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Optimal estimation of the optomechanical coupling strength
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We apply the formalism of quantum estimation theory to obtain information about the value of the nonlinear
optomechanical coupling strength. In particular, we discuss the minimum mean-square error estimator and a
quantum Cramér–Rao-type inequality for the estimation of the coupling strength. Our estimation strategy reveals
some cases where quantum statistical inference is inconclusive and merely results in the reinforcement of prior
expectations. We show that these situations also involve the highest expected information losses. We demonstrate
that interaction times on the order of one time period of mechanical oscillations are the most suitable for our
estimation scenario, and compare situations involving different photon and phonon excitations.
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I. INTRODUCTION

Quantum estimation theory attempts to find the best strategy
for learning the value of one or more parameters of the density
matrix of a quantum-mechanical system [1], expressed as
a positive-operator valued measure (POVM). An estimation
protocol consists in identifying this POVM, applying its
elements in repeated measurements of the system, and finally
estimating the unknown parameters from the data set. The
optimum strategy consists of those POVMs which minimize
an average cost functional, typically considered for the max-
imum likelihood or mean-square error estimators. The math-
ematical framework for studying the conditions under which
solutions of the optimization problem exist was established
by Holevo [2,3]. Subsequently, considerable theoretical and
experimental developments in quantum statistical inference
have led to various applications in quantum tomography and
metrology [4].

We explore the implementation of this methodology to
the specific case of an optomechanical system. It has been
known for a long time that electromagnetic radiation exerts
“radiation pressure” on any surface exposed to it [5]. The
resulting momentum transfer is particularly notable on mirrors
forming a cavity for the electromagnetic radiation. This subject
has been brought to the forefront in recent years because
of its impact on the design and operation of laser-based
interferometric gravitational wave observatories [6], where
it imposes limits on the continuous detection of the mirror
positions [7,8]. Under the guise of optomechanics, it has also
drawn much attention both theoretically and experimentally
[5], motivated by its applications in sensitive optical detection
of weak forces, mechanical motion in the quantum regime, and
coherent light-matter interfaces that could form the backbone
of future quantum information devices.

The simplest optomechanical interaction is deceptively
simple to describe. Starting from two uncoupled harmonic os-
cillators, one representing a single mode of the electromagnetic
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field and one representing the mechanical oscillator, the only
other free parameter in this model is the coupling strength that
quantifies the extent to which the mirror rest position moves
when a single photon is added to the electromagnetic field.
The aim of this paper is to obtain the optimal strategy for
measuring the value of this coupling strength. Our approach
is based on quantum inference techniques, which have been
successfully applied to phase estimations of quantum states
[9,10]. In our case the parameter to be estimated is not a
simple phase parameter, but rather a parameter which appears
both in the spectrum [11,12] and the eigenvalues of the
quantum state. If the motion of the mechanical oscillator is
adiabatically slow compared to the frequency separation of
the optical modes [13], an analytical solution can be found
for the evolution of a system described by this model [14,15].
The resulting density matrix describes the joint state of the
field and the mechanical oscillator. Since measurements are, in
practice, usually performed on the state of the electromagnetic
field emerging from the system, we trace out the mechanical
degrees of freedom. We therefore concentrate on the resulting
optical state, which will be subject of our quantum estimation
procedure.

In this paper we shall focus on a mean-square error estimator
and assume that the prior probability density function of the
coupling constant is a Gaussian distribution, which will allow
us to keep our calculations analytic as far as possible. We set the
mean and the standard deviation of this distribution function
to values obtained by a canonical quantization procedure with
a high frequency cutoff of the radiation field and adiabatically
slow motion of the mechanical oscillator. In order to illustrate
the basic features of our proposal, we consider the mechanical
oscillator to be initially in (i) a coherent state, (ii) a thermal
state, and (iii) a squeezed state. For the sake of simplicity
and to keep our numerical calculations tractable, we will
assume that the initial optical field state has only a few
excitations. We determine the mean-square error estimator
which minimizes the cost functional and study a quantum
Cramér–Rao-type inequality for the variance of a biased
estimator. For our model, a right logarithmic or a symmetrized
logarithmic derivative operator of the electromagnetic field
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state with respect to the coupling constant is very challenging
to construct since the Hilbert space of the harmonic oscillator
is infinite dimensional. Therefore, we explore the possibilities
of deriving an analytically accessible lower bound formula for
the variance of the estimator. Obviously, we will employ the
standard techniques for the derivation of the unbiased quantum
Cramér-Rao inequality [16].

This paper is organized as follows. In Sec. II we discuss the
model and its solutions of the single mode radiation coupled
via radiation pressure to a vibrational mode of a mechanical
oscillator. In Sec. III we introduce quantum estimation theory
for minimizing mean-square error estimators, and study its
properties when applied to the optomechanical model. We
then address the variance of the biased estimator, in Sec. V,
deriving a lower bound and employing this result to the
optomechanical model. A discussion about our analytical and
numerical findings is the subject of a summary in Sec. VI.

II. MODEL

We consider a system composed of two harmonic oscilla-
tors, a single mode of the radiation field and a vibrational mode
of a mechanical oscillator. Provided that the electromagnetic
field describes a high-finesse cavity field mode, and that one of
the mirrors is movable, one is able to derive a radiation-pressure
interaction Hamiltonian [13,17] by using time-varying bound-
ary conditions in the quantization procedure, resulting
in (h̄ = 1)

Ĥ = ωcâ
†â + ωmb̂†b̂ + gâ†â(b̂† + b̂), (1)

where â (â†) is the annihilation (creation) operator of the single
mode electromagnetic field, with frequency ωc, and b̂ (b̂†) is
the annihilation (creation) operator of the mirror motion, with
frequency ωm. The strength of the optomechanical interaction,
denoted g, depends on the specifics of the realization in
question.

Starting from a joint field-mechanics state |�(0)〉, the time
evolution of the system is given by the Schrödinger equation
and can be rephrased as

|�(t)〉 = e−iĤ t |�(0)〉. (2)

We are interested in the case where there are no initial
correlations between the field and the mechanical oscillator.
Therefore, we choose an initial state of the form

|�(0)〉 =
∞∑

n=0

an|n〉c|ψ〉m, (3)

where the exact form of |ψ〉m depends on the desired initial
conditions. In the following subsections we consider initial
coherent, thermal, and squeezed states.

