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Exceptional points of resonant states on a periodic slab
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A special kind of degeneracy, known as exceptional points (EPs), for resonant states on a dielectric periodic
slab are investigated. Due to their unique properties, EPs have found important applications in lasing, sensing,
unidirectional operations, etc. In general, EPs may appear in non-Hermitian eigenvalue problems, including
those related to -parity-time-symmetric systems and those for open dielectric structures (due to the existence of
radiation loss). In this paper, we study EPs on a simple periodic structure: a slab with a periodic array of gaps. By
using an efficient numerical method, we calculate the EPs and study their dependence on geometric parameters.
Analytic results are obtained for the limit as the periodic slab approaches a uniform one. Our work provides a
simple platform for further studies concerning EPs on dielectric periodic structures, their unusual properties, and
applications.
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I. INTRODUCTION

In parameter-dependent eigenvalue problems of non-
Hermitian operators, a special kind of degeneracy may occur
at some particular values of the system parameters; that is, two
or more eigenvalues coalesce and their corresponding eigen-
functions collapse into one single function. Such a spectral
degeneracy is called an exceptional point (EP) [1]. EPs are in-
teresting because they give rise to unusual physical phenomena
in many systems related to non-Hermitian eigenvalue problems
[2–8]. EPs are also central to quantum or classical parity-time-
symmetric (PT -symmetric) systems [9,10]. In these systems,
an EP corresponds to a transition (also known asPT -symmetry
breaking) from a state with all real eigenvalues to a state with
complex eigenvalues [11]. In recent years, PT -symmetric op-
tical systems have been intensively investigated. EPs have been
observed in PT -symmetric waveguides [12,13] and exploited
in a variety of optical systems leading to a number of unusual
wave phenomena and novel applications such as the revival of
lasing [14–16], enhanced sensing [17,18], stopping light pulses
[19], single-mode lasers [20], unidirectional invisibility [21],
and thresholdless PT transitions [22,23].

Due to the outgoing radiation conditions, the eigenvalue
problem of resonant modes on open structures is non-
Hermitian, even if the dielectric function ε of the structure
is real and positive. Therefore, EPs of resonant modes could
exist on properly designed passive structures. For example, a
microtoroid cavity with two nearby nanoscale scatterers was
designed to have an EP, and it was used to enhance sensing
[18]. Periodic structures surrounded by or sandwiched between
free space are also open structures. Thus, the eigenvalue
problem for resonant modes on such a periodic structure is
non-Hermitian and there could be EPs. In fact, EPs have been
observed on photonic crystal slabs [24–26], and they exist for
any specified wave-vector direction, as far as the geometric
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parameters are properly chosen [24]. In addition, paired EPs
can give rise to bulk Fermi arcs and polarization half-integer
topological charges [26].

To reveal the novel properties of EPs on open dielectric
structures and realize their potential applications, it is neces-
sary to carry out systematic studies on EPs. In this paper, we
develop an efficient numerical method for computing second-
order (i.e., doubly degenerate) EPs based on the square-root
splitting of the eigenvalues, calculate the EPs on a simple
dielectric periodic slab, and find out how they vary with geo-
metric parameters. Although the structure is very simple, many
EPs exist, and they exhibit rather complicated dependencies
on the parameters. However, we find a simple analytic result
for the limit as the periodic slab approaches a uniform slab.
The EPs in this limit are related to artificial degeneracies of
the guided modes of the uniform slab when it is regarded
as a periodic slab. The rest of this paper is organized as
follows: In Sec. II, we give some definitions and show the band
structure of a particular periodic slab. In Sec. III, we develop
an efficient numerical method for computing EPs and show
the band structure of a periodic slab with one EP. In Sec. IV,
we analyze the artificial degeneracies of a uniform slab. In
Sec. V, we calculate the EPs on the periodic slab and show
their dependence on parameters, including the limit studied in
Sec. IV. Finally, we conclude our paper with some remarks in
Sec. VI.

II. RESONANT MODES

A typical periodic dielectric slab is shown in Fig. 1. The
structure is invariant in x, periodic in y with period d, finite in z

with a thickness h, and surrounded by air. It is further assumed
that each period of the slab consists of two segments with
dielectric constants ε1 and ε2, and widths a and d − a, respec-
tively. For the E polarization, the x component of the electric
field, denoted u, satisfies the following two-dimensional (2D)
Helmholtz equation:

∂2
yu + ∂2

z u + k2ε(y,z)u = 0, (1)
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FIG. 1. A dielectric slab invariant in x and periodic in y. Each
period consists of two segments.

where ε = ε(y,z) is the dielectric function of the structure,
k = ω/c is the free-space wave number, ω is the angular
frequency, and c is the speed of light in vacuum.

