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Quantum phases of a three-level matter-radiation interaction model
using SU(3) coherent states with different cooperation numbers
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We use coherent states as trial states for a variational approach to study a system of a finite number of three-level
atoms interacting in a dipolar approximation with a one-mode electromagnetic field. The atoms are treated as
semidistinguishable using different cooperation numbers and representations of SU(3). We focus our analysis
on the quantum phases of the system as well as the behavior of the most relevant observables near the phase
transitions. The results are computed for all three possible configurations (�, �, and V ) of the three-level atoms.
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I. INTRODUCTION

The study of the coherence in the radiation from a system
of two-level identical atoms interacting with a one-mode
quantized electromagnetic field was first described by Dicke
[1]. Dicke’s model can be generalized to study systems of
multiple-level atoms, allowing meaningful interactions with
more modes of the electromagnetic field. In particular, systems
of three- and four-level atoms have been extensively studied
[2–12] as they have been proved useful in the development of
certain types of quantum memories [13–16].

Two of the major aspects of these matter-radiation interac-
tion models are the existence of quantum phase transitions
(QPT’s), and the indistinguishability of the atoms in the
sense that they only consider the symmetric representation of
SU(N ). QPT’s are informally seen as sudden, drastic changes
in the physical properties of the ground state of a quantum
system at zero temperature due to the variation of some
parameter involved in the modeling hamiltonian, while the
distinguishability of the atoms is a characteristic that depends
on the space we choose for the Hamiltonian to act on.

In this work, to study its QPT’s, we use a variational
approach to estimate the ground state of a system of a finite
number of three-level atoms interacting in a dipolar approxima-
tion with a one-mode electromagnetic field. Most works on the
subject treat the atoms as completely indistinguishable, as they
only consider Fock-like (number) states; this, however, may not
correctly describe some of the experimental realizations of the
models. To gain distinguishability we add information of the
atomic field to the states we use to describe it, this information
is the cooperation number, a quantity closely related to the
group’s representation of the atomic field.

II. MODELING HAMILTONIAN

The Hamiltonian describing the interaction, in a dipolar
approximation, between N three-level identical atoms (same
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energy levels) and one-mode of an electromagnetic field in an
ideal cavity, has the expression (h̄ = 1) [9]

H = ω1e11 + ω2e22 + ω3e33 + �a†a

− 1√
N

3∑
i<j

μij (eij + e
†
ij )(a + a†). (1)

Here, ω1, ω2, and ω3 are the three energy levels of the
atoms, with ω1 � ω2 � ω3, � is the frequency of the field’s
mode, μij are the dipolar coupling parameters between the
radiation and the pair of atomic levels i and j , a and a† are
the annihilation and creation operators of the harmonic oscil-
lator, and eij are the collective atomic matrices (annihilation
operators for the atomic field), i.e., summations (with as many
summands as atoms in the system) of the single-entry matrices
(eij )

mn
= δimδjn. Choosing the zero of the energy to be at

1
3 (ω1 + ω2 + ω3) we can rewrite this Hamiltonian (1) in the
more useful form

H = ω1J
(1)
z + ω2J

(2)
z + �a†a

− 1√
N

3∑
i<j

μij (eij + e
†
ij )(a + a†), (2)

where J (1)
z = 1

2 (e22 − e11) (half the population difference be-
tween the second and first levels), J (2)

z = 1
2 (e33 − e22) (half

the population difference between the third and second levels),
ω1 = − 4

3ω1 + 2
3ω2 + 2

3ω3 and ω2 = − 2
3ω1 − 2

3ω2 + 4
3ω3.

Selection rules for a dipolar transition force the parity of
the quantum states between which the transition is made to
be opposite, and hence to one of the coupling parameters
μij to be zero, giving rise to three possible three-level atom
configurations: � configuration (μ13 = 0), � configuration
(μ12 = 0), and V configuration (μ23 = 0) (Fig. 1).