A. Coherent state

We start off by setting the initial mechanical oscillator to a
coherent state [18]

|ψ〉m = |α〉m =
∞∑

n=0

e− |α|2
2

αn

√
n!

|n〉m, with α = |α| eiφ,

(4)

which we write in terms of the field number states |n〉m (n ∈
N0). Here, |α| is the amplitude of the coherent state and φ is its
phase. We allow the coefficients an of the photon-number states
to be general and only impose the normalization condition∑

n |an|2 = 1. The choice of the initial state in Eq. (4) is
our basic approach for determining the time evolution of the
system, and will eventually be extended to cover initial thermal
and squeezed states of the mechanical oscillator.

The interaction Hamiltonian gâ†â(b̂† + b̂) commutes with
the free Hamiltonian of the radiation field, ωcâ

†â, which yields

c〈n|Ĥ |m〉c = [nωcÎ + ωmb̂†b̂ + ng(b̂† + b̂)]δn,m (5)

with δn,m being the Kronecker delta and Î the identity operator
on the Hilbert space of the mechanical oscillator. Thus, the
Hamiltonian (1) is block-diagonal with respect to photon-
number states |n〉c.

In order to evaluate the expression exp{−iωmb̂†b̂t −
ing(b̂† + b̂)t} we employ the Baker-Campbell-Hausdorff for-
mula and obtain (see, for example, Ref. [14])

e−iωmb̂†b̂t−ing(b̂†+b̂)t eiωmb̂†b̂t = ei�n(t)eαn(t)b̂†−α∗
n(t)b̂, (6)

where we have introduced the parameters

αn(t) = ng

ωm
(e−iωmt − 1) and (7)

�n(t) = n2g2

ω2
m

[ωmt − sin(ωmt)]. (8)

This implies that the full time evolution can be viewed as
photon-number dependent displacements of the mechanical
oscillator; with the help of Eqs. (5) and (6), we find

|�(t)〉 =
∞∑

n=0

ane
iϕn(t)|n〉c|βn(t)〉m, (9a)

ϕn(t) = −nωct + n2g2

ω2
m

[ωmt − sin(ωmt)] (9b)

+ ng

ωm

α∗(1 − eiωmt ) − α(1 − e−iωmt )

2i
, and

βn(t) = ng

ωm
(e−iωmt − 1) + αe−iωmt , (9c)

where we have also used a corollary of the Baker-Campbell-
Hausdorff formula, which states that the product of two
displacement operators is also a displacement operator with
an overall phase factor.

The quantum state of Eq. (9) yields a complete description
of the interaction between the single mode of the radiation field
and the single vibration mode of the mechanical oscillator, i.e.,
neglecting all losses and sources of decoherence. In the subse-
quent sections we will be interested in possible measurement
scenarios of the field, which are capable to estimate the couple
constant g. Therefore, the field to be measured for estimation
reads

ρ̂F = trmech{|�(t)〉〈�(t)|} =
∞∑

n,m=0

An,m|n〉c〈m| (10)
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with

An,m = ana
∗
meiϕn(t)−iϕm(t)−(|βn(t)|2+|βm(t)|2)/2+βn(t)β∗

m(t)

= ana
∗
me−g2f

(2)
n,m(t)+gf

(1)
n,m(t)−f

(0)
n,m(t), (11)

where

f (0)
n,m(t) = iωct(n − m), (12a)

f (1)
n,m(t) = α∗(1 − eiωmt ) − α(1 − e−iωmt )

ωm
(n − m), and

(12b)

f (2)
n,m(t) = 1 − cos(ωmt)

ω2
m

(n − m)2

− i
ωmt − sin(ωmt)

ω2
m

(n2 − m2). (12c)

We note in passing that these results imply that the coef-
ficient of the linear term in g contributes to An,m only when
the initial state of the mechanical oscillator is not in the ground
state, i.e., α �= 0. Before moving on to developing the quantum
error theory we require, let us briefly extend our considerations
to thermal and squeezed states.

B. Thermal state

If the initial state of the mechanical oscillator is thermal,
as a first step we must switch from discussing state vectors
to discussing density matrices. In this case, the uncorrelated
initial state of the optomechanical system has the form

ρ̂(t = 0) =
∞∑

n,m=0

ana
∗
m

∫
e−|γ |2/nth

πnth
|n〉c|γ 〉m〈m|c〈γ |m d2γ,

(13)

where we have used the Glauber-Sudarshan representation
[19,20] of the mechanical oscillator thermal state with the
average phonon number

nth =
[

exp

(
h̄ωm

kBT

)
− 1

]−1

, (14)

where kB is the Boltzmann constant and T is the thermody-
namic temperature of the initial state of the mechanical system.
The time evolution of this system is given by

ρ̂(t) = e−iĤ t ρ̂(0)eiĤ t , (15)

which yields

ρ̂(t) =
∞∑

n,m=0

ana
∗
m

∫
e−|γ |2/nth

πnth
eiϕn(t)−iϕm(t)|n〉c〈m|c

× |βn(t)〉m〈βm(t)|m d2γ, (16)

with

ϕn(t) = −nωct + n2g2

ω2
m

[ωmt − sin(ωmt)]

+ ng

ωm

γ ∗(1 − eiωmt ) − γ (1 − e−iωmt )

2i
, and (17)

βn(t) = ng

ωm
(e−iωmt − 1) + γ e−iωmt . (18)

In the next step we trace out the mechanical degrees of freedom,
as before, obtaining

ρ̂F = trmech{ρ̂(t)} =
∞∑

n,m=0

ana
∗
m|n〉c〈m|c

×
∫

e−|γ |2/nth

πnth
Bn,m(γ,γ ∗) d2γ, (19)

with

Bn,m(γ,γ ∗) = e−h0+h1 , (20)

where

h0 = iωct(n − m) + g2

ω2
m

{[1 − cos(ωmt)](n − m)2

− i[ωmt − sin(ωmt)](n2 − m2)}, and (21)

h1 = g

ωm
[γ ∗(1 − eiωmt ) − γ (1 − e−iωmt )](n − m). (22)

Now, we perform the Gaussian integral by using d2γ =
dRe{γ } dIm{γ } and obtain a density matrix in the form of
Eq. (10). Employing the notation of Eq. (11), we find

f (0)
n,m(t) = iωct(n − m), (23)

f (1)
n,m(t) = 0, and (24)

f (2)
n,m(t) = (2nth + 1)

1 − cos(ωmt)

ω2
m

(n − m)2

− i
ωmt − sin(ωmt)

ω2
m

(n2 − m2). (25)

C. Squeezed state

Let us now consider the case where the initial state of the
mechanical system is a displaced squeezed state; we write,
therefore,

|�(0)〉 =
∞∑

n=0

an|n〉c|α,ζ 〉m (26)

with the mechanical oscillator state being defined as [21]

|α,ζ 〉m = D̂(α)Ŝ(ζ )|0〉m (27)

where D̂(α) = exp(αâ† − α∗â), with α = |α|eiφ , is the dis-
placement operator, and Ŝ(ζ ) = exp[ 1

2 (ζ ∗b2 − ζb†2)], with
ζ = |ζ |eiθ , is the squeezing operator.

