulse. For definiteness, let us choose the origin of
the coordinate z so that the pulse peak passes through the plane
z = 0 at the instant t = 0. Then, we can define an average group
velocity in the direction of the optical axis over the distance z

as follows:

va(z,r) = z

τ (z,r)
. (3)

Here, we have introduced cylindrical coordinates (z,r,φ) for
the point R and assumed that ϕ′

ω(R) does not depend on
the azimuthal angle φ, which is true not only for beams
with cylindrical symmetry but also for beams possessing
orbital angular momentum, as long as the contribution of the
azimuthal angle to the phase of their field does not depend
on the frequency. In the supplemental material of Ref. [4], this
velocity has been obtained by harmonic averaging of v(R) over
distance from z1 to z2 and used as an intermediate quantity
in the derivation of a three-dimensionally averaged velocity,
which we consider in Sec. IV.

The Born-Wolf velocity given by Eq. (1) in the cylindrical
coordinates reads

v(z,r) = 1√[
∂
∂z

τ (z,r)
]2 + [

∂
∂r

τ (z,r)
]2

. (4)

As this quantity is the magnitude of the group-velocity vector
which has been directed along ∇[τ (z,r)], the projection of
the group velocity onto the optical axis is obtained through
multiplication by the directional cosine, resulting in

vz(z,r) =
∂
∂z

τ (z,r)[
∂
∂z

τ (z,r)
]2 + [

∂
∂r

τ (z,r)
]2 , (5)

and, in the same way, the radial component of the velocity
reads

vr (z,r) =
∂
∂r

τ (z,r)[
∂
∂z

τ (z,r)
]2 + [

∂
∂r

τ (z,r)
]2 . (6)

In the case ∂
∂r

τ (z,r) = 0, e.g., for on-axis points, the harmonic
averaging of the axial group velocity vz(z,r) results in va(z,r)
defined by Eq. (3).

Figure 1 illustrates the differences between the quantities
defined by Eqs. (3)–(5) in the case of an off-axis (hollow)
diverging pulse.

Next, we calculate these velocities for a particular test field.
As the latter, we have chosen a pulse of the Bessel-Gauss beam

FIG. 1. Scheme of distinctions between the group velocities
defined in the text.

since it is a paraxial, Gaussian-apertured, finite-energy and,
hence, physically realizable version of the Bessel-X pulse.
Moreover, it exhibits a pronounced and independently ad-
justable superluminality in the focal region, and in the far field
its intensity is concentrated in a ring of diverging radius—quite
similar to pulsed Laguerre-Gauss beams. The Bessel-Gauss
beams—the monochromatic constituents of the pulse—are
tractable as superpositions of Gaussian beams (modes), the
optical axis of each of which lies along a generatrix of a cone.
Half of the cone apex angle—which is called the axicon angle
and typically designated by θ—determines the superluminal
group velocity of the Bessel-X pulse as equal to c/ cos θ and,
consequently, the same velocity for a pulse in the focal region
of the Bessel-Gauss beam (henceforth the BG pulse).

It is known that the behavior of the group velocity in a pulsed
Gaussian beam is determined by the frequency dependence of
the (interrelated) parameters of the beam [34–37]. For example,
if the Rayleigh range is inversely proportional to frequency,
the on-axis group velocity is slightly superluminal in the focal
region. The same holds for the Laguerre-Gauss beams [7].
Conversely, if the dependence is proportional to the frequency,
the group velocity is slightly subluminal there. In order not
to mix these effects on the group velocity with axicon-angle-
controlled superluminality, we chose Gaussian beams whose
Rayleigh range zR is frequency independent to play the role
of constituents of the BG pulse. Pulses formed from such
beams—isodiffracting pulses—possess strictly luminal (equal
to c) group velocity along the whole propagation axis [36,37].
Also, vanishing derivative ∂zR/∂ω keeps group-velocity ex-
pressions comparatively simple in the case of isodiffracting
pulses.

According to [44], the monochromatic Bessel-Gauss wave
function (without the time-dependent factor exp iωt) of wave
number k = ωc reads

ψ(z,r,k) = izR

z + izR

J0

(
izR

z + izR

θkr

)

× exp

{
−ik

[
r2 + z2θ2

2(z + izR)
+ z

(
1 − θ2

2

)]}
, (7)

where J0 is the zeroth-order Bessel function of the first kind
and θ is the axicon angle (apex half angle of a cone over the
surface of which the directions of constituent Gaussian beams
are evenly distributed). Equation (7) and Fig. 2 exhibit the
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FIG. 2. Illustrative plot of a Bessel-Gauss beam. Depicted is the
square root of the modulus of Eq. (7) without the first fraction.
Note that the scale of the vertical axis representing the transverse
coordinate ±r has been magnified 60 times relative to that of the
z axis. Beam parameters: Rayleigh range zR = 3 mm, wavelength
λ = 2π/k = 0.718 μm, axicon angle θ = 1◦, divergence of the
constituent Gaussian beams θ0 = (kzR/2)−1/2 = 0.5◦.

wave-function dependencies characteristic to both the Gaus-
sian and Bessel beams.