III. REPRESENTATION THEORY AND
COOPERATION NUMBER

The term cooperation number was first introduced by
Dicke in his original paper [1], referring to the different
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FIG. 1. Diagram showing the three possible configurations of
a three-level atom according to the permitted transitions between
its levels.

representations of SU(2) used in the description of the full
state’s space of his Hamiltonian. Here we make a brief analysis
of the representations of SU(3) and its basis states (Gelfand-
Tsetlin states), which we later use to describe the three-level
atoms in our system. The influence of the cooperation number
over the QPT and some expectation values has already been
studied for the Dicke model [17], as well as its effect on
the entropy of entanglement in two- and three-level systems
[17,18].

The operators J (1)
z , J (2)

z , e12, e13, e23, e
†
12, e

†
13, and e

†
23 in

the Hamiltonian (2), form a basis for the Lie algebra of SU(3),
one that is particularly convenient if it is adopted along with
the labeling scheme devised by Gelfand and Tsetlin [19] for
the basis states of the irreducible representations (irreps) of
SU(n). Given an irrep h = (h1,h2,h3) of SU(3), the scheme,
called a Gelfand-Tsetlin pattern, is as follows:∣∣∣∣∣∣

h1 h2 h3

q1 q2

r

〉
,

where the top row contains the information that specifies
the irrep, while the entries of lower rows are subject to
the betweenness conditions: h1 � q1 � h2, h2 � q2 � h3 and
q1 � r � q2.

These basis states are simultaneous eigenstates of the
operators J (1)

z and J (2)
z , explicit formulas exist for the matrix

elements of e12, e23, e†12, and e
†
23 [20] and they allow us to have

a very simple physical interpretation of its parameters in our
particular context: r is the number of atoms in the first (lowest)

energy level, q1 + q2 − r is equal to the number of atoms in
the second energy level and h1 + h2 + h3 − q1 − q2 is equal to
the number of atoms in the third (highest) energy level, where
h1, h2, and h3 are subject to the constraint h1 + h2 + h3 = N

(the total number of atoms).
The operators of the atomic subsystem in the Hamiltonian

(2) act, in principle, on the complex Hilbert space (C3)⊗N ,
which has a dimension of 3N ; this space can be decomposed
into a direct sum of subspaces Hh labeled by the permitted
representations h of SU(3) for a given N :

(C3)⊗N =
⊕

h

ghHh,

where gh is the representation’s multiplicity (the number of
times the representation appears in the decomposition) and the
sum runs over all possible representations h = (h1,h2,h3) such
that h1 + h2 + h3 = N and h1 � h2 � h3 (from the between-
ness condition of the Gelfand-Tsetlin patterns). Nevertheless,
working with this space is physically equivalent to studying
a system of N fully distinguishable atoms, which we do not
usually have in experimental realizations of the studied system.
If we were to consider every possible representation with its
own multiplicity, we would be treating the atoms as fully distin-
guishable; on the other hand, if we just consider the symmetric
representation (h1 = N , h2 = h3 = 0), we would be treating
the atoms as fully indistinguishable. Here we consider every
possible representation but ignore its multiplicity, leading us to
treat the atoms as semidistinguishable, the cooperation number
being what adds some distinguishability to the states.

The idea behind the term “cooperation number,” as de-
scribed by Dicke, is that of an effective number of atoms in
the system, however, this notion by itself is hard to generalize
to n-level systems without a proper definition. Here we define
the cooperation number (nc) to be the maximum difference
in the number of atoms between any pair of levels. This
number changes depending on the representation of SU(n)
we use to describe the system: for an arbitrary represen-
tation h = (h1,h2, . . . ,hn) the cooperation number is found
to be

nc = h1 − hn. (3)

FIG. 2. Three-dimensional (3D) plot of the energy of the coherent ground state as a function of the coupling parameters μ12 and μ23. The
dark-gray region represents the normal (subradiant) phase of the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and
correspond to the � configuration. Left: h = (4,0,0), Right: h = (3,1,0). Units are arbitrary but the same for all nondimensionless quantities
(h̄ = 1).

063819-2



QUANTUM PHASES OF A THREE-LEVEL MATTER- … PHYSICAL REVIEW A 97, 063819 (2018)

FIG. 3. 3D plot of the energy of the coherent ground state as a function of the coupling parameters μ12 and μ23. The dark-gray region
represents the normal (subradiant) phase of the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and correspond to the
� configuration. Left: h = (2,2,0), Right: h = (2,1,1). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).