We employ the squeezed state of Eq. (27); in passing,
however, we note that it is possible to invert the order of
the displacement and squeezing operator. This results in a
generalized squeezed state, which differs from the original
state by the displacement parameter:

Ŝ(ζ )D̂(α) = D̂[α cosh(|ζ |) − α∗eiθ sinh(|ζ |)]Ŝ(ζ ). (28)

Exploiting the block-diagonal structure of the Hamiltonian
with respect to the photon-number states |n〉c, and Eq. (6),
we find

c〈n|e−iĤ t |�(0)〉 = ane
iϕn(t)|βn(t),ζ e−2iωmt 〉m (29)

where ϕn(t) and βn(t) are defined in Eqs. (9). Next, tracing out
the mechanical degrees of freedom yields the state of the field
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in the form of Eq. (10), with

An,m = ana
∗
meiϕn(t)−iϕm(t)

× tr{|βn(t),ζ e−2iωmt 〉〈βm(t),ζ e−2iωmt |}. (30)

The trace in this equation can be evaluated with the help of the
Glauber-Sudarshan representation, which allows us to write

tr{|βn(t),ζ e−2iωmt 〉〈βm(t),ζ e−2iωmt |}

=
∫

d2γ

π
〈γ |βn(t),ζ e−2iωmt 〉〈βm(t),ζ e−2iωmt |γ 〉. (31)

First, we note that

〈γ |βn(t),ζ e−2iωmt 〉m

= e−[γβ∗
n (t)−γ ∗βn(t)]/2〈0|D̂†[γ − βn(t)]Ŝ(ζe−2iωmt )|0〉, (32)

where we have used the relation D̂†(−γ ) = D̂(γ ). The overlap
integral between the coherent state |γ 〉 and the squeezed state
|0,ζ 〉 is

〈γ |0,ζ 〉 =
√

e−|γ |2

cosh(|ζ |) exp

[
−1

2
γ ∗2eiθ tanh(|ζ |)

]
. (33)

For the purposes of Eq. (32) we thus obtain

〈γ |βn(t),ζ e−2iωmt 〉m

=
√

e−|γ−βn(t)|2−γβ∗
n (t)+γ ∗βn(t)

cosh(|ζ |)

× exp

{
−1

2
[γ ∗ − β∗

n (t)]2ei(θ−2ωmt) tanh(|ζ |)
}
. (34)

Substituting this result into Eq. (31) and performing the integral
by using d2γ = dRe{γ } dIm{γ } we obtain the coefficients in
Eq. (11):

f (0)
n,m = iωct(n − m) + |α|2[1 + tanh(|ζ |) cos (θ − 2φ)]

− I (0) + ln[cosh(|ζ |)
√

1 − tanh2(|ζ |)], (35a)

f (1)
n,m(t) = α∗(1 − eiωmt )

ωm
(n − m) + I (1)

n,m

ωm
+ tanh (|ζ |)

× α∗(1 − e−iωmt )eiθn + α(1 − eiωmt )e−iθm

2ωm
,

(35b)

f (2)
n,m(t) = −i

ωmt − sin(ωmt)

ω2
m

(n2 − m2) + tanh (|ζ |)

× (e−iωmt − 1)2eiθn2 + (eiωmt − 1)2e−iθm2

2ω2
m

(35c)

+ 1 − cos ωmt

ω2
m

(n2 + m2) + I (2)
n,m

ω2
m

, (35d)

where, for simplicity of presentation, we relegate the explicit
form of the coefficients I (0), I (1)

n,m, and I (2)
n,m to Appendix A.

III. QUANTUM MINIMUM MEAN-SQUARE
ERROR ESTIMATION

Quantum estimation theory attempts to find the best strategy
for estimating one or more parameters of the density matrix
[22]. In our case, the density matrix of the field in Eq. (10)
depends on the parameter g to be estimated. Any outcome
of a measurement on the field is a variable with probability
depending on the parameter g to be estimated. As our knowl-
edge of g is limited, we assume that the a priori probability
density function of the parameter g to be estimated is

p(g) = 1√
2πσ 2

e
− (g−g0)2

2σ2 (36)

with mean g0 and variance σ 2. We shall return to these
parameters and their physical meanings later on.

Our estimation problem is to thus find the best measure-
ments on ρ̂F(g) to estimate g. In practice, we are looking for a
POVM the elements �̂(�) of which are defined on a compact
interval � ⊂ R of the real line, i.e., the set of all possible values
for g, and satisfy

0 � �̂(�) � Î , (37a)

where Î is the identity operator. We also suppose that the
infinitesimal operators d�̂(g) can be formed, thus yielding

�̂(�) =
∫

�

d�̂(g), (37b)

and

Î =
∫ ∞

−∞
d�̂(g). (37c)

In order to solve the estimation problem we have to also
provide a cost function, a measure of the cost incurred upon
making errors in the estimate of g. Here, we wish to minimize
the mean-square error, which is encoded in the cost function

C(g̃,g) = (g̃ − g)2, (38)

where g̃ is the estimate of g, and therefore a function of the
measurement data.

Now, we are able to formulate the quantum estimation
problem. We are looking for d�̂(g̃), which minimizes the
average cost of this estimation strategy

C̄ = tr

{∫ ∞

−∞

∫ ∞

−∞
p(g)C(g̃,g)ρ̂F(g)d�̂(g̃)dg

}
, (39)

under the constraints embodied in Eqs. (37). This is a varia-
tional problem for the functional C̄. To proceed, we consider
each possible estimate g̃ to be an eigenvalue of the Hermitian
operator

M̂ =
∫ ∞

−∞
g̃ d�̂(g̃) =

∫ ∞

−∞
g̃|g̃〉〈g̃| dg̃ (40)

with eigenstates |g̃〉. Thus, the average cost functional in
Eq. (39), calculated using the cost function in Eq. (38), can
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be written as

C̄[M̂] = tr

{∫ ∞

−∞
p(g)(M̂ − gÎ )2ρ̂F(g)dg

}
. (41)

For convenience, we now define the following operators
(k = 0,1,2):