A Bloch mode on the periodic slab is a solution of Eq. (1)
given in the form

u(y,z) = φ(y,z) eiβy, (2)

where β is a real Bloch wave number satisfying |β| � π/d,
and φ(y,z) is periodic in y with period d. In the free space
surrounding the slab, i.e., for |z| > h/2, the solution can be
expanded in plane waves as

u(y,z) =
∞∑

m=−∞
û±

mei(βmy±αmz), ± z > h/2, (3)

where û±
m are the expansion coefficients,

βm = β + 2πm/d, αm =
√

k2 − β2
m, (4)

and the square root is defined with a branch cut along the
negative imaginary axis.

If φ(y,z) → 0 as |z| → ∞, then the Bloch mode is a guided
mode. Below the light line, i.e., for k < |β|, guided modes
exist continuously with respect to frequency and wave number.
Above the light line, Bloch modes with the expansion (3) are
typically resonant modes with a complex frequency; that is,
k is complex and Re(k) > |β|. The resonant modes satisfy
outgoing radiation conditions as |z| → ∞. From Eq. (4), it
is clear that α0 is a complex number with a negative imaginary
part. Therefore, the plane waves exp[i(βy ± α0z)] blow up as
z → ±∞, respectively. The quality factor, denoted Q, of a
resonant mode is given by Q = −0.5 Re(k)/Im(k). In special
circumstances, resonant modes with infinite quality factors,
i.e., Im(k) = 0, may exist, and they are the bound states in the
continuum (BICs). The BICs have intriguing properties and
important applications [27].

Numerical methods for computing the Bloch modes can
be classified as time-domain methods such as finite-difference
time domain [28], and frequency-domain methods including
both linear and nonlinear schemes. A linear scheme discretizes
the Helmholtz equation directly to obtain a linear matrix
eigenvalue problem for eigenvalue k2. A nonlinear scheme
produces a nonlinear eigenvalue problem with a smaller matrix
whose entries depend on k implicitly. The mode-matching
method is a nonlinear scheme. For the structure shown in Fig. 1,
it gives rise to a homogeneous linear system A(β,k)x = 0,
where x is a vector of unknown expansion coefficients. For
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FIG. 2. Band structure of Bloch modes (odd in z) on a periodic
slab with ε1 = 15.42, ε2 = 1, a = 0.5d , and h = 1.16d .

a given β, nontrivial solutions can be found by searching
complex k such that λ1(A) = 0, where λ1(A) is the eigenvalue
of A with the smallest magnitude. Additional details about the
numerical methods are given in Appendix.

As a numerical example, we show the band structure of
a periodic slab with ε1 = 15.42, ε2 = 1, a = 0.5d, and h =
1.16d in Fig. 2. To obtain these results, we first use a linear
scheme to calculate the eigenmodes at β = 0, and then use the
more accurate mode-matching method to find each band for
0 < β � π/d. For simplicity, we only show Re(k) for resonant
modes that are odd functions of z. Notice that two curves, the
solid black one and the solid green one, are close to each other
at β ≈ 0.18(2π/d). In Fig. 3, we show the quality factors of
the resonant modes corresponding to these two curves. It can
be seen that the quality factors are also close to each other
at β ≈ 0.18(2π/d). Notice that the quality factor of the black
curve diverges atβ = 0, and this corresponds to a BIC atβ = 0,
i.e., a standing wave. Meanwhile, the quality factors of both
curves diverge as the pair (β,k) approaches the light line.

In the next section, we show that by tuning one structural
parameter, these two resonant modes can be forced to coalesce,
giving rise to a second-order EP.

III. EXCEPTIONAL POINTS

If two eigenvalues, say k+ and k−, are close to each other
for some β, there may be an EP on a structure with slightly
different parameters. To find the EP, we can try to find the
parameter values and β, such that k+ = k−, and check whether
the eigenfunctions also coalesce. This approach is tedious and
inefficient. In the following, we develop an efficient method
based on the square-root splitting of the eigenvalues at second-
order EPs.

063822-2



EXCEPTIONAL POINTS OF RESONANT STATES ON A … PHYSICAL REVIEW A 97, 063822 (2018)

0 0.1 0.2 0.3 0.4

102

104

106

108

FIG. 3. Quality factors of the resonant modes corresponding to
the black and green curves in Fig. 2.