In this particular work, where three-level atoms are being
studied, the cooperation number (3) is simply nc = h1 − h3.
Notice that a state with nc = 0 will have an expectation value
of 0 for the energy operator (2).

It is worth mentioning that the parameters h1, h2, and h3

are functions which depend on the total number of atoms (a
constant) and the eigenvalues of the Casimir operators of SU(3)
[which, by definition, commute with the atomic operators
and therefore with the Hamiltonian (2)], this means that the
representation parameters and hence the cooperation number
are constants of motion in the studied model.

IV. FIDELITY BETWEEN NEIGHBORING STATES,
AND QUANTUM PHASE TRANSITIONS

Fidelity is a measure of the “distance” between two quantum
states; given |φ〉 and |ϕ〉 it is defined as

F (φ,ϕ) := |〈φ|ϕ〉|2. (4)

Across a QPT the ground state of a system changes drastically,
thus it is natural to expect a drop in the fidelity between

neighboring states near the transition. This drop has been, in
fact, already shown to happen for two- and three-level systems
[21–23].

Due to the above, the definition of the concept of quantum
phase that we will be using throughout this paper is that of
an open region in the space of parameters where the fidelity
between neighboring states is close to 1, therefore the QPT’s
are characterized by values of this fidelity close to 0.

V. METHODOLOGY

To study the QPT’s in our system we need to know its ground
state; in this work we use a variational approach and apply
the energy surface minimization method to estimate it. This
method consists on minimizing the surface that is obtained
by taking the expectation value of the modeling Hamiltonian
with respect to some trial variational state. The minimization
is taken with respect to all the field and matter parameters (see
below). The strength of this method lies on the choice of the
trial state, as it is the latter, after minimization, the one that will
be modeling the ground state of the system.

FIG. 4. 3D plot of the average number of photons in the coherent ground state as a function of the coupling parameters μ12 and μ23. The
dark-gray region represents the normal (subradiant) phase of the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and
correspond to the � configuration. Left: h = (4,0,0), Right: h = (3,1,0). Units are arbitrary but the same for all nondimensionless quantities
(h̄ = 1).
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FIG. 5. 3D plot of the average number of photons in the coherent ground state as a function of the coupling parameters μ12 and μ23. The
dark-gray region represents the normal (subradiant) phase of the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and
correspond to the � configuration. Left: h = (2,2,0), Right: h = (2,1,1). Units are arbitrary but the same for all nondimensionless quantities
(h̄ = 1).

Here we take a variational approach for both the matter
and the radiation field, using a tensor product of HW(1)
coherent states (the usual coherent states of the harmonic
oscillator) for the radiation field, and SU(3) coherent states
for the atomic field. Note that, since we are using a tensor
product of field and matter states as our trial state, it will not
account for entanglement between the two sectors. One way
to obtain entanglement is to project this trial state with the
parity symmetry operator of the hamiltonian, thus obtaining a
state which not only respects the symmetry of the system but is
also an entangled state; this is called a symmetry adapted state
(SAS) and has been used previously in the study of two-level
systems [17].

As our system is not integrable, and the expression for the
energy surface is unwieldy, the minimization is carried out
numerically.

A. Coherent states of HW(1)

For the electromagnetic field, the annihilation and creation
operators a and a†, appearing in the modeling Hamiltonian (2),
satisfy the commutation relations of the Lie algebra generators

of the Heisenberg-Weyl group HW(1):

[a,a†] = 1,

hence, a natural choice of trial states for the radiation field are
the coherent states of HW(1), defined as the application of the
displacement operator to the radiation’s lowest energy state:

|α〉 := eαa†−α∗a|0〉 = e− |α|2
2

∞∑
ν=0

αν

√
ν!

|ν〉, (5)

where |ν〉 are the Fock states of the electromagnetic field.