�̂k =
∫ ∞

−∞
gkp(g)ρ̂F(g) dg. (42)

Now, let ε be a real number and N̂ any Hermitian operator.
Let M̂min be the Hermitian operator which minimizes C̄[M̂].
Then, we have

C̄[M̂min] � C̄[M̂min + εN̂ ], (43)

because the sum of Hermitian operators is itself a Hermitian
operator. Evaluating the right-hand side of the inequality and
using the operators defined in Eq. (42), we obtain

C̄[M̂min + εN̂ ] = C̄[M̂min] + ε tr{N̂ (�̂0M̂min

+ M̂min�̂0 − 2�̂1)} + ε2 tr{�̂0N̂
2}. (44)

By differentiating this relation with respect to ε and equating
the result to zero, one is able to show that the unique Hermitian
operator M̂min minimizing C̄ must satisfy [23]

�̂0M̂min + M̂min�̂0 = 2�̂1. (45)

The average minimum cost of error for this measurement is

C̄min = tr
{
�̂0M̂

2
min − 2�̂1M̂min + �̂2

}
= tr{�̂2 − M̂min�̂0M̂min}, (46)

where we have used the relation in Eq. (45) to simplify the
result. In order to determine M̂min we thus have to solve the
operator equation Eq. (45). It has been shown in Ref. [23] that
the unique solution of this equation can be written as

M̂min = 2
∫ ∞

0
exp(−�̂0x)�̂1 exp(−�̂0x) dx. (47)

A comment about this solution is in order. The operator that we
have found does not necessarily represent the best estimator
of g, but rather the measurement operator which protects best
against information loss, no matter what the true value of g

is. Further discussion about this subtlety and its relation to
biased estimators can be found in the illuminating monograph
by Jaynes [24].

We can evaluate all the �̂k by using the form of ρ̂F(g) in
Eq. (10), thus obtaining (k = 0,1,2)

�̂k =
∞∑

n,m=0

ana
∗
mA(k)

n,m exp(−γn,m)|n〉c〈m|, (48)

with

A(0)
n,m = 1

σ ′ , (49a)

A(1)
n,m = g0 + f (1)

n,m(t)σ 2

σ ′3 , and (49b)

A(2)
n,m =

[
g0 + f (1)

n,m(t)σ 2
]2 + σ 2σ ′2

σ ′5 , (49c)

where we have also introduced

γn,m = {
2g2

0f
(2)
n,m(t) − 2g0f

(1)
n,m(t) + 2f (0)

n,m(t)σ ′2

− [
f (1)

n,m(t)
]2

σ 2
}/

(2σ ′2), and (50)

σ ′2 = 2f (2)
n,m(t)σ 2 + 1. (51)

Written in this form, our results are very general. In the
following section we will investigate some simple cases,
related to the optomechanical model introduced previously.

IV. A CASE STUDY: OPTOMECHANICS

We shall now put the results obtained in the two preceding
sections together, thus allowing us to study the process of
quantum mean-square error estimation as it applies to an
optomechanical system.

The simplest nontrivial case results when an = 0 for n > 1
in Eq. (3). In order to maximize the absolute values of the off-
diagonal elements of the density matrix we choose a0 = a1 =
1/

√
2. This specific choice is due to the fact that the unknown

parameter g is only present in the off-diagonal elements, as
can be seen from Eqs. (12). Here, the estimate g̃ is simply
one of the two eigenvalues of M̂min, which turn up as a result
of applying the two projective measurements defined by their
accompanied eigenvectors.

Furthermore, we ought to define g0 and σ in Eq. (36), the
a priori probability density function of the parameter g to be
estimated. We set

g0 = ωc

L

√
〈x̂2〉0 = ωc

L

√
h̄

2mωm
, and (52a)

σ 2 =
(

ωc

L

)2√
〈x̂4〉0 − 〈x̂2〉2

0 =
(

ωc

L

)2
h̄√

2mωm

, (52b)

where L is the length of the cavity, m is the mass of the
mechanical oscillator, and 〈Â〉0 is the expectation value of
operator Â, acting only on the Hilbert space of the mechanical
oscillator, in the ground state [5,13]. For the sake of simplicity
we perform our calculations in the rotating frame of the single
mode field, i.e., ρ̂F → Û ρ̂FÛ

† with Û = exp{−iωct â†â}.

A. Coherent state

We determine M̂min from the �̂k in Eq. (48) by using
Eq. (47). One can obtain analytical results; however, due to
their complex structure we omit their explicit presentation here.
Instead, we focus on numerical solutions. First, we investigate
the average minimum cost of error C̄min; Fig. 1 shows C̄min as a
function of time, which decreases until it reaches its minimum
and then returns asymptotically to its initial value, which is
equal to σ 2. At t = 0, where no interaction occurred, the eigen-
values of M̂min are g0 and zero. The probability of measuring
the eigenvalue zero is zero and therefore the estimate is g0. It is
immediate from the form of the prior probability distribution
p(g) in Eq. (36) that the average minimum cost of error is σ 2,
or simply the variance of p(g), at t = 0.

In the opposite limit, t → ∞, the average minimum cost of
error C̄min is also σ 2; however, the estimates or the eigenvalues
of M̂min are g0, as can be seen in Fig. 2. This means that for
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FIG. 1. The average minimum cost of error C̄min/ω
2
m, as a function

of ωmt . We consider the amplitude α of the initial coherent state of the
mechanical oscillator to be real; see Eqs. (12). We set g0/ωm = 1 and
σ/ωm = 2−1/4. All curves are characterized by one global minimum
which decreases with increasing α.

long interaction times the inference of the parameter g from the
measurement data only yields the mean g0 of the probability
distribution p(g). Since the average minimum cost of error
attains its maximum at both t = 0 and t → ∞, we are going to
neglect these situations and focus on intermediate times, when
C̄min decreases. The fact that average minimum cost of error
reaches a minimum at a finite time implies the existence of a
particular duration for the interaction that yields the greatest
amount of information on g. For each set of parameters, we
can determine the time t∗ as the time when C̄min reaches
its minimum value. We can work backwards to obtain the
specific M̂∗

min = M̂min(t = t∗) to be measured, which is the
measurement that best protects against information loss.

The value of α, the amplitude of the initial mechanical
oscillator coherent state, has a strong influence on the value of
t∗. We show in Fig. 1 that the limit α → ∞, with α ∈ R, results
in t∗ = 0 and the lowest observed value for C̄min ≈ 0.636σ 2.