Let k∗ and β∗ be the eigenvalue and Bloch wave number of
a second-order EP associated with the bands k+(β) and k−(β).
In the vicinity of the EP, the eigenvalues have the following
approximations:

k±(β) ≈ k∗ ± (b1 + i b2)
√

β − β∗, β > β∗, (5)

k±(β) ≈ k∗ ± (c1 + i c2)
√

β∗ − β, β < β∗, (6)

where b1, b2, c1, and c2 are unknown real constants. Since the
EP is a resonant mode with β = β∗ and k = k∗, we have

λ1[A(β∗,k∗)] = 0, (7)

where A(β,k) is a matrix obtained by the mode-matching
method (see Appendix). In addition, for a small δβ > 0, two
resonant modes exist at β = β∗ + δβ with k±(β) given by
Eq. (5). This leads to

λ1[A(β∗ + δβ,k∗ + δk)] ≈ 0, (8)

λ1[A(β∗ + δβ,k∗ − δk)] ≈ 0, (9)

where δk = (b1 + ib2)
√

δβ. Therefore, we can find second-
order EPs by choosing a proper δβ and solving Eqs. (7)–(9).
It turns out that EPs can be found by tuning just one structural
parameter. If ε1, ε2, and a are fixed, we can search the slab
thickness h to find EPs. The three complex equations (7)–(9),
corresponding to six real equations, are used to determine
six real unknowns: {h∗, β∗, Re(k∗), Im(k∗), b1, b2}, where h∗
denotes the particular value of h for EPs. The values of b1 and
b2 describe how strongly the modes split from the EP as β

moves away from β∗.
Following the example in Sec. II, we choose ε1 = 15.42,

ε2 = 1, and a = 0.5d and allow h to vary. Using the
method described above, we found an EP for h∗ =
1.154 485d, β∗ = 0.187 005(2π/d), and k∗ = (0.376 190 4 −
0.009 219 4i) (2π/d). The band structure of the periodic slab
with thickness h∗ is shown in Fig. 4. It is clear that two two
bands touch at the EP with a square-root splitting in the vicinity
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FIG. 4. Band structure of Bloch modes on a periodic slab with
ε1 = 15.42, ε2 = 1, a = 0.5d , and h∗ = 1.154 485d .

ofβ∗. The quality factors of these two bands are shown in Fig. 5.
As expected, the two curves in Fig. 5 also touch at β∗.

It should be pointed out that an EP can be calculated by
using either Eq. (5) or Eq. (6). For the latter case, we choose a
negative δβ and calculate the constants c1 and c2. It turns out
that these constants satisfy

c1 = ±b2 and c2 = ∓b1. (10)

More features of the EPs can be understood by closely
examining the behavior of the eigenmodes in the vicinity of
β∗. In Fig. 6(a), we show the real and imaginary parts of k

for two resonant modes around the EP. In Figs. 6(c) and 6(d),
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FIG. 5. Quality factors of the resonant modes corresponding to
black and green curves in Fig. 4.
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FIG. 6. (a) Dispersion curves around an EP with β∗ = 0.187 005 (2π/d). (b) The eigenfunction of the EP solution. (c)–(f) The eigenfunctions
at points A, B, B ′, A′ shown in panel (a), respectively.

we show the two eigenfunctions, φ+ and φ−, corresponding to
points A and B in Fig. 6(a), respectively. As β → β∗, those
two eigenfunctions coalesce into a single EP eigenfunction
φ∗ as shown in Fig. 6(b). Notice that the field pattern of φ∗
combines the main features of φ− and φ+. For β > β∗, two
different eigenfunctions are recovered, and they are shown
in Figs. 6(e) and 6(f), corresponding to points B ′ and A′
in Fig. 6(a), respectively. Notice that the field patterns for
points A and A′ are similar, and those for B and B ′ are also
similar, but their ordering with respect to Re(k) is reversed. This
switching behavior of the field patterns as β passes through β∗
is consistent with Eq. (10).

To develop a better understanding about EPs on the periodic
slab, we analyze their dependence on parameter a in Sec. V. It
will be shown that these EPs continue to exist as a → d, and
their β∗ and k∗ approach the light line. It also appears that the
limiting points on the light line are related to some artificial
degeneracies of the uniform slab when it is regarded as a
periodic structure. Artificial degeneracies in band structures
also appear when a periodic structure with a certain period
is regarded as one with a larger period, and they are related
to thresholdless PT transitions in 2D photonic crystals [22].
In the next section, we study the artificial degeneracies of a
uniform slab and calculate the limiting points on the light line.