The Gaussian radial profile suppresses the Bessel-function
radial profile in the vicinity of the focal plane z = 0 and we see
the side maxima of the Bessel function thanks to choosing the
axicon angle twice larger than the divergence of the constituent
Gaussian beams and taking the square root of the modulus
(for improving contrast of the image). The spatial dependence
of the field outside the focal region, i.e., where |z| > zR , is
seen with noticeable intensity thanks to omitting the factor
izR/(z + izR) in Eq. (7). This factor does not contribute to
τ (z,r) according to Eq. (2) since zR is frequency independent.
The exponential factor contributes to ϕ′

ω(r) by the real part of
the square brackets (divided by c since ∂/∂ω = c−1∂/∂k). The
derivative of the phase of the Bessel function can be evaluated
via the identity

∂

∂ω
arg U = 1

c
Im

(
1

U

∂U

∂k

)
. (8)

Expressing the derivative of the zeroth-order Bessel function
through the first-order one and carrying out some algebra, we
obtain

τ (z,r) = z

c
+ 1

c

z
(
r2 − θ2z2

R

)
2
(
z2 + z2

R

)

+ 1

c
Im

{
iθrzR J1

(
iθrzRk
z+izR

)
(z + izR) J0

(
iθrzRk
z+izR

)
}
, (9)

where k now is the mean wave number of a quasimonochro-
matic wave packet. The first term on the right-hand side gives
the arrival time at point z of a δ-shaped plane-wave pulse started
from the origin z = 0 at t = 0. Hence, the following two terms
are responsible for the temporal shift of the BG pulse relative to
the “signal” pulse. It follows from Eq. (9) that everywhere on
the axis z, the shift is negative since with r = 0 the third term
vanishes. Negative temporal shift means superluminal group
velocity. Indeed, as seen in Fig. 3, the average group velocity va

ranges from the superluminal value c/(1 − θ2/2) � c/ cos θ

(which is the constant superluminal group velocity of the

FIG. 3. Curves 1 and 2: on-axis group velocities defined by
Eqs. (4) and (3), respectively, shown as normalized velocity changes
vs the normalized propagation distance z. Curve 3: averaged group
velocity along a line shifted radially from the z axis to half of the
beam-waist radius w0 = 0.026 mm or—in 3D terms—on the surface
of a cylinder with radius w0/2 = 0.013 mm. Beam parameters are the
same as in Fig. 2, but the axicon angle θ = 0.55◦ is smaller.

Bessel-X pulses) at the origin down to c at large propagation
distances. This result was obtained earlier in [44], although
without pointing out that this is the averaged group velocity,
not the common local (Born-Wolf) group velocity v. In Fig. 3,
the latter exhibits a transition to subluminal values as soon
as the point exits from the Rayleigh range and reaches its
minimum at z = ±√

3 zR , irrespective of the axicon angle θ . It
is remarkable that the on-axis group velocity of such ordinary
Gaussian pulsed beam, whose divergence θ0 is frequency
independent but the Rayleigh range is reciprocally proportional
to frequency, behaves exactly the same way. A mathematical
reason for this amazing coincidence is the identity of the
expressions for τ (z,0) in both cases if one replaces the angle θ

with θ0. Physically, while the superluminality of the juxtaposed
Gaussian beam pulse is caused by the frequency-dependent
Gouy phase arctan(z/zR), the superluminality of the BG pulse
is a result of interference between its luminal Gaussian beam
pulse constituents propagating under the axicon angle.

The third curve in Fig. 3 shows that while the averaged
velocity is superluminal everywhere on the propagation axis, it
turns out to be subluminal at off-axis points in the focal region.
The Born-Wolf group velocity v along the same off-axis line is
subluminal everywhere and exhibits two subluminal minima
in the focal region—the curve being quite similar to that for
the Laquerre-Gauss pulsed beam (Fig. 1 in [8]) and to curve 1
in Fig. 5 below.

Unless θ � θ0, in other words, unless the BG pulse is almost
like a Gaussian beam pulse, the on-axis and near-axis intensity
is very low outside the Rayleigh range and therefore the
curves in Fig. 3 are not of our main interest. According to our
goals formulated in Sec. I, we must study the group-velocity
behavior on the peak of the pulse. For the BG pulse, it means
asymptotically along a generatrix of the cone, i.e., along the
straight line r = θ z; see Fig. 4 (being precise, the peak of the
pulse transposes itself from the optical axis to the surface of the
cone r = θ z when z > zR , as we will see in the next section).
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θ

θ

θ

FIG. 4. Group velocities defined by Eqs. (4), (3), and (5) on the
conical surface given by r = θz, plotted as functions of the propaga-
tion distance (curves 1, 2, and 3, respectively). Beam parameters are
the same as in Fig. 3.