B. Coherent states of SU(3)

For the atomic field, as we have already mentioned, the
operators J (1)

z , J (2)
z , e12, e13, e23, e

†
12, e

†
13, and e

†
23 form a

basis for the Lie algebra of SU(3), thus, analogously as for
the radiation field, it is natural to use the coherent states of
SU(3) as trial states; these are defined as the application of the
exponential of the raising operators e

†
12, e†23 and e

†
13 = [e†23,e

†
12]

to the atomic’s lowest energy state, and in the Gelfand-Tsetlin

FIG. 6. 3D plot of the expectation value of the Jz1 operator (half the population difference between the second and first levels) in the
coherent ground state as a function of the coupling parameters μ12 and μ23. The dark-gray region represents the normal (subradiant) phase of
the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and correspond to the � configuration. Left: h = (4,0,0), Right:
h = (3,1,0). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).
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FIG. 7. 3D plot of the expectation value of the Jz1 operator (half the population difference between the second and first levels) in the
coherent ground state as a function of the coupling parameters μ12 and μ23. The dark-gray region represents the normal (subradiant) phase of
the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and correspond to the � configuration. Left: h = (2,2,0), Right:
h = (2,1,1). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).

scheme take the form:

|γ,h} := eγ3e
†
12eγ2e

†
13eγ1e

†
23

∣∣∣∣∣∣
h1 h2 h3

h1 h2

h1

〉
,

where the delimiters |·} mean the state is not normalized.
Performing this calculation gives us the following expression
for the coherent states of SU(3):

|γ,h} =
h2−h3∑
n=0

h1−h2∑
�=0

h2−h3−n∑
m=0

h1−h2−�+n∑
j=0

γ n
1 γ �+m

2 γ
j

3

×
(

h2 − h3

n

) 1
2
(

h1 − h2 − � + n

j

) 1
2
(

m + j

j

) 1
2

× S�mn(h)

(� + m)!

∣∣∣∣∣∣
h1 h2 h3

h1 − � h2 − n − m

h1 − � − m − j

〉
.

(6)

Here, the numbers S�mn(h) are defined as the scalars

obtained from the application of the operator (e†13)
�+m

to the

resulting states from the previous application of eγ1e
†
23 , namely:

(e†13)�+m

∣∣∣∣∣∣
h1 h2 h3

h1 h2 − n

h1

〉

= S�mn(h)

∣∣∣∣∣∣
h1 h2 h3

h1 − � h2 − n − m

h1 − � − m

〉
. (7)

To obtain the ground state of the system we minimize the
expectation value of the Hamiltonian (energy surface) with
respect to the real and imaginary parts of the field parameter α

and the matter parameters γi, (i = 1,2,3).

VI. RESULTS AND DISCUSSION

The results presented in the main body of this work corre-
spond to the analysis made with the atoms of the system being
in the � configuration. Results for the � and V configurations
are shown in the supplemental material [24].

As it has already been stated, the energy surface minimiza-
tion was carried out numerically; Figs. 2 and 3 show the results
of this procedure. In them, the average ground-state’s energy

FIG. 8. 3D plot of the expectation value of the Jz2 operator (half the population difference between the third and second levels) in the
coherent ground state as a function of the coupling parameters μ12 and μ23. The dark-gray region represents the normal (subradiant) phase of
the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and correspond to the � configuration. Left: h = (4,0,0), Right:
h = (3,1,0). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).
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FIG. 9. 3D plot of the expectation value of the Jz2 operator (half the population difference between the third and second levels) in the
coherent ground state as a function of the coupling parameters μ12 and μ23. The dark-gray region represents the normal (subradiant) phase of
the system. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄, � = 0.5 and correspond to the � configuration. Left: h = (2,2,0), Right:
h = (2,1,1). Units are arbitrary but the same for all nondimensionless quantities (h̄ = 1).

of the system is plotted as a function of the dipolar coupling
parameters μ12 and μ23 for all the four possible representations
and cooperation numbers available for N = 4. It can be seen
from these figures that the area of the normal region (shown in
dark gray) in the μij plane gets larger as nc gets smaller; this
is consistent with the intuition behind the cooperation number
as the fewer the effective number of atoms is, the stronger
the required coupling needs to be for the system to reach the
super-radiant phase (please note the different scale of each
figure). The normal and superradiant regions were determined
by calculating the drop in the fidelity between neighbor-
ing coherent states, Fcoh = |〈ψcoh(μ + δμ)|ψcoh(μ)〉|2, as one
crosses from one region to the other (cf. Ref. [18]).