IV. UNIFORM SLAB

Referring to Fig. 1, by setting a = d, we have a uniform
slab with ε = ε1. A guided mode is now given by

u(y,z) = φ̃(z)eiβ̃y, (11)

where β̃ is the propagation constant, and φ̃ satisfies

d2φ̃

dz2
+ k2ε(z)φ̃ = β̃2φ̃, (12)

where ε(z) = ε1 for |z| < h/2 and ε(z) = 1 for |z| > h/2. In
addition, φ̃ must decay to zero as |z| → ∞. As in previous
sections, we only consider the modes that are odd in z and
denote their dispersion relations as k = km(β̃) for positive
integers m. It is straightforward to show that these dispersion
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FIG. 7. Folded band structure of a uniform slab with h = 1.85d .
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FIG. 8. Folded band structure of a uniform slab with h =
1.713 719 2d .

curves touch the light line when

β̃ = km(β̃) = β̃m � 2π (m − 1/2)

h
√

ε1 − 1
. (13)

The uniform slab can be regarded as a periodic structure
with a fictitious period d, then the guided modes can be written
as u(y,z) = φ(y,z) exp(iβy), where

φ(y,z) = φ̃(z)ei2π l y/d , β = β̃ − 2πl/d,

for some integer l such that β ∈ [−π/d,π/d]. If |β̃| � π/d,
then l = 0 and β = β̃. Otherwise, l is nonzero and the disper-
sion curves of the fictitious periodic slab can be obtained by
folding the dispersion curves of the uniform slab into the first
Brillouin zone. This is shown in Fig. 7 for h = 1.85d, where
the solid blue and red curves correspond to l = 0 and l = 1,
respectively. More precisely, the sold red curves are

k = k(f)
m (β) � km(2π/d − β).

For the case shown in Fig. 7, the dispersion curves have
no intersections on the light line. However, it is possible to
have intersections on the light line if we tune the value of h. In
general, we have the following “limiting degeneracy problem”:

TABLE I. Solutions of the “limiting degeneracy problem.”

(m,n) h∗/d k∗d/2π

(2,1) 1.7137192 0.2304989
(3,1) 3.0874410 0.2132351
(3,2) 2.5587359 0.2572953
(4,1) 4.4232537 0.2083741
(4,2) 4.0470027 0.2277466
(4,3) 3.3127043 0.2782292
(5,1) 5.7438584 0.2063128
(5,2) 5.4487877 0.2174853
(5,3) 4.9112722 0.2412881
(5,4) 4.0155953 0.2951073
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FIG. 9. Slab thickness h∗ versus width a for EPs satisfying β∗ <

Re(k∗) < 2π/d − β∗. The limiting values of these curves as a/d → 1
correspond to those h∗ listed in Table I.

Given integers m > n > 0, find h∗ such that

kn(2π/d − β̃m) = β̃m. (14)

For m = 2 and n = 1, we solve the above problem and obtain
h∗ = 1.713 719 2d. In Fig. 8, the dispersion curves are shown
for this h∗, and the intersection on the light line is k∗ = β∗ =
0.230 498 9 (2π/d). The results for different pairs (m,n) are
listed in Table I.
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FIG. 10. Eigenvalue k∗ versus wave number β∗ for the same EPs
as shown in Fig. 9. The curves tend to the light line as a → d , and
the points on the light line correspond to those k∗ given in Table I.
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FIG. 11. Quality factors versus a for the same EPs as shown in
Fig. 9. The quality factors diverge as a → d .

V. CONTINUATION OF EXCEPTIONAL POINTS

In Sec. III, we presented one EP for a periodic slab with
a = 0.5d. In fact, many different EPs can be found for the

same a, but typically for different slab thickness. To get a more
complete picture about the EPs on the periodic slab, we use the
numerical method of Sec. III to follow the EPs in the parameter
space of a and h, while keeping ε1 = 15.42 and ε2 = 1 fixed.
For simplicity, only those resonant modes that are odd in z are
considered. The results are shown in Figs. 9–11 for h∗ vs a,
Re(k∗) vs β∗, and quality factor vs a, respectively.