We see that the Born-Wolf group velocity is luminal every-
where in the Rayleigh range. This is understandable because
at large distances the pulse peak area constitutes a converging
(when z < −zR) or diverging (when z > zR) spherical zone
and it is well known that the velocity of a spherical wave
equals c. At the same time, since the group-velocity vector
is directed under the axicon angle with respect to the z

axis, its projection vz to the propagation axis is subluminal
everywhere in the Rayleigh range (as pointed out also in
[8,9]). The same holds for the average group velocity va ,
which is directly related to the delays that are measurable
experimentally. Asymptotically, vz ≈ va ≈ c cos θ . Hence, in
the case of pulses whose maximum does not propagate along
the optical axis (Laguerre-Gauss pulsed beams and, alike,
the BG pulse outside the Rayleigh range), if one studies the
behavior of their group velocity via measuring their arrival
delays in the far field, the results are determined by the
subluminal plateau. It means that in a common experimental
geometry, this plateau extends over distances much larger than
the focal region where the velocity variations take place and,
as a result, the variations remain masked in the delay data. In
order to study the interesting behavior of the group velocity in
the focal region, which distinctively depends on the type and
parameters of the beam, in addition to the temporal resolution
one must apply at least a submillimeter spatial resolution in the
vicinity of the focus. This can be accomplished by the spatially
encoded arrangement for temporal analysis by dispersing a pair
of light E-fields (SEA TADPOLE) technique, as was done in
Ref. [23]. These conclusions constitute one of the main results
of the present study.

We point out that for plots in Figs. 3–5, the angles θ and
θ0 were taken almost equal. Changing the ratio θ/θ0 reveals
the following: (i) the region of the variable behavior of the
velocities is confined by ±z0 rather than by ±zR , with z0 being
the z coordinate of the point where the line r = θ z attains
the radial distance of the first zero of the Bessel profile; (ii)
if θ/θ0 > 2, the minima of v and especially of vz become
very deep in the vicinity of ±z0, while the radial component
vr acquires large values (vr > 0.5c when θ/θ0 > 3) at these
locations. Such steep variations start to manifest themselves

FIG. 5. Magnitude of the group-velocity vector and its radial and
axial components (curves 1, 2, and 3, respectively) on the surface of
a cylinder with radius r0.5E = 0.014 mm ≈ w0/2. Beam parameters
are the same as in Fig. 3. Note the scaling of vr .

also at the locations where the line reaches the radial distances
of the next zeros of the Bessel profile. Although the beam
intensity vanishes completely only on the rings corresponding
to the zeros of the Bessel profile in the plane z = 0, at larger
distances these zeros show up as intensity minima if θ/θ0 > 2.
Thus, the intensity minima cause the steep increase of the radial
component vr of the group velocity.

In order to comprehend the behavior of the radial com-
ponent vr (z,r), we studied its z dependence at fixed nonzero
values of r , and its r dependence at fixed nonzero values of z.
Of course, vr (z,0) and vr (0,r) are identically equal to zero as
follows from symmetry considerations already. Figure 5 shows
the z dependence of the magnitude of the group velocity and
its components on a cylindrical surface whose radius is equal
to the HWHM of the pulse modulus at origin.

It follows from Fig. 5 that the plotted off-axis velocities
v and vz are subluminal everywhere and have obtained two
minima (as is the case with the off-axis group velocity of
Laguerre-Gauss beams [8]). Since the equality v2

z + v2
r = v2

holds for any point, the minima coincide with the maxima of
|vr |. When z < 0, the beam converges and, therefore, vr < 0
at that stage of the propagation of the pulse. At the diverging
stage, the group-velocity vector has been directed away from
the propagation axis, i.e., vr > 0 when z > 0. However, there
is a subtlety: at a fixed distance 0 < z � zR , the positive value
of vr grows steeply (up to 0.5c) when r approaches the radial
distance r01 of the first zero of the Bessel profile; then at the
point r01 reverses the sign of its value and decreases to zero at
the halfway to the radial distance r02 of the next zero, where the
the same behavior repeats itself. Hence, figuratively speaking,
the cylindrical surfaces with radii r01,r02, . . . attract the field
flow and deflect the group-velocity vector in the vicinity of the
focus.

In the next section, we correlate the obtained velocity curves
with numerically simulated propagation of a wideband BG
pulse whose duration and other parameters are suitable from
an experimentalist’s point of view. At the same time, we recall
that the notion of group velocity assumes neglecting the higher
than ϕ′

ω(R) derivatives of the spatial phase, which become
significant with increasing bandwidth and are responsible for
distortions of the pulse in the course of propagation.
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III. PROPAGATION OF MODEL BESSEL-GAUSS PULSE
WITH POISSON-LIKE SPECTRUM

For a better understanding of the results of the preceding
section, it would be helpful to graphically depict the spa-
tiotemporal evolution of a BG pulse. Porras [44] has found
a suitable closed-form expression for the wave function of a
BG pulse with the so-called Poisson-like spectrum f (ω) =
πtn+1

0 ωn exp(−ωt0)/n!, where ω > 0, t0 > 0 determines the
duration of the pulse, and n is a natural number. With somewhat
changed designations, the expression reads