FIG. 2. The two eigenvalues of the operator M̂min to be measured,
shown as a function of ωmt . We set g0/ωm = 1, σ/ωm = 2−1/4, and
α = 0. The initial values of the two eigenvalues are g0 and zero.
There is a jump in these values when ωmt becomes larger than zero,
i.e., when the interaction is turned on. For large interaction times, the
eigenvalues tend to the same value g0.

FIG. 3. The average minimum cost of error C̄min/ω
2
m as a function

of ωmt . We set g0/ωm = 1 and σ/ωm = 2−1/4. The imaginary part of
α shifts the value of the minimum to the right. Minima occurring at
longer times are also less pronounced. Top: |α| = 1. Bottom: |α| = 5.

However, the eigenvalues of M̂∗
min are still zero and g0 at t = 0,

from which it follows that highly excited initial states of the
mechanical oscillator result in an estimation scenario where
measuring M∗

min merely reinforces prior knowledge and yields
only the mean g0 of the prior probability distribution p(g). In
the next step, we investigate the position of the minimum for
α ∈ C, to deduce its dependence on the phase of α. Figure 3
shows a shift of t∗ towards higher values and an increase of
the minimum value of C̄min as the imaginary part of α gets
larger. We see that the case with very large |α| may lead
to inconclusive measurement scenarios because C̄min is only
significantly smaller than its maximum for a short time period.
This observation is of significance in the discussion of initial
thermal states, since it implies that higher initial temperatures
will degrade the quality of the estimation procedure.

Let us turn our attention to M̂∗
min, which has already been

defined as the optimal measurement, made at the time t∗ that
minimizes the average minimum cost of error. Every outcome
of the measurement of M̂∗

min is an estimate of g. The most
important quantity for a possible experimental implementation
is the average estimate at t = t∗:

h(g) = tr{M̂∗
minρ̂F(g)}. (53)

Thus, measurement data determine the value of h(g). From
this, one may deduce the value of g. In Fig. 4, we show the
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FIG. 4. The average estimator h(g)/ωm as a function of g/ωm. We
consider the amplitude α of the initial coherent state of the mechanical
oscillator to be real. We set g0/ωm = 1 and σ/ωm = 2−1/4. The time is
such that the average minimum cost of error C̄min attains its minimum.
The mean value g0 of the prior probability distribution function p(g)
is depicted by a vertical line.

curves of h(g) for different values of the real parameter α. t∗ is
independently calculated for each specific initial state. When
α = 0, the average estimator is an even function of g. This is a
direct consequence of our particular choice of the cost function
(38), which is also an even function.

Before turning our attention to initial thermal states, let
us conclude this section by summarizing the measurement
procedure. Given a specific initial state, the system is allowed to
evolve for a time t∗. At this point in time, one would conduct
a measurement of M̂∗

min. This process is repeated, obtaining
an average measurement, h(g). Using calculations of the kind
shown in Fig. 4 allows one to work backward and obtain g.

B. Thermal state

Similar to the case for an initial coherent state for the
mechanical oscillator, an initial thermal state exhibits an
average minimum cost of error C̄min that is equal to σ 2 for
t = 0 and t → ∞. In these limits, the eigenvalues of M̂min

have the same values as for the coherent state, so our earlier
observations hold for the present case as well. In Fig. 5, we
show the time dependence of C̄min and the average estimator
h(g) for different average phonon numbers nth obtained from
the density matrix (10) with the help of the expressions in
Eq. (25). One can observe that an increase in the value of nth

increases C̄min for most times, while it does not induce any
significant change in the average estimator h(g). Furthermore,
the oscillations seen in Fig. 1 for longer interaction times
are damped by the increase of nth. Thus, in the context of
this optimal estimation scenario the lower the temperature T

of the mechanical oscillator the less sensitive is the average
minimum cost of error. This provides additional impetus to one
of the central pillars of optomechanical experiments, which is
to cool down the mechanical oscillator to temperatures as low
as possible [5].

FIG. 5. Top: The average minimum cost of error C̄min/ω
2
m as

a function of ωmt . We set g0/ωm = 1 and σ/ωm = 2−1/4. The
oscillations at ωmt ≈ 2π are damped by the increase of the average
phonon number nth. Bottom: The average estimator h(g)/ωm as a
function of g/ωm. The time is such that the average minimum cost
of error C̄min attains its minimum. The mean value g0 of the prior
probability distribution function p(g) is depicted by a vertical line.

C. Squeezed state

We make use of Eqs. (35) to construct the density matrix in
Eq. (11). The properties of C̄min and M̂min for t = 0 and t → ∞
are essentially the same as in the two cases discussed above. Let
us recall that, in our discussion above, we showed that for an
initial coherent state |α〉 of the mechanical oscillator large |α|2
reduces the average minimum cost of error C̄min, but at the ex-
pense of pushing the minimum towards very short interaction
times, which leads to inconclusive measurement scenarios. In
our discussion above we also identified a preferable scenario
where |α|2 is large but with approximately equal real and imag-
inary parts. In the case of initial squeezed states, Fig. 6 shows
an interesting effect, namely, the squeezing parameter ζ may
also reduce the average minimum cost of error. The average
estimator h(g) is again an even function, this time because
we have chosen two squeezed states without displacement.
The cost of error C̄min attains a minimum when the squeezing
angle lies between the position and momentum quadratures of
the oscillator. This can be understood as an effective continuous
sampling of the noise ellipse during the evolution of the system
for the first fraction of a mechanical time period. Squeezing
along either position or momentum quadrature will result in
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FIG. 6. Top: The average minimum cost of error C̄min/ω
2
m as a

function of ωmt . We set g0/ωm = 1 and σ/ωm = 2−1/4. The case
without squeezing, i.e, ζ = 0, has identical behavior to that in Fig. 1.
Bottom: The average estimator h(g)/ωm as a function of g/ωm for
α = 0. The time is such that the average minimum cost of error
C̄min attains its minimum. The mean value g0 of the prior probability
distribution function p(g) is depicted by a vertical line.

a greater uncertainty, whereas squeezing at an angle halfway
between these two quadratures allows the measurement to take
place with the least possible uncertainty.

D. Different initial photonic states

So far we have discussed in detail the estimation problem of
the optomechanical coupling g for the simplest initial state of
the single mode field. In this section, we consider the situation
where the optical field may have more than one photon, and
where the mechanical oscillator is initially in the ground state.
Since ρ̂F(g) depends on g only in its off-diagonal elements, we
therefore set the amplitude of all participating photon number
states to be equal. This ensures the maximum allowed absolute
value for the off-diagonal elements in the density matrix. Due
to the added complexity of dealing with Eq. (47) we restrict
our comparison to the following family of initial states of the
optical field, indexed by the parameter N = 2,3,4:

|ψN 〉c =
N−1∑
n=0

an|n〉c = 1√
N

N−1∑
n=0

|n〉c. (54)

Our earlier investigations consider exclusively the case N = 2.