Figures 4 and 5 display the average number of photons in
the ground state of the system, which in the normal region is
zero but grows rapidly as we go deeper into the superradiant
phase. This growth has been shown to be of fourth order

with respect to the dipolar coupling parameters for two-level
systems [17].

The atomic observables are studied in Figs. 6 to 9, they
show both the average of half the population difference
between the second and first levels, and the average of half
the population difference between the third and second levels,
which correspond, respectively, to the expectation value, in
the ground state, of the Jz1 and Jz2 operators. These figures
reflect one of the features that make representation theory and
the Gelfand-Tsetlin labeling scheme useful tools to describe
this kind of systems: notice that the parameters h1, h2, and
h3 represent, respectively, the atomic population of the first,
second, and third levels, in the normal region of the system.

As the methodology used in this work provides an approxi-
mation to the ground state, a comparison between this and the
real quantum solution, calculated by explicitly diagonalizing
the Hamiltonian matrix, is presented in Figs. 10 to 13 by means

FIG. 10. Left: Contour plot of the fidelity between coherent states and quantum solution as a function of the coupling parameters μ12 and
μ23, values range between 0 (white) and 1 (black). Right: Contour plot of the fidelity between neighboring quantum states as a function of the
coupling parameters μ12 and μ23, black dots represent a drop in the fidelity below 1. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄,
� = 0.5 and correspond to the � configuration in the h = (4,0,0) representation. Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1). (Noise in the plots is due to numerical minimization; see text.)
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FIG. 11. Left: Contour plot of the fidelity between coherent states and quantum solution as a function of the coupling parameters μ12 and
μ23, values range between 0 (white) and 1 (black). Right: Contour plot of the fidelity between neighboring quantum states as a function of the
coupling parameters μ12 and μ23, black dots represent a drop in the fidelity below 1. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄,
� = 0.5 and correspond to the � configuration in the h = (3,1,0) representation. Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1). (Noise in the plots is due to numerical minimization; see text.)

of the fidelity between them F (Coh,Q), along with the real
QPTs obtained using the fidelity between neighboring quantum
states F (Q,Q), which we are using to characterize the real
QPT.

It is worth mentioning that, in this case, there are mainly two
ways in which we can calculate F (Q,Q), one is to compare
states along a horizontal line in the (μ12,μ23) plane and the
other is to do it along a vertical line, the first method being
particularly sensible to vertical QPTs and the second method
to horizontal ones. In this work, as both approaches look almost
identical, we decide to only show the resulting plots of one of
them. It is important to point out, however, that this decision
made continuous lines to look somehow dashed in some parts
of our Fidelity (Q,Q) plots.

Some interesting characteristics of the system arise from
the results displayed on these figures, the most notorious
one being the fact that in the normal region F (Coh,Q) ≈ 1,
meaning both solutions are nearly identical there. However,
near the coherent QPT the fidelity starts falling rapidly until
it reaches F (Coh,Q) ≈ 1

2 in the superradiant region; this
specific value is not a coincidence, it emerges from a mix of
parities the coherent states carry, derived from a symmetry
in the total number of excitations of the system. States that
respect this symmetry (symmetry-adapted states, or SAS) can
be constructed, and have actually already been used to study
two- and three-level systems [17,25] (the second of these only
for the symmetric representation), as well as other kinds of
systems [26].

FIG. 12. Left: Contour plot of the fidelity between coherent states and quantum solution as a function of the coupling parameters μ12 and
μ23, values range between 0 (white) and 1 (black). Right: Contour plot of the fidelity between neighboring quantum states as a function of the
coupling parameters μ12 and μ23, black dots represent a drop in the fidelity below 1. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄,
� = 0.5 and correspond to the � configuration in the h = (2,2,0) representation. Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1). (Noise in the plots is due to numerical minimization; see text.)
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FIG. 13. Left: Contour plot of the fidelity between coherent states and quantum solution as a function of the coupling parameters μ12 and
μ23, values range between 0 (white) and 1 (black). Right: Contour plot of the fidelity between neighboring quantum states as a function of the
coupling parameters μ12 and μ23, black dots represent a drop in the fidelity below 1. Both figures were obtained using ω1 = 1.3̄, ω2 = 1.6̄,
� = 0.5 and correspond to the � configuration in the h = (2,1,1) representation. Units are arbitrary but the same for all nondimensionless
quantities (h̄ = 1). (Noise in the plots is due to numerical minimization; see text.)