�(z,r,t) = izR

z + izR

⎧⎪⎪⎨
⎪⎪⎩

it0√
(tc + it0)2 −

[
izR

c(z+izR )θr
]2

⎫⎪⎪⎬
⎪⎪⎭

n+1

×Pn

⎧⎪⎪⎨
⎪⎪⎩

tc + it0√
(tc + it0)2 −

[
izR

c(z+izR )θr
]2

⎫⎪⎪⎬
⎪⎪⎭

, (10)

where Pn() is the Legendre polynomial of the order n and

tc = t − z(1 − θ2/2)/c − 1

2c(z + izR)
(r2 + z2θ2) (11)

is a space-dependent complex time. As is well known, the
group-delay and group-velocity expressions are, strictly speak-
ing, meaningful if the FWHM ω of the pulses’ spectrum is
much smaller than its mean frequency ωm. If this narrowband
condition is not fulfilled, the pulse undergoes distortions in
the course of propagation. On the other hand, a narrowband
BG pulse would inevitably be too long for observation of
the expected tiny differences of its propagation velocity from
that of a plane wave, i.e., from c. Besides, since it follows
from Eq. (10) that ω/ωm ∼ 1/

√
n, the narrowband condition

would require a numerical evaluation of Legendre polynomials
of very high order, which could cause computational problems.
We have chosen n = 16 as this value corresponds roughly to
ω/ωm � 1/2 and gives a three-cycle pulse. Last but not least,
temporal shifts as small as ≈ 1 fs of such ultrashort light pulses
are easily observable with our interferometric setup based on
a supercontinuum laser [29,41].

Evolution of the pulse in the course of propagation is shown
in Fig. 6. The plots depict radial and temporal behavior of
the pulse modulus in six cross-sectional planes with fixed
values of z. A part of the profile seen to the left from the
abscissa value z/c − t = 0 shows the temporal behavior of
the modulus in every given z plane after the instant when a
luminally propagating signal would cross the z plane (it is
assumed that the “signal” starts when the peak of the pulse is
at the position z = 0). Conversely, a part of the profile seen
at the positive values of z/c − t shows the temporal behavior
of the modulus ahead of the signal. Such a representation of
spatiotemporal evolution of ultrashort light pulses is common
in femtosecond-resolution measurements that use the SEA
TADPOLE technique. However, it is easier to comprehend the
plots as “snapshots in flight” or “still frames” taken in the
meridional plane of the beam at sequential fixed time instants.
In the given case, the instants would be t = 0, t = 834 fs,
t = 1.6 ps, t = 3.3 ps, t = 6.7 ps, and t = 10 ps (the values

corresponding to z = 0, 0.25, . . . ,3 mm) and the horizontal
extent of each “frame” is 12.5 μm. Such an equivalence of
the two representations is possible because the paraxial and
ultrashort field practically does not change its shape when
propagating over a distance as short as 12.5 μm during ≈ 40
fs. Indeed, to check the equivalence, we also calculated the
plots from Eq. (10) with the fixed values of the variable t and
it turned out that the values of the modulus in corresponding
matrices (every element or pixel) of the two sets of plots are
equal with accuracy� 0.5%. In what follows, we refer to Fig. 6
as if it contains the “still frames.”

The first frame depicts the instantaneous intensity profile
(more exactly, its fourth root for better visibility of low-
intensity features) of the BG pulse at the origin (in the focus
of its Gaussian constituents). The X-like (actually a double
conelike in 3D space) structure peculiar to the Bessel-X pulse
[14,23] with some residual Bessel beam minima around the
apex is clearly seen. We have intentionally chosen the axicon
angle θ = 2◦ larger than that in the plots of the previous section,
i.e., four times exceeding the Gaussian divergence θ0 = 0.5◦,
in order to reveal these minima and the wings of the pulse. The
next two frames indicate that the pulse is superluminal—it out-
strips a copropagating plane-wave reference whose sequential
positions have been marked by the small white vertical bars. As
distinct from the propagation invariance of the Bessel-X pulse,
the BG pulse in the subsequent frames loses its double-conical
shape with superluminal apex due to the limited (Gaussian)
transversal dimension of the constituent beams. As a result,
after reaching the Rayleigh range, the BG pulse peak intensities
constitute a ring whose radius grows linearly with propagation
distance. In other words, points of highest intensity move along
the cone surface, the generatrix of which obeys the equation
r = θz used in plots of the preceding section. The last three
frames show that the z-directed velocity of propagation of the
ring is subluminal, thus indicating the reason for the subluminal
plateau in Fig. 4.

Horizontal dashes in Fig. 6 mark values of r at which the
line r = θz intersects the frames. Note that the abscissa scale
is stretched 20 times with respect to the r axis of the frames.
This scale stretching explains why, in the last three frames, the
pulse fronts are not practically vertical, i.e., perpendicular to
the line r = θz (as they should be in the case of equal scales).

The main conclusions from the plots of the pulse propaga-
tion are as follows.

(1) Group velocities are superluminal in the spatial region
where the constituent Gaussian beam pulses, propagating
along a pair of the cone generatrices of opposite inclination
with respect to the z axis, overlap and interfere with each other.
Note that the pulse profile in the first two frames resembles the
Bessel-X pulse which is superluminal (the similarity of the
Bessel-Gauss and Bessel-X fields has also been demonstrated
in [44]).