FIG. 7. The average minimum cost of error C̄min/ω
2
m as a function

of ωmt for different initial states of the optical field. We set g0/ωm = 1,
σ/ωm = 2−1/4, and the mechanical oscillator initially in the ground
state. |ψN 〉c, defined in Eq. (54), is the initial optical state.

Figure 7 shows that the average minimum cost of error
is reduced as the number of the photons in the initial state
increases. This can be understood by examining carefully the
Hamiltonian in Eq. (1), which reveals that the interaction
between the single mode field and the mechanical oscillator
gets stronger with increased number of participating photons.
Thus, we have a better chance to estimate the optomechanical
coupling g. The time t∗ when C̄min attains its minimum does not
change markedly with N . We have also calculated the average
estimator h(g) for t∗; Fig. 8 shows the three curves obtained.
Since the mechanical oscillator is initially in the ground state
in every case, all curves are even.

V. QUANTUM CRAMÉR–RAO-TYPE INEQUALITY

In the preceding sections we discussed the properties of
the optimum Hermitian operator M̂min which minimizes the
average cost in Eq. (39), and the eigenvalues of which are the
estimates of the unknown optomechanical coupling strength

FIG. 8. The average estimator h(g)/ωm as a function of g/ωm. We
set g0/ωm = 1, σ/ωm = 2−1/4, and the mechanical oscillator initially
in the ground state. The time is such that the average minimum cost
of error C̄min attains its minimum. The mean value g0 of the prior
probability distribution function p(g) is depicted by a vertical line.
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g. An important task is to find out the accuracy with which g

can be estimated. We would like to employ here the quantum
Cramér-Rao inequality, which is widely used in the case of
unbiased estimators [16,25]. In the present case, however, we
have a biased estimator

tr{ρ̂F(g)(M̂min − gÎ )} = f (g), (55)

where f (g) is the bias of the estimation and is not necessarily
equal to zero. To properly account for this situation, we have
to review the derivation of the Cramér-Rao inequality.

Let us first, however, deal with an extra issue regarding
the derivative of the density matrix ρ̂F(g) with respect to the
parameter g. For concreteness, let us recall the density matrix
ρ̂F(g) from Eq. (10), together with Eqs. (12), and observe that

ρ̂F(g) =
∞∑

n,m=0

ana
∗
me−a1(n−m)2+a2(n2−m2)−a3(n−m)|n〉〈m|, (56)

where

a1 = g2

ω2
m

[1 − cos(ωmt)], (57)

a2 = i
g2

ω2
m

[ωmt − sin(ωmt)], and (58)

a3 = iωct − g

ωm
[α∗(1 − eiωmt ) − α(1 − e−iωmt )]. (59)

Therefore,

∂ρ̂F(g)

∂g
=−∂a1

∂g
[â†â,[â†â,ρ̂F(g)]] + ∂a2

∂g
[(â†â)2,ρ̂F(g)]

− ∂a3

∂g
[â†â,ρ̂F(g)] = L[ρ̂F(g)], (60)

which demonstrates that L[ρ̂F(g)] does not have the form
of either a right logarithmic or a symmetrized logarithmic
derivative of the density matrix ρ̂F(g) by default (see the
definitions in Appendix B). Therefore, we need the spectral
decomposition of ρ̂F(g) to construct at least the symmetrized
logarithmic derivative operator, which is very challenging due
to the fact that we have to deal with states defined on an
infinite-dimensional Hilbert space. Although this problem can
be easily circumvented in numerical simulations, here we are
motivated to derive an analytically expressible lower bound.
This situation will result in a departure from the standard
analysis [16]. In the standard proof, a Cauchy-Schwartz-
Bunyakovsky inequality is employed, which suggests that in
our new situation we would have to introduce the operator
ρ̂

−1/2
F (g). This operator does not exist when the spectrum of

ρ̂F(g) contains zero (e.g., a pure state). We avoid this situation
by following a different path.

In order to derive a lower bound for the variance of the error,

Var(M̂min − gÎ ) = tr{ρ̂F(g)(M̂min − gÎ )2}, (61)

we define

x1(g) = tr
{
ρ̂2

F(g)M̂min
}
, (62)

and then we differentiate both sides with respect to the
parameter g:

tr

{(
∂ρ̂F(g)

∂g
ρ̂F(g) + ρ̂F(g)

∂ρ̂F(g)

∂g

)
M̂min

}
= x ′

1(g). (63)

We also define x2(g) = tr{ρ̂2
F(g)}, and find

tr

{(
∂ρ̂F(g)

∂g
ρ̂F(g) + ρ̂F(g)

∂ρ̂F(g)

∂g

)
gÎ

}
= gx ′

2(g). (64)

Subtracting Eq. (64) from Eq. (63), we obtain

tr

{(
∂ρ̂F(g)

∂g
ρ̂F(g) + ρ̂F(g)

∂ρ̂F(g)

∂g

)
(M̂min − gÎ )

}

= x ′
1(g) − gx ′

2(g) = x(g), (65)

where the last equality defines the function x(g). We make use
of Eq. (60) and write Eq. (65) as

tr{(L[ρ̂F]ρ̂F + ρ̂FL[ρ̂F])(M̂min − gÎ )} = x(g), (66)

where for the sake of notational simplicity we have omitted the
argument g of ρ̂F(g).

Before continuing, we discuss an issue connected with the
boundedness of ρ̂F. The Banach space of the Hilbert-Schmidt
operators is defined as

B2(H) := {X̂ ∈ B(H) : tr{X̂†X̂} < ∞}, (67)

where B(H) is Banach space of all bounded operators defined
on the Hilbert spaceH. The spaceB2(H) with the inner product

〈A,B〉 = tr{A†B}, (68)

where A,B ∈ B2(H), is a Hilbert space [26]. The Cauchy-
Schwartz-Bunyakovsky inequality reads

|tr{A†B}| � tr{A†A}tr{B†B}. (69)

In our case the Hilbert space is the symmetric Fock space,
i.e., H = �s(C), and L contains powers of â†â, which is
an unbounded operator. This clearly shows that our proof
is limited to density matrices which fulfill the conditions
ρ̂

1/2
F (â†â)2ρ̂F,ρ̂

1/2
F â†âρ̂Fâ

†â ∈ B2(�s(C)). These conditions,
together with the cyclic property of the trace, imply that
ρ̂

1/2
F L(ρ̂F) is a Hilbert–Schmidt operator. Similarly, the con-

dition ρ̂
1/2
F M̂min ∈ B2(�s(C)) may restrict further the set of

the density matrices. In other words, there are restrictions on
the choice of the an in the initial state Eq. (3). In the case
of finite-dimensional examples, i.e, if there exists an N > 0
such that an = 0 for n � N , these complications do not arise,
because all matrices are Hilbert-Schmidt operators. This is the
typical case encountered in numerical simulations.