In Fig. 9, we show ten curves in the a-h plane, where each
curve represents one family of EPs that depend continuously on
a and h. These curves are labeled by pairs of integers (m,n).
Notice that as a → d, all these curves tend to the values of
h∗ listed in Table I, according to their corresponding labels.
The β∗ and k∗ values of the ten families of EPs are shown in
Fig. 10. As a → d, the curves in Fig. 10 approach the light
line exactly at the values of k∗ listed in Table I. Therefore, it
can be argued that all these EPs originate from the artificial
degeneracies of the guided modes on the uniform slab. In
Fig. 9, we observe that different curves, e.g., (4,1) and (5,3),
may intersect. This simply means that, for the same periodic
slab, there are two EPs with different β∗ and k∗. Notice that
the curves (4,3) and (5,4) can intersect with themselves. On a
periodic slab corresponding to such an intersection, there are
two EPs that belong to the same family, but their β∗ and k∗
are again different. The left endpoints of the curves in Fig. 9
correspond to either β∗ = 0, or β∗ = 2π/d − Re(k∗) which is
the opening line of the second radiation channel. EPs exist

FIG. 12. Eigenfunctions φ∗ for EPs on periodic slabs with a = 0.7d and different h∗. The EPs are labeled by integer pairs (m,n) as in Fig. 9.
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FIG. 13. (a) Coefficient b1 versus a. (b) Coefficient b2 versus a.
Solid black dots are zeros of b1 or b2.

beyond this line, but they tend to have lower quality factors.
The quality factors of the ten families of EPs are shown in
Fig. 11. It can be observed that the quality factors of all EPs
diverge as a → d, and they are relatively small for smaller
values of a.

In Fig. 12, we show the field patterns of nine EPs on
periodic slabs with a = 0.7d. The case for (m,n) = (2,1) is
not shown, since it is similar to the one in Fig. 6(b) for
a = 0.5d. Notice that different scales in z are used in the
different panels, since the values of h∗ are different for different
EPs. It should be pointed out that the wave field pattern varies
continuously on each curve shown in Fig. 9, and the main
features, such as the number of polarity changes along the
y and z axes, are preserved when (a,h∗) moves along each
curve.

Near a second-order EP, the dispersion curves exhibit a
square-root splitting. One example is shown in Fig. 6(a),
where a square-root splitting can be observed for both real
and imaginary parts of k, and for both β > β∗ and β < β∗.
For this particular case, Re(k) has a stronger splitting for
β > β∗, and Im(k) has a stronger splitting for β < β∗, since
|b1| = |c2| > |b2| = |c1|. For some special EPs, b1 or b2 can
be exactly zero. In Figs. 13(a) and 13(b), we show b1 and
b2 vs a for a few families of EPs. It is clear that b1 or b2

can be zero for some special values of a. If b1 or b2 is zero,
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FIG. 14. One-sided square-root splitting of Re(k) (solid black
curves) and Im(k) (dashed blue curves) for an EP with b2 = 0, i.e.,
point Z in Fig. 13(b).

the square-root splitting becomes one-sided. For example, if
b2 = c1 = 0, then Re(k) has a square-root splitting only for
β > β∗, and Im(k) has a square-root splitting only for β < β∗.
A particular example is shown in Fig. 14 and corresponds to
point Z marked in Fig. 13(b). Actually, although b2 = 0, Im(k)
still shows a splitting for β > β∗, but it is a weaker linear
splitting proportional to β − β∗. The same is true for Re(k)
and β < β∗.

VI. CONCLUSION

Electromagnetic resonant modes on open dielectric struc-
tures are solutions of a non-Hermitian eigenvalue problem
derived from the Maxwell’s equations. EPs of resonant modes
are special degenerate states for which both the eigenvalues and
the eigenfunctions coalesce. In optical systems, EPs have given
rise to many interesting wave phenomena and some important
applications. In this paper, we investigated exceptional points
on a simple dielectric periodic slab. An efficient numerical
method for computing second-order EPs was developed and
used to calculate families of EPs that vary continuously with
structural parameters. Due to the extra degree of freedom
related to the Bloch wave number, it is possible to find EPs
by tuning only one parameter of the periodic structure. It is
worth mentioning that analytic results have been obtained for
the limit a → d, i.e., the periodic slab approaching a uniform
one. It was shown that the EPs tend to some points on the light
line in this limit, and these points are related to some artificial
degeneracies of the band structure of a uniform slab when it is
regarded as a periodic one.