(2) Outside this region—see the last two frames—the pulse
propagates like a spherical zone and although the group-
velocity vector in the peak of the pulse is directed along the
generatrix and its magnitude is c, the projection of the peak
position onto the z axis lags behind the luminal signal. Figure 4
indicates that this lag at large propagation depths z � zR results
from subluminal values of va and vz at the radius of the peak
position, which both approach their far-field value c cos θ .
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FIG. 6. Evolution of the modulus of the BG pulse plotted from Eq. (10) at sequential distances from the focus at z = 0. The vertical axis
represents the transversal coordinate ±r . The vertical white bars indicate the positions of t = z/c, i.e., the time instants that an ultrashort
plane-wave pulse would reach the corresponding coordinate z if it copropagated along the z axis together with the BG pulse. The yellow
horizontal dashes mark the radial distances r = θz. The parameters of the pulse are the axicon angle θ = 2◦, the Rayleigh range zR = 3 mm,
t0 = 7 fs (ct0 = 2 μm), and n = 16. The frames have been normalized to unity (white). For a better revealing of the weak wings of the pulse,
the grayscale has been taken proportional to

√|�(z,r,t)|.

(3) The two middle frames show that in the transition region,
the superluminal apex dies out gradually while the intensity
shifts to the spherical zone, resulting in the transition of va and
vz from superluminal to subluminal values, also seen in Fig. 4.

Hence, these conclusions are in accordance with the results
of the preceding section, despite the fact that the group-velocity
expressions used there are, in principle, determined for a
quasimonochromatic pulse. Moreover, as shown in Appendix
A, reshaping of the wideband pulse in the course of propagation
is in agreement with Eq. (9) and the curves of group velocity
obtained in the preceding section.

Thanks to the symmetry property of the field, �(−z,r,

− t) = �∗(z,r,t), and hence |�(−z,r, − t)| = |�(z,r,t)|,
from Fig. 6 it is easy to comprehend the behavior of the pulse
at negative times, i.e., when the pulse converges to the focus.
In the mirrored interpretation, the rightmost frame in Fig. 6
represents the pulse at the earliest time instant t = −10 ps
(or its crossing the plane z = −3 mm) and the leftmost frame
corresponds now to the latest time instant t = 0 when the pulse
has converged to the focus. Thus, the behavior of the pulse at
negative times is the following: initially, near z = −3 mm,
the BG pulse is given a head start relative to the reference
(the plane-wave “signal” pulse); thereafter, when reaching
z ≈ −1 mm, due to its subluminality the BG pulse has lost
the advantage and the signal catches up with it, and at z ≈
−0.5 mm, the pulse’s peak is clearly lagging behind the signal;
in the final stage of the focusing, the situation reverses—due
to its superluminal velocity, the BG pulse catches up with the
signal when they both reach the focal plane z = 0. From an
experimentalist’s point of view, more convenient is a scheme
where the pulse under study starts from a plane z = zin < 0
together with the plane-wave pulse. If thereafter the pulse

arrival time is measured at point rout in a plane z = zout > 0,
the total time τ of its flight is obviously determined by the
expression which follows from Eqs. (9) and (3), viz.,

τ = τ (|zin|,rin) + τ (zout,rout)

= |zin|
va(zin,rin)

+ zout

va(zout,rout)
,

while the reference pulse needs, for traveling the same distance,
a time interval (|zin| + zout)/c. As a matter of fact, in an
experiment, instead of travel times τ , it is convenient to
measure delays with respect to the plane-wave signal pulse.
In this case, the position zin of the input (start) plane is where
the delay is initially zero.

It is appropriate to add here that for a BG pulse with fixed
geometrical parameters, the propagation depth (or temporal
interval) where the pulse profile transforms from the double-
conical (X-like in the meridional section) shape to the spherical
zone is nearly independent from the number of cycles in the
pulse. What increases with n (while ωm is kept constant by
correspondingly adjusting the parameter t0) is the duration of
the pulse only—“thickness” of its profile in the plots.

In conclusion, despite the fact that the plots in Fig. 6 have
been calculated for an ultrawideband pulse, the features of
propagation of the BG pulse that they show are in accordance
with the group velocities defined and studied in Sec. II.

IV. SOLVING THE PARADOX OF SPATIALLY
AVERAGED GROUP VELOCITY

The group velocity defined in [4]—let us call it the 3D
averaged velocity—is averaged not only over a distance from
z1 (particularly, z1 = 0) to z [see Eq. (3)], but also over the
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beam cross section from the optical axis to infinity by using
the transversal profile of the beam as a weighting function. As
a result of such averaging, the effective group velocity is given
by an expression which is always subluminal and holds for all
paraxial beams,

v3D = c

1 +
〈
k2

⊥
〉

2k2

, (12)

where 〈k2
⊥〉 is the dispersion (variance) of the transverse wave

vector in the beam. In the case of higher-order Gaussian beams,
e.g., Laguerre-Gaussian beams, the quantity 〈k2

⊥〉 grows with
the indices of the beam [6].