Now, provided that ρ̂
1/2
F L[ρ̂F] and ρ̂

1/2
F M̂min are Hilbert-

Schmidt operators, Eq. (66) implies

|x(g)| = ∣∣tr{L(ρ̂F)ρ̂1/2
F ρ̂

1/2
F (M̂min − gÎ )

}
+ tr

{
ρ̂

1/2
F L(ρ̂F)(M̂min − gÎ )ρ̂1/2

F

}∣∣. (70)

Applying first the subadditivity of the absolute value and then
the Cauchy-Schwartz-Bunyakovsky inequality (69) twice, we
find

|x(g)| � 2tr{ρ̂F(L[ρ̂F])2}Var(M̂min − gÎ ), (71)
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where we have used the fact that (L[ρ̂F])† = L[ρ̂F], as can be
deduced from Eq. (60).

Finally, we obtain a lower bound for variance of the mean-
square error

Var(M̂min − gÎ ) � |x(g)|
2tr{ρ̂F(L[ρ̂F])2} . (72)

The quantity on the right of this inequality is very similar to the
standard quantum Cramér-Rao bound. In this expression,
the function of x(g) in the numerator represents the fact that the
estimator is biased, and includes information about the purity
of the density matrix ρ̂F(g). The denominator has a similar but
slightly more complicated structure than the quantum Fischer
information [27], due to our approach to finding the derivative
of ρ̂F(g) with respect to the optomechanical coupling g.

We shall now apply the technique we just described to study
the same cases as we did above, allowing us to study how the
variance of the mean-square error behaves in each case.

A. Coherent state

We investigate numerically the lower bound of the variance
of the mean-square error. We consider g0 and σ to be the same
as in Eqs. (52). In Fig. 9, we recall the results of Figs. 1
and 3, and show the behavior of the lower bound of the
variance as a function of g/ωm. The most interesting feature
occurs when |α| grows, where the lower bound of the variance
is smallest. This may seem to suggest that measurement
strategies perform better under these conditions. However, this
in apparent contrast with our findings in Sec. IV. What we
can deduce is that measurements made with large |α| may
simply return g0, i.e., our prior expectation, for the value
of the coupling strength. In such circumstances, we gain no
information about the system; these scenarios are therefore to
be avoided.

B. Thermal state

Let us consider again the parameters of Fig. 5, where
we have seen that the average estimator is insensitive to
the change of the average phonon number nth, i.e., the change in
the temperature of the mechanical oscillator. Here, we observe
the same effect for the lower bound of the variance of the
mean-square error (see Fig. 10). These findings indicate that
the accuracy of the measurements cannot be improved or
worsened with the change of the nth. However, we have
demonstrated an increase in the average minimum cost of error
as nth is increasing. Therefore, in accordance with intuition,
high temperatures once again lead to inconclusive estimation
results.

C. Squeezed state

As we have seen in Fig. 6 for the average minimum cost
of error, squeezing is beneficial in the sense of reducing the
variance of the mean-square error. In Fig. 11 we see the lower
bound of this variance may also be reduced by squeezing,
in a manner that depends highly on the squeezing angle as
well as the magnitude of the squeezing. This is, once again, in
accordance with our earlier arguments and with intuition.

FIG. 9. The lower bound of the variance of the mean-square error
as a function of g/ωm. We set g0/ωm = 1 and σ/ωm = 2−1/4. The
time is such that the average minimum cost of error C̄min attains its
minimum. Compare the top figure with Fig. 1, and the bottom two
with Fig. 3. See also Fig. 4 for the corresponding average estimator.

D. Different initial photon states

Finally, we compare the lower bound for the variance for the
three different initial single mode field states given in Eq. (54),
with the mechanical oscillator again assumed to be in its ground
state. The time t∗, when the average minimum cost of error C̄min

attains its minimum, is taken to be the same as in Fig. 8. The
lower bound for the variance, as shown in Fig. 12, generally
decreases with the photon number states in the initial state.

063821-10



OPTIMAL ESTIMATION OF THE OPTOMECHANICAL … PHYSICAL REVIEW A 97, 063821 (2018)

FIG. 10. The lower bound of the variance of the mean-square error
as a function of g/ωm. The curves were evaluated using the method
and the parameters of Fig. 5.

This is in agreement with our findings in Fig. 7, namely, that
the average minimum cost of error is reduced by the increase
of the photon number states. This also suggests that the initial
preparation of the optical field is crucial to the outcome of the
estimation procedure, with an equally weighted superposition
of many photon number states being preferable. For ranges of
values of g, however, either this improvement with increasing
N is not seen or, in some cases, the situation worsens as N

increases.
We conclude from this qualitative assessment that prepara-

tion of initial states of both the optical field and mechanical
oscillator is crucial to obtaining more precise measurement
outcomes, and consequently better estimations of the optome-
chanical coupling strength.

VI. CONCLUDING REMARKS

In this paper we have investigated the simplest optome-
chanical model, consisting of a single mode of an optical field
interacting with a single vibrational mode of a mechanical
oscillator, from the perspective of quantum estimation theory.

FIG. 11. The lower bound of the variance of the mean-square error
as a function of g/ωm. The curves were evaluated using the method
and the parameters of Fig. 6.

FIG. 12. The lower bound of the variance of the mean-square error
as a function of g/ωm. The curves were evaluated using the method
and the parameters of Fig. 8.

The object of our analysis was to determine the optomechanical
coupling strength optimally, based on measurements made
on the optical field. We have discussed this problem by
introducing a quantum estimation scenario, in which one seeks
for the best estimator, which minimizes the mean-square error
cost functional. This Bayesian-inference approach requires a
prior probability density function of the coupling strength,
which represents the limited prior information held about the
system. In particular, we have considered a normal distribution,
where the mean and the standard deviation have been set to
values emerging from the derivation of the radiation pressure
Hamiltonian [13]. This derivation motivates our analysis,
which develops an estimation procedure that results in a
updated posterior probability density function for the coupling
strength.