Our results show that the EPs have rather complicated
dependence on the geometric parameters of the periodic slab.
For simplicity, we have concentrated on the odd resonant
modes in the E polarization for a very simple periodic slab.
Further studies are needed to understand EPs on more general
and three-dimensional structures, to reveal their properties
including existence and robustness, to find out their impact on
transmission spectra, reflection spectra and field enhancement,
and to realize more valuable applications.
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FIG. 15. One period of the periodic slab divided into subdomains
of constant permittivity.
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APPENDIX: NUMERICAL METHODS

The eigenvalue problem for resonant modes on the periodic
slab can be solved by a linear scheme based on the Chebyshev
pseudospectral method [29] and the perfectly matched layer
(PML) technique [30,31]. For the periodic function φ given in
Eq. (2), the Helmholtz equation (1) becomes

∂2φ

∂z2
+ ∂2φ

∂y2
+ 2iβ

∂φ

∂y
− β2φ = −k2εφ. (A1)

If the modes are odd in z, it is only necessary to consider z > 0
together with a zero boundary condition at z = 0. The z axis
is truncated at z = z2 with a PML for z1 < z < z2, as shown
in Fig. 15. The PML replaces z by ẑ or dz by dẑ = s(z)dz for
a complex function s(z). Hence, Eq. (A1) becomes

1

s(z)

∂

∂z

[
1

s(z)

∂φ

∂z

]
+ ∂2φ

∂y2
+ 2iβ

∂φ

∂y
− β2φ = −k2εφ. (A2)

In addition, φ must satisfy the boundary conditions

φ(y,0) = φ(y,z2) = 0, (A3)

and periodic conditions

φ(−d/2,z) = φ(d/2,z), (A4)

∂φ

∂y
(−d/2,z) = ∂φ

∂y
(d/2,z). (A5)

We use the Chebyshev pseudospectral method [29] to
discretize Eq. (A2) on each rectangular subdomain shown in
Fig. 15 and impose field continuity conditions and conditions
(A3)–(A5) on the boundaries of the subdomains. The result is

a linear matrix eigenvalue problem of the form

Lφ = k2φ, (A6)

where φ is a vector containing the values of φ at the interior
Chebyshev collocation points.

The eigenvalue problem for resonant modes on the periodic
slab can also be solved by a nonlinear scheme based on the
mode-matching method. For the odd (in z) modes, the structure
is divided into two layers given by 0 < z < h/2 and z > h/2,
and the dielectric function is ε(1)(y) and ε(2)(y) in these two
layers, respectively. For given β and k, we can expand φ in each
layer in one-dimensional eigenmodes. The eigenvalue problem
in the lth layer is[

d2

dy2
+ 2iβ

d

dy
+ k2ε(l)(y) − β2

]
ψ (l) = [η(l)]2ψ (l),

subject to the periodic boundary conditions

ψ (l)(−d/2) = ψ (l)(d/2),

dψ (l)

dy
(−d/2) = dψ (1)

dy
(d/2).

Solving the above by the Chebyshev collocation method [29],
we obtain {

ψ
(l)
j , η

(l)
j

}N

j=1, l = 1,2,

for a positive integer N and discretization points {yp}Np=1.
With the above eigenmodes, φ can be expanded as

φ(y,z) =
N∑

j=1

cj sin
(
η

(1)
j z

)
sin

(
0.5η

(1)
j h

)ψ
(l)
j (y), 0 � z <

h

2
,

φ(y,z) =
N∑

j=1

dj e
iη

(2)
j (z−h/2)ψ

(2)
j (y), z >

h

2
.

Enforcing the continuity of φ and ∂zφ at y = yp and z = h/2
for 1 � p � N , we obtain the following linear system:

A
[

c
d

]
=

[
A11 A12

A21 A22

][
c
d

]
= 0, (A7)

where c and d are column vectors of cj and dj (1 � j � N ),
respectively, A is a 2 × 2 block matrix depending on β and k,
and the (p,j ) entries of the matrix blocks are

A11(p,j ) = ψ
(1)
j (yp),

A12(p,j ) = −ψ
(2)
j (yp),

A21(p,j ) = η
(1)
j cot

(
0.5η

(1)
j h

)
ψ

(1)
j (yp),

A22(p,j ) = −iη
(2)
j ψ

(2)
j (yp).

Equation (A7) has a nontrivial solution, only when A is
singular. Therefore, we can find the complex k from the
condition λ1(A) = 0, where λ1(A) is the eigenvalue of A with
the smallest magnitude.
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