The velocity v3D is not only always less than c, but also it
does not depend on the propagation distance. This is apparently
in variation not only with the results of the preceding sections,
but also with what is well known about group velocities of
different types of Gaussian, etc. beams. For example, for
both axicon-generated and circular-grating-generated Bessel
beams, the transverse (radial) wave vector has a fixed (nondis-
persed) value kr = k sin θ , but only the latter beam possesses
a subluminal velocity in accordance with Eq. (12). For both of
these beams, the group velocities do not depend on position and
hence any averaging over the radial coordinate r must give a
value equal to the on-axis velocity, which is subluminal in the
case of grating-generated Bessel beams (or so-called pulsed
Bessel beams) and superluminal for axicon-generated Bessel
beams (or the Bessel-X pulses). This is easily seen from the
following derivation which we will also use later on.

The requisite harmonic averaging of the velocity va reduces
to arithmetic averaging of the delay given by Eq. (2) which,
according to [4], can be carried out by the following expression
for the delay:

τ (z) = ∂

c∂k′

{
arg

[∫
ψ∗(z,r,k) ψ(z,r,k′) dS

]}
k′=k

, (13)

where dS = rdr dφ is an element of the beam cross-section
area and integration over φ gives a factor 2π due to the cylin-
drical symmetry. The integral over r is proportional to the or-
thogonality condition between Bessel functions and although it
diverges if k′ = k, it is a real quantity. Hence, the k′-dependent
phase enters into Eq. (13) only from the phase exponent
factor of the beams, which is equal to exp(iz

√
k′2 − k2 sin2 θ )

for the pulsed Bessel beam and to exp(izk′ cos θ ) for the
Bessel-X pulse. Taking the derivative ∂/∂k′ of the phases and
using division like in Eq. (3), we reach a subluminal value
c cos θ of the 3D-averaged group velocity for the pulsed Bessel
beam—which reduces to Eq. (12) in the paraxial limit—and to
a superluminal value c/ cos θ for the Bessel-X pulse. In other
words, we reach the well-known results [3,14,21–30]. Note that
the transversal averaging has no effect on occasions when the
phase of the wave function does not depend on the transversal
coordinates irrespective of the intensity profile of the beam.
This is not the case with the fundamental and higher-order
Gaussian beams for which the velocity va becomes subluminal
with increasing r even if it is superluminal on the optical axis.
Since all Gaussian beams are solutions of the paraxial wave
equation and also Eq. (12) follows from Eq. (13) in the paraxial
limit [4], one may suspect that the paraxial approximation is a
cause of the described discrepancy.

The BG pulse is a convenient object for studying the sources
of the discrepancy because (i) as we saw in Sec. II, the
superluminal values of va(z,r) in the vicinity of the origin
are replaced by subluminal values as r increases, and (ii) in
the limit zR → ∞ or θ0 → 0, the BG pulse transforms to
the Bessel-X pulse. Unfortunately, for the integrals with the
Bessel functions that we encounter in Eqs. (12) and (13), no
closed-form expressions can be found in tables of integrals.
Therefore, we carry out the study on a 2D analog of the BG
pulse, which, however, possesses all the features essential here.
The wave function of a monochromatic constituent of such a
2D pulse—we name it the cosine-Gaussian (CG) pulse—is a
solution of the 2D paraxial equation and is identical to Eq. (7)
if there r is replaced by a transversal coordinate x, the first
fractional factor is put under the square root sign, and the
Bessel functions are replaced by their 2D counterparts—sine
and cosine function. Thus, the expression for the delay is
similar to Eq. (9), viz.,

τ (z,x) = z

c
+ 1

c

z
(
x2 − θ2z2

R

)
2
(
z2 + z2

R

)

+ 1

c
Im

{
iθrzR sin

(
iθrzRk
z+izR

)
(z + izR) cos

(
iθrzRk
z+izR

)
}
, (14)

where θ now is not the axicon angle but designates the angle
under which two 2D Gaussian beams are inclined with respect
to the z axis (see Fig. 3 which now depicts the beam section
in plane (z,x) at any value of the third coordinate y).

Harmonic averaging of the velocity va is, in other words,
a cross-section averaging of the reciprocal velocity which—if
normalized with respect to c—in the plane z = 0 reads

c

va(0,x)
= lim

z→0

cτ (z,x)

z
= 1 − θ2

2
+ x2

2z2
R

+ θx tan(θkx)

zR

+ θ2kx2

zR cos2(θkx)
. (15)

A limit of Eq. (15), zR → ∞, results in a superluminal
valueva = c/(1 − θ2/2) ≈ c/ cos θ , which is simply the group
velocity of propagation of the interference pattern between two
plane waves—the 2D counterpart of the Bessel beam.