We have concentrated on the average mean-square error
estimator, where the measurements occur at those interaction
times where the average minimum cost of error reaches a
minimum. The estimates are the eigenvalues of this estimator,
with the eigenvectors determining a projective POVM that
implements the measurement strategy. Our analysis has shown
that highly excited initial coherent states of the mechanical
oscillator limit the efficiency of this estimation procedure,
unless the imaginary and the real parts of the displacement
amplitude are approximately equal. We have demonstrated
that the most promising estimates involve measurements being
made during the first time period of the mechanical oscillation.
We have, moreover, explored the effect of increasing the
photon number states involved in the state of the optical field,
sticking to the case of an equally weighted superposition of
photon number states, Eq. (54); we find that increasing photon
numbers reduces the average information loss. Furthermore,
we have investigated scenarios where the mechanical oscillator
is initially in a thermal state or a squeezed state. In general,
thermal states lead to inconclusive measurement outcomes,
where the updated posterior probability density function is the
same as the prior one. The situation with an initial squeezed
state is different, because we find that for certain choices of
squeezing angle squeezing reduces the average minimum cost
of error.
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Third, we have investigated the accuracy of the mean-square
error estimator by means of a lower bound for the variance of
the mean-square error. The quantum Cramér-Rao inequality,
defining this lower bound, is derived with the help of a
symmetrized logarithmic derivative operator. In our situation,
this operator is demanding to construct due to the infinite
dimensionality of the Hilbert space on which the states to be
measured are defined. Therefore, we have derived a new lower
bound, Eq. (72), for the variance of our biased estimator. In fact,
we have reproduced the derivation of the quantum Cramér-Rao
inequality by applying its standard methods to our case. Our
numerical investigations here largely corroborate our previous
conclusions. However, the lowest bounds for the estimation
accuracy have been found for those limiting cases when the
eigenvalues of the estimator are either zero or the mean of
the prior normal distribution, where measurement yields no
further information about the system. In particular, we have
found that the initial state of the mechanical oscillator has to be
carefully prepared, otherwise the outcome of the measurement
process will be to simply reinforce prior expectations of the
optomechanical coupling strength.

Finally let us make some comments on our approach. The
analysis clearly indicates a characteristic set of parameters
when the estimation of the optomechanical coupling can be
done with minimal loss of information. Despite the fact that our
results pinpoint some important results for a scenario of much
experimental relevance, the question of how to implement the
optimal detection strategy or to compare with less optimal but
implementable measurement setups (see Ref. [12]) has not
been answered, and is the subject of ongoing investigations.
Another critical point is the preparation of the initial state of
the optical field; in this paper we have considered this state to
be an equally weighted superposition of photon number states,
but we have not tackled the question of whether this family of
states is optimal. These questions define the direction of our
future investigations. As a final word we think that the present
paper may offer interesting perspective and viewpoint, which

provides a different way of thinking about optomechanical
systems.
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APPENDIX A: MECHANICAL OSCILLATOR
IN AN INITIAL SQUEEZED STATE

In this Appendix, we present the full expressions of I (0),
I (1)
n,m, and I (2)

n,m, which appear in Eq. (35). First, we introduce
the following notation:

χ (1)
n,m = n(e−iωmt − 1) − m(eiωmt − 1), (A1)

χ (2)
n,m = n(e−iωmt − 1) + m(eiωmt − 1), (A2)

χ (3)
n,m = n(1 − e−iωmt )ei(θ−ωmt) − m(1 − eiωmt )e−i(θ−ωmt), and

(A3)

χ (4)
n,m = n(1 − e−iωmt )ei(θ−ωmt) + m(1 − eiωmt )e−i(θ−ωmt),

(A4)

as well as

ξ (0) = 1

4[1 − tanh(|ζ |) cos(z)]
, (A5)

ξ (1) = 1 − tanh(|ζ |) cos(z)

4[1 − tanh2(|ζ |)] , and (A6)

ξ (2) = i
tanh(|ζ |) sin(z)

1 − tanh(|ζ |) cos(z)
, (A7)

with z = θ − 2ωmt . Finally, we can write

I (2)
n,m = ξ (0)[χ (1)

n,m + tanh2(|ζ |)χ (3)
n,m

]2 − ξ (1){χ (2)
n,m + tanh2(|ζ |)χ (4)

n,m + ξ (2)[χ (1)
n,m + tanh2(|ζ |)χ (3)

n,m

]}2
, (A8)

I (1)
n,m = 4|α|(ξ (0)

[
χ (1)

n,m + tanh2(|ζ |)χ (3)
n,m

]
i[sin(z1) + tanh(|ζ |) sin(z2)] + ξ (1)

{
χ (2)

n,m + tanh2(|ζ |)χ (4)
n,m

+ ξ (2)
[
χ (1)

n,m + tanh2(|ζ |)χ (3)
n,m

]}{cos(z1) + tanh(|ζ |) cos(z2) − iξ (2)[sin(z1) + tanh(|ζ |) sin(z2)]}), and (A9)

I (0) = 4|α|2(ξ (0)[sin(z1) + tanh(|ζ |) sin(z2)]2 + ξ (1){[cos(z1) + tanh(|ζ |) cos(z2)] − iξ (2)[sin(z1) + tanh(|ζ |) sin(z2)]}2),

(A10)

where z1 = ωmt − φ and z2 = ωmt − φ − θ .

APPENDIX B: THE SYMMETRIZED AND THE RIGHT
LOGARITHMIC DERIVATIVE OPERATORS

In this Appendix, we present some well-known material
in order to support the arguments of this paper. In a single
parameter estimation scenario, the symmetrized logarithmic

derivative L̂ of the density matrix ρ̂(x) is defined by

∂ρ̂

∂x
= 1

2
(L̂ρ̂ + ρ̂L̂). (B1)

The operator L̂ is Hermitian [22]. If we consider the spectral
decomposition

ρ̂ =
∑

i

pi |i〉〈i|, (B2)
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then

L̂ =
∑
i,j

2
〈i|∂ρ̂/∂x|j 〉

pi + pj

|i〉〈j | (B3)

satisfies the above definition. However, in order to construct L̂

one must know the exact eigenvalues and the eigenvectors of ρ̂.
Another way of defining the derivative of ρ̂(x) with respect

to x involves the non-Hermitian operator L that is the solution

of the equation

∂ρ̂

∂x
= ρ̂L = L†ρ̂, (B4)

this being called the right logarithmic derivative operator. This
operator may not exist for many density matrices, and in
particular for those representing pure states [22].
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