Another interesting aspect of the system present in Figs. 10
to 13 is the traces of the coherent QPT present in the Fidelity
(Q,Q) plots. These are more noticeable as the cooperation num-
ber increases. Traces of the real QPT in the Fidelity (Coh,Q)
plots are expected, as this fidelity is literally comparing both
kinds of states; however, to see a drop in F (Q,Q) where
the coherent QPT occurs is quite a remarkable feature, as
there is, in principle, no information about the coherent state
approximation in the Fidelity (Q,Q) plots. We attribute this
phenomenon to the following two facts: it has been shown
[17], for two-level systems, that the quantum and the SAS
solution coincide in the cooperation-number thermodynamic
limit (i.e., nc −→ ∞); and both coherent and SAS solutions
can be made to have the same normal region (minimizing both
with the same critical values). This leads us to conclude that, as
nc −→ ∞, the traces of the coherent QPT gradually become
the real QPT.

In general, these phase diagrams show a richer structure
than those obtained from coherent or symmetry-adapted states.
Figure 10 shows a transition band at its upper right corner,
compared to a transition line seen in the previously mentioned
phase diagrams. This we may attribute to changes in the
parity of the total excitation number. Whereas in the rotating
wave approximation the total excitation number is a conserved
quantity of the system, when taking the full Hamiltonian, as
we do here, only its parity is conserved. Thus, we conjecture
that the transition to a different parity takes place in the exact
quantum solution across a band which contracts down to a
point as the number of atoms and the cooperation number
increase. When the rotating wave approximation is considered,
the system has been shown to have a triple point for the
symmetric representation [27], which is fixed in parameter’s
space (μ12,μ23), is independent on the number of atoms, and
prevails in the thermodynamic limit. This triple point also
appears in our Fidelity (Q,Q) plots but, from all other figures
analyzed, it does not seem to be relevant in the coherent
approximation when the full Hamiltonian is considered.

VII. CONCLUSION

In this work we show the usefulness of representation theory
and the Gelfand-Tsetlin labeling scheme to study systems of
matter interacting with radiation in the dipolar approximation,
allowing us to easily define the cooperation number and
immediately knowing the atomic population of each level in
its normal phase.

Coherent states were used extensively in the study of the
interaction of matter with radiation, mainly due to the fact that
they provide analytical expressions with which to study the
system, as opposed to the numerical results obtained through
the diagonalization of the Hamiltonian. It has thus been useful
to study how well (or how bad) the coherent states approximate
the exact quantum results. When nonsymmetric representa-
tions are considered, however, the mathematics become much
more complicated and obtaining analytic expressions is far
from possible.

We see from the studied observables (energy, photon num-
ber, half the atomic population between second and first levels,
and between third and second levels), presented in Figs. 2 to
9, that the given definition of the cooperation number (3) is
consistent with the intuition of an effective number of atoms
in the system, mainly by the fact that the area of the normal
region (according to the coherent approximation) gets larger
as the cooperation number decreases.

The reliability of the coherent approximation was analyzed
using the fidelity between the coherent and quantum solutions,
shown in Figs. 10 to 13, along with the real QPT via a drop
in the fidelity between quantum neighboring states [Fidelity
(Q,Q) plots]. In the second case, traces of the coherent QPT
were observed regardless of the fact that the fidelity F(Q,Q)
was calculated using just the quantum solution, a characteristic
we attributed, based on previous results obtained for two-
level systems, to the fact that both solutions coincide in the
cooperation-number thermodynamic limit.

In conclusion, we utilize a coherent approximation to the
system’s ground state to study its quantum phase transitions,
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which we use to justify the given definition of cooperation
number, showing how this affects the behavior of the relevant
observables of the system near the transitions for all configu-
rations of three-level atoms.
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