The averaging can be carried out by the following integra-
tion:

c

vaa

= N−1
∫

ψ∗(0,x,k)
c

va(0,x)
ψ(0,x,k) dx, (16)

where the subscript aa stands for the two-dimensional averag-
ing (along the z and x axes) and N = ∫

ψ∗(0,x,k)ψ(0,x,k) dx

is the normalization factor. The intensity of the beam in the
given case reduces to

ψ∗(0,x,k)ψ(0,x,k) = cos2 (θkx) exp

(
−kx2

zR

)
. (17)
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With the weighting function given by Eq. (17), the integration
in Eq. (16) can be carried out by each term of Eq. (15) with
the help of tables and/or a symbolic calculation software. The
result is the following:

c

vaa

= 1 + θ2
0

8
+

θ2 exp
(
θ2

θ2
0

)
4 cosh

(
θ2

θ2
0

) , (18)

where we have replaced k and zR with a more transparent
parameter—the Gaussian beam divergence angle θ0 according
to the known relation kzR = 2/θ2

0 . It is immediately evident
from Eq. (18) that the fully averaged group velocity of the CG
pulse is subluminal. The second term is the contribution to
the subluminality that comes from the divergence of the wave
vectors of the plane-wave constituents of the Gaussian beam (in
the case of a 3D Gaussian beam, this contribution is θ2

0 /4 due
to the two-times-larger number of the transversal dimensions).
Even if we go to the limit of two plane waves in Eq. (18) by
letting θ0 → 0, the result 1 + θ2/2 nevertheless corresponds to
subluminal velocity vaa = c/(1 + θ2/2) ≈ c cos θ . The same
results follow from the averaging procedures with the help of
2D versions of Eqs. (13) and (12).

If we first go to the limit of two plane waves—as we did
above after Eq. (15)—and thereafter carry out the averaging
by the integration, we obviously get the superluminal velocity
c/ cos θ . The mathematical reason for such contradiction is
that taking a limit and an improper integral need not be inter-
changeable operations. The physical reason is that the Gaussian
aperturing introduces a dependence of the group velocity va

on a transverse coordinate and va generally decreases with the
increase of the distance from the optical axis, as we saw above.

These conclusions can be readily generalized to the 3D case:
despite the fact that in the focus the BG pulse is superluminal,
its fully averaged group velocity is subluminal. In contrast,
the group velocity of the Bessel-X pulse is superluminal
irrespective of how large the averaging area is. In this regard,
it is interesting to evaluate the maximum radius rsl of such
disk of averaging, at which the averaged velocity of the BG is
still superluminal. For the parameters used in Sec. II (indicated
in Fig. 3), with the help of numerical integration we obtained
rsl ≈ 0.68w0 = 17.8 μm. For experimental observation of the
superluminality of the BG pulse, it means that the diameter of
the acceptance area of the probing or detecting device must
be smaller than ∼ 34 μm. This is not a problem when the
tip of an optical fiber is used as a probe, in which case an
order-of-magnitude-better resolution can be achieved [23,29].
The circle with rsl ≈ 0.68w0 in the focal plane cuts the beam
at the level 10% of its peak intensity, i.e., it embraces the
pulse central peak almost completely. Nevertheless, as shown
in Appendix B, the contribution to the averaged velocity,
which originates from all the infinite off-axis areas with r >

rsl , outweighs the superluminal contribution, resulting in a
subluminal value of the averaged velocity v3D , in accordance
with Eq. (12).

The presented analysis does not say that the three-
dimensionally averaged group velocity is somehow more
proper than the mean velocity va defined by Eq. (3). Both
are directly related to experimentally measurable propagation
times or delays, but the first quantity is applicable if the pulse
is recorded without any spatial resolution in a transverse plane

and the second one if the dependence of the delay not only on
the propagation depth but also on the transverse coordinates is
measured.

V. CONCLUSIONS

Our general conclusion is that an answer to the question
of which version of group velocity the pulse time of flight
between two planes (which are perpendicular to the pulse
propagation axis) is directly related to depends on how the
pulse is registered.

If its intensity is measured not only with temporal but also
with spatial resolution so that for the peak or any other local
feature at point R of the pulse profile the travel time τ (R)
between the two planes is recorded, then the travel distance
divided by τ (R) results in the group velocity va(R) of that
feature in the direction of the optical axis averaged over the
travel distance. This version of averaged group velocity may be
subluminal, luminal, or superluminal. By varying the position
of the output plane near the beam focus, a detailed picture
of the behavior of group velocity in the focal region can be
obtained. In the far field, the Bessel-Gauss pulse and, generally,
pulses of Laguerre-Gauss and other hollow beams propagate
like an expanding spherical zone and therefore their Born-Wolf
group velocity [46] equals c, i.e., is luminal. But measuring
the time of flight of the pulse peak in a usual optical scheme
with the output (detecting) plane in the far field exhibits a
subluminal propagation, no matter how the group velocities
behave in the focal region of these beams. The reason is
that outside the Rayleigh range, the velocity va(R) as well
as the projection of the Born-Wolf group-velocity vector onto
the propagation axis reach their common subluminal constant
value determined by beam divergence. If the pulse is registered
as a whole in the output (detecting) plane without spatial
resolution, then the travel distance divided by the travel time
τ of the pulse results in the three-dimensionally averaged
group velocity v3D introduced in [4,6]. For paraxial pulsed
beams, this velocity (i) does not depend on the position of the
planes and (ii) is always subluminal. These properties are not
in contradiction with studies of superluminally propagating
Bessel-X-type nondiffracting pulses for two reasons:

(1) Their superluminality has been examined with spatial
resolution in their cross-sectional plane, and

(2) any physically realizable Bessel-X-type pulse has a
finite aperture like the Bessel-Gauss pulse has the Gaussian
aperture, and therefore the cross-sectional averaging of the
group velocity results in a subluminal value as shown here
for the Bessel-Gauss pulse.

The results obtained here also hold in the case of single-
photon pulses as far as spatiotemporal dependencies in photon
wave functions are the same as in classical wave packets.
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APPENDIX A: SUBTLETIES OF PROPAGATION
OF THE BG PULSE

A closer look at the first three frames of Fig. 6 reveals that
the pulse’s peak slightly lags behind the X-shape symmetry
plane given by the zeros of the Bessel profile, but nevertheless
it moves superluminally. At the same time, curve 3 in Fig. 3
tells us that the bottom of the pulse’s peak should propagate up
to z � 3/4 zR subluminally and therefore its shape in frames
2–6 in Fig. 6 should gradually become distorted from an oval to
a horseshoe shape like “⊃.” A closer study of this discrepancy
reveals that it is caused solely by the 3.6-fold difference of
the axicon angles that we have chosen in the preceding and
the current section for clarity of the plots. Indeed, with the
value θ = 2◦, curve 3 in Fig. 3 obtains a shape corresponding
to superluminal values of the velocity va over the whole range
of distances z. Vice versa, plotting, with the value θ = 0.55◦,
the first frames of Fig. 6 with high resolution in the region of
the central peak, the brightness distribution gradually changes
indeed to a horseshoe shape.

There is another subtlety seen in the first frame, viz., at
larger radial distances than the Bessel profile zeros, there
are two maxima (the “branches” of X shape), one of which
moves through the plane z = 0 before the instant t = 0 and
the other later. At the same time, Eq. (9) turns to zero at z = 0,
irrespective of the radial coordinate, which means that the
intensity at these radial distances should reach its peak values at
t = 0, i.e., in the middle between the branches where actually
the frame shows the lowest intensities. A contradiction? No,
because, first of all, in the case of the quasimonochromatic limit
assumed by the notion of group velocity and, consequently, by
Eq. (9), the frame would be fulfilled with a Bessel beam whose
temporal profile at all radial distances would peak at t = 0,
z = 0, and the “X branching” (formation of the double-conical
profile) would occur at very large radial distances rX ∼ cT /2θ ,
where T is the duration of the pulse. Parenthetically, rX would
encircle as many Bessel profile zeros, as many cycles the pulse
contains. Moreover, there is no contradiction with Eq. (9) even
in the case of the branches of the ultrawideband pulse in Fig. 6.
Namely, if one plots from Eq. (9) the temporal shift z/c − τ

(for r = rX evaluated from the pulse parameters of Fig. 6)
as a function of z, one gets a curve which with increasing z

immediately after the origin z = +0 jumps to negative values

and then, in the vicinity of the point z ≈ 0.5zR , turns to positive
values. This is in accordance with the behavior we see in Fig. 6
also. Indeed, when the pulse center has passed the plane z = 0,
the branches are no longer of equal intensity, the field modulus
at r = rX has it maximum on the rear cone, and, since this
cone moves behind the apex, the temporal shift is negative.
With increasing z, however, since the whole double-conical
part of the pulse profile moves superluminally, the beginning
point of the rear (left) branch at r = rX gradually recovers
from its initial lag and for it the shift z/c − τ becomes positive
(note that here we are looking upon propagation of intensity
or modulus maxima at a fixed radial distance from the z axis
and not the propagation of the absolute intensity maximum of
the pulse).

APPENDIX B: SUPER- AND SUBLUMINAL
CONTRIBUTIONS TO THE 3D-AVERAGED VELOCITY

Here we evaluate how much power (intensity integrated
over area) the disk with radius rsl transmits in comparison to
the total power (intensity integrated over whole plane z = 0)
at the instant t = 0. Concerning the evaluation of the improper
integral for the latter quantity, a numerical calculation would
have been dubious because the integrand contains infinitely
many times the oscillating Bessel function; see Eq. (7). For-
tunately, we found a table integral given by Eq. (6.633.4) in
Ref. [47] which readily gave an exact result:∫ ∞

0
ψ∗(0,r,k)ψ(0,r,k)r dr

=
∫ ∞

0
e
− kr2

zR J 2
0 (θkr)r dr

= k−1zRI0(θ2kzR) exp(−θ2kzR), (B1)

where I0(·) is the modified Bessel function of the zeroth order.
With the help of Eq. (B1), we found that in the case of the BG
pulse, with the given beam parameters, as much as about 70%
of the total power is embraced within the superluminality circle
of radius rsl . We conclude that the subluminal contribution to
the averaged velocity, which originates from the 30% of the
total power flowing in the off-axis area with r > rsl , outweighs
the superluminal contribution, resulting in a subluminal value
of the averaged velocity, v3D